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6 A. LICHNEROWICZ

6. Tenseurs tnvariants.

Si un tenseur ¢ est invariant par transport, ¢ (z) est invariant
par.le groupe d’holonomie W¥,. De la formule (3-1) et de I’étude
précédente, il résulte:

THEOREME. — Sur un espace homogéne V,, = G/H (G effectif) a
connexion linéaire invariante, si un tenseur t satisfait deux des
_trois conditions suivantes, il satisfait la troisieme.

a) t est invartant par Uaction de G;
b) t est invariant par transport;

c) t(x) est invariant par le groupe de Kostant K, (G) en un
point x de V,,.

Au champ ¢ on peut substituer un champ Q de sous-espaces
vectoriels. Si la connexion est a kolonomie normale, b entraine c,
donc a: Tout tenseur invariant par transport est invariant par G.

II. TRANSFORMATIONS AFFINES ET ISOMETRIES
D’UNE VARIETE RIEMANNIENNE. '

7. Transformations affines et réductibilité.

Soit V, une variété riemannienne de tenseur métrique g,
que nous considérons toujours comme munie de sa connexion
riemannienne. Toute isométrie ou similitude (p*g = c®g;
¢ = const.) est une transformation affine pour cette connexion.
Inversement, dans I’hypothese ou le groupe d’holonomie est irré-
ductible, toute transformation affine reproduit la métrique & un
facteur nécessairement constant prés, et par suite est une simi-
litude. En utilisant cette remarque, nous nous proposons d’étu-
dier les rapports généraux entre transformations affines et iso-
métries.

a) La variété V,, est dite réductible si son groupe d’holonomie
connexe V2 est réductible dans le réel. S’il en est ainsi, espace
vectoriel 7', peut étre décomposé, d’une maniére et d’une seule
a lordre prés, en somme directe de sous-espaces orthogonaux
T4 (a = 0,1, ... k), invariants par W3, tels que ¥y induise
- Tidentité sur T2 et des représentations irréductibles sur
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T° (a # 0). Cette décomposition est la décomposition canonique
relative a la réductibilité. Il lui correspond une décomposition
de W2 en produit direct ITW 4, (b = 1, ... k), ot ¥, induit sur
T (a = b) la représentation triviale (Borel-Lichnerowicz); PO
étant sous-groupe invariant de ¥, le sous-espace T? est aussi
invariant par ¥,; par transport de T % on obtient sur V, le
champ complétement intégrable 70 et un feuilletage de V,, en
feuilles localement euclidiennes. Si 79 = 0, nous dirons brieve-
ment que V,, est sans partie euclidienne.

b) Soit w une transformation affine de V,, S I'ensemble des
sous-espaces de 7', invariants par ¥'. Si [ est un chemin joignant
z & p~ ! (z) Vautomorphisme de 7T, défini par:

o t(l)

détermine une substitution s (u) de S ne dépendant que de .
On obtient ainsi un homomorphisme de A (V,), dans le groupe
des substitutions de S. Si ¥, induit sur un élément U, € § une
représentation irréductible (resp. I'identité), il en est de méme
pour s (p) U,.

¢) Supposons V, simplement connexe. La décomposition
canonique définit alors (k + 1) champs 7“ de sous-espaces, inva-
riants par transport le long d’un chemin arbitraire. Par suite si
we A (V,), wlaisse invariant 7° et permute éventuellement les
T (a # 0). Si pe A°(V,,), tous les T° sont invariants. Ainsi:

THEOREME. — Sur une variété riemannienne simplement connezxe,
chaque champ T défint par la décomposition canonique relative

a la réductibilité est invariant par toule transformation affine
de A° (V,).

