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UNE SIMPLE DEMONSTRATION
DE LA NON-DERIVABILITE DE LA FONCTION
DU TYPE DE WEIERSTRASS

par E. TARNAWSKI

(Regu le 13 mat 1962)

‘M. G. de Rahm a prouvé [1] d’'une maniére trés simple qu'une
fonction de la forme

16 = ¥ ato (b, (1)

ol b est un nombre pair, a = b"1 et

@(x) = min [x—p|  (p entier) (2)

p
n’admet pas de dérivée. Il a remarqué aussi que la méthode de
la démonstration ne s’adapte pas au cas ou ¢@(x) = cos x et que

. . 3n
aussi, si dans ce dernier cas ab > 1—{——2—, 0 <a <1, best

impair (exemple de Weierstrass), la démonstration n’est plus
simple du tout.

Cependant dans [2] j’ai pu donner une méthode permettant
de démontrer, assez facilement, la non-dérivabilité de la fonction
f(x) définie par (1) dans le cas ou les coeflicients a, b satisfont
aux conditions énumérées a la page 27 de ladite note (Theorem 9d)
tandis que la fonction ¢(x) est périodique, non constante et
vérifie outre la condition de Lipschitz la condition suivante:

pour tout z il existe un nombre k, de module constant A*
(indépendant de z) tel que I'inégalité

Jo(x+h)—@x)|=2d >0

est satisfaite pour une certaine constante d et pour tout z1).

1) Cf. [2], p. 13.
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~ Cette derniére condition est par exemple remplie par les fonc-
tions périodiques (de période I) dont les deux premiéres dérivées
sont continues et qui dans lintervalle < 0,l> n’ont qu'un
nombre fini de zéros 1).

Par contre, le démonstration de la non-dérivabilité de la
fonction f(x) lorsque @(x) = cos z est particuliérement simple
au point de vue des calculs numériques qu’elle nécessite si ’on
pose dans la formule (1) a = £, b = 4 2). |

Voici la démonstration (qui semble avoir une valeur didac-
tique) de la non-dérivabilité de la fonction

f(x) = i <§->k cos 4*x. = (3)
o \4 -

Considérons les intervalles fermés a gauche A, de méme
longueur % dont les eitrémités gauches se trouvent aux points
z m (m entier). z, étant une valeur établie, m déterminé par la

2
relation 4"z, € A,, définissons la suite

T
h, = (=" - 4
= (=D O
Calculons
A -
f(-'_’co‘!';:) f(xO)=A1+A2+A3,
ou |
k m & k
n=1 3\ cos [4 (xo+(—1) 2.4n>]—— cos. 4" x,
A = — . ‘ -
' k;o (4> (=D"=n/2-F"
) ~N cos [4” (xo +(—=D" > 4n>]— cos 4" x,
2 (Z) | (—D)" /2 3"

1) Cf. le lemme 3 de [2]; p. 18
2) Cf. I’astérisque 18) de [2], p. 33.
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cos [4k<x0+(—1)"‘ . >j|—cos 4% x,,
© (3)" 24

=2 EOLRT

k=n+1

4

a) Afin de limiter la somme A, faisons les substitutions

ko
4*xy = u,

Attendu que

_ h
— sin (u +(—D" —2~>

cos (u+(—1)"h)— cosu

(—1)"h/4* 47"
h
sin (—1)"™—
2
<4*
(~mh
2
on a
n—1 1
Al Y 3¢ =-(3"-1). (5)
k=0 2
b) La limitation de I'expression A4, est d’apreés
sin [4”x0+(—1)m ] \/2
la suivante
3 n2 n n | mn n |
|4, | = i ;4 s1cos [ 4" xo+(—1) 5 — cos 4" x, (6)
2 n : n ntn . T 2
= ;3 —2 sin [4 Xo +(—1) Z] sin ((—1)’"2> = —3",

¢) Vu que le nombre 4*

T pour k> n est un multiple de

27, on a

Ay = 0. | (7)

L’Enseignement mathém., t. VIII, fasc. 8-4. ' 18
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Par conséquent on obtient, en tenant compte de (5), (6), (7),
que pour la suite { k,} définie par la formule (4) les relations
ont lieu

S (xo +hy) —f (%)
h,

2 1
§|A2|"|A1| §<———>3n—> 0.
/4 2
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