8. LEtude des variétés riemanniennes complétes.

Sur V,, la distance d (x, 2") définie par le minimum de la
longueur des chemins continiment différentiables par morceaux
joignant x & 2" détermine une structure d’espace métrique. Nous
supposons V,, compléte, ¢’est-a-dire complet I'espace métrique
précédent

a) Soit w une similitude qui ne soit pas une isométrie; en
passant au besoin & 'inverse, on peut supposer p* g = ¢ g avec

8 e PP = A=
Sl
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¢ < 1. Par suite, p réduit les longueurs et distances dans le
rapport ¢. Du caractére complet, il résulte que w admet un point
fixe x,. Si [ est un lacet arbitraire en x, et si r, est I’élément du
groupe d’holonomie induit par le lacet p*1 (2 =0, 1, ...), r, tend
vers l'identité quand A — co. D’aprés (2-4), r, = p™oryo p' ™"
et le polyndme caractéristique de r, est indépendant de % et
coincide avec celui de I'identité. On peut en déduire que le groupe
d’holonomie de V,, est réduit a Pidentité.

TatorEME. — Sur une variéié riemannienne compléte qui n’est
pas localement euclidienne, toute similitude est une isométrie
[ Kobayashi].
Si V,, compléte est irréductible (m > 2) toute transformation
affine est une isométrie.

b) Supposons V,, compléte et stmplement connexe. D’apres
un théoréeme classique de Georges de Rham, il existe une iso-
métrie globale de V, sur le produit riemannien de (k& + 1)
variétés W* complétes simplement connexes. Pour a =0, W°
est euclidienne et pour a 5= 0, W* est irréductible (de dimen-
- sion > 2). '

Soit I° (V,,) le plus grand groupe connexe d’isométries de V,,.
A Taide du théoréme du § 7, on établit que A° (V) (resp. 1°(V,,))
peut étre identifié au produit direct IIA° (W*) (resp. II I0 (W9)).
Du résultat précédent on déduit que A°(W*) = I° (W) pour
a % 0. Ainsi:

TutorEME. — Pour une variété riemannienne compléte, simple-
ment connexe, V,, = WO X W ot WO est euclidienne et W sans
partie euclidienne, A°(V,) est identique au produit direct
A (W9 x I°(W) agissant naturellement sur V,,.

Les transformations strictement affines de A4° (V,,) provien-
nent ainsi des transformations strictement affines de I'espace
euclidien. Par étude du revétement universel, on voit que pour
toute variété riemannienne compléte (sans hypothése de simple
connexité) sans partie euclidienne A® (V,,) = I° (V,). Une étude
~directe montre qu’on a la méme conclusion pour toute variété
riemannienne compacte (avec ou sans partie euclidienne) [Ken-
karo Yano]. |
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9. Holonomie et isoméiries infinitésimales sur une variété
riemannienne.

@) Pour une variété riemannienne, les endomorphisnes de
Pespace vectoriel euclidien 7', peuvent étre identifiés a des
2-formes. Ainsi I’algébre d’holonomie W', en z définit un sous-
espace (désigné par la méme notation) de I'espace vectoriel des
9-formes en z. Soit B, orthocomplément de ce sous-espace par
rapport au produit scalaire, noté ( , ), défini sur les 2-formes
par la métrique. Si Y est un champ de vecteurs sur un voisinage U
de la variété V,, « une 2-forme sur U telle que o (x) € ¥, pour
x € U, on sait que:

(- ((V)Va)(x) e,

De méme si $ est une 2-forme sur U telle que B (z) € B, pour
xelU

(9-2) (i(Y)V p)(x) € B,

Cela posé si X est une isométrie infinitésimale, Ay (x) définit une
2-forme en z. Avec un abus de notation, nous pouvons poser

(9-3) Ay = a+ p (avec a(x)e ¥, B(x)eB,).

D’apres (2-3), (i (Y) VAyx) () e ¥,. De (9-1) et (9-2) il résulte
VB =0 et B (x) est dans l'algebre de Lie du centralisateur
connexe de ¥ dans le groupe des rotations de T,.

Si V,, est a W2 irréductible et admet une 2-forme a dérivée
covariante nulle, elle est kdhlerienne (m = 2n). Dans ce cas, si
la courbure de Ricci de la variété est non nulle, le centralisateur
connexe de ¥ est contenu dans W3 et ’on voit que Ay (z) € ¥,
On déduit de ces remarques. N

TutoriME. — Un espace homogéne riemannien V,, = G/H est
certatnement d holonomie normale (¥ = K (G)) sous une des
hypotheéses suivantes :

a) SiV,, n’admet pas de 2-formes & dérivée covariante nulle,
en particulier sv 'V, irréductible n’est pas kihlerien ;

b) SiV,, est kihlerien, a VY, irréductible est d courbure de Ricci
non nulle ;
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c) Si V,, admet une courbure de Ricct non dégénérée.

; ¢ se déduit de ¢ et b a4 Taide du theoreme de réductibilité de
G. de Rham.

b) De ce méme théoréme et du § 8, on déduit que si V,, est
une variété riemannienne compléte, I° (V,,) son plus grand groupe
connexe d’isométries (non nécessairement transitif), le groupe
K (I°(V,,)) est produit direct de groupes orthogonaux connexes
irréductibles et d’un groupe certainement compact correspon-
dant & la partie euclidienne.

THEOREME. — Pour toute variété riemannienne compléte, K,
(I°(V,,) est compact.

c) Supposons V, compacte. On sait que I°(V,) est alors
compact (Elie Cartan). S1 X est une isoméftrie infinitésimale,
considérons la décomposition (9-3) et la 1-forme

| =i
- De (9-3) on déduit:
on(x) = (Ax (), B(x) = (B(x), B(x)) 20

ou & est l'opérateur de codifférentiation. Si V,, est compacte
orientable, on en déduit par intégration 8 = O et, par passage
a un revétement, il en est de méme si V,, est seulement com-
pacte. Ainsi K, (]0 (Vi) = ¥

Soit J,, le sous-groupe d’isotropie d’un point x,, clest- a-dire
le sous-groupe de I°(V,,) laissant z, fixe, h un élément de J,.
Le groupe I°(V,) étant compact, il existe un sous-groupe a
un parametre exp (1X) tel que A = exp (uX); z (t) = exp (¢X)
(0 <t < u) engendre un lacet [ en . Si r est 'élément de ¥,
correspondant a [, on a d’aprés (3-1)

exp' (u'X)’A= reexp [ —udx(xo)] -

Ainsi, si J,, est le groupe linéajre d’isotropie, J, = ¥, . Nous

- énoncerons:
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THEOREME. — Si V,, est une variélé riemannienne compacie,
19 (V,,) son plus grand groupe connexe d’isoméiries (non neéces-
sairement transitif), I, le sous-groupe d’isolropie en X,.on a

(9-4) : K.(I°(Vw) = o
et
9-5) T e ¥,

| En particulier pour tout espace homogéne riemannien com-
pact, Uholonomie est normale.

I1I. ESPACES HOMOGENES REDUCTIFS.
CAS RIEMANNIEN.

10. Notion d’eépace homogéne réductif (Nomizu].

Sur un espace homogéne V,, = G/H une structure réductive
(ou d’espace homogéne réductif) est définie par la donnée d’une
décomposition en somme directe de Ualgébre de Lie G de G

(10-1) G=H+M (Hn M = 0)

telle que le sous-espace M vérifie
(10-2) adj(H)M < M ,

adj (H) est ici la restriction a I de la représentation adjointe
de G. Tout élément A de G s’écrit d’une maniere et d’une seule
A= 2Ag + My (Ag € H; My € M). Par la projection naturelle p
de G sur V,, on peut identifier M avec I’espace vectoriel Tx,
tangent en z, = pe & V,, et ad] (H) avec le groupe linéaire d’iso-

tropie H. Les cas ou H est compact ou connexe réductif dans G
fournissent des exemples de structure réductive.

D’apres (10-2), M définit sur l'espace fibré principal G de
base V, une connexion infinitésimale invariante par G. Si
P (V,) est l'espace de repeéres défini par les reperes de V,,
déduits de I'un d’entre eux par ’action de G, le fibré P (V,,) est

isomorphe au fibré G. De la connexion invariante obtenue sur

v e e R S
=
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