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6 A. LICHNEROWICZ

6. Tenseurs invariants.

Si un tenseur t est invariant par transport, t (x) est invariant
par.le groupe d'holonomie Yx. De la formule (3-1) et de l'étude
précédente, il résulte:

Théorème. — Sur un espace homogène Vm G/H (G effectif) à

connexion linéaire invariante, si un tenseur t satisfait deux des

trois conditions suivantes, il satisfait la troisième.

a) t est invariant par Vaction de G;
b) t est invariant par transport;
c) t (x) est invariant par. le groupe de Kostant (G) en un

point x de Vm.

Au champ t on peut substituer un champ Q de sous-espaces
vectoriels. Si la connexion est à holonomie normale, b entraîne c,

donc a: Tout tenseur invariant par transport est invariant par G.

II. Transformations affines et isométries
d'une variété riemannienne. '

7. Transformations affines et réductibilité.

Soit Vm une variété riemannienne de tenseur métrique g,

que nous considérons toujours comme munie de sa connexion
riemannienne. Toute isométrie ou similitude (p* g c2 g\
c const.) est une transformation affine pour cette connexion.
Inversement, dans l'hypothèse où le groupe (Tholonomie est

irréductible, toute transformation affine reproduit la métrique à un
facteur nécessairement constant près, et par suite est une
similitude. En utilisant cette remarque, nous nous proposons d'étudier

les rapports généraux entre transformations affines et
isométries.

a) La variété Vm est dite réductible si son groupe Tholonomie
connexe est réductible dans le réel. S'il en est ainsi, l'espace
vectoriel Tx peut être décomposé, d'une manière et d'une seule

à l'ordre près, en somme directe de sous-espaces orthogonaux
Tx (a 0, 1, k), invariants par tels que induise
l'identité sur Tx et des représentations irréductibles sur
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Tax (a^0). Cette décomposition est la décomposition canonique

relative à la réductibilité. Il lui correspond une décomposition
de Y° en produit direct nY(6)x (b 1, k), où Y(t)x induit sur
Tax a^b) la représentation triviale (Borel-Lichnerowicz) ; Y°
étant sous-groupe invariant de Yx, le sous-espace T° est aussi

invariant par T,; par transport de T°x on obtient sur Vm le

champ complètement intégrable T° et un feuilletage de Vm en

feuilles localement euclidiennes. Si T°x — 0, nous dirons briève-

ment que Fm est sans partie euclidienne.

b) Soit p une transformation affine de Fm, S l'ensemble des

sous-espaces de Tx invariants par Yx. Si l est un chemin joignant
x à g"1 (x) l'automorphisme de Tx défini par:

Jl O T (Z)

détermine une substitution s (p.) de S ne dépendant que de p.
On obtient ainsi un homomorphisme de A (Fm), dans le groupe
des substitutions de S. Si induit sur un élément Ux e S une

représentation irréductible (resp. l'identité), il en est de même

pour 5 (p) Ux.

c) Supposons Vm simplement connexe. La décomposition
canonique définit alors (k + 1) champs Ta de sous-espaces,
invariants par transport le long d'un chemin arbitraire. Par suite si

p g A (Fm), p laisse invariant T° et permute éventuellement les
Ta (a =£ 0). Si p ei°(FJ, tous les Ta sont invariants. Ainsi:

Théorème. — Sur une variété riemannienne simplement connexe,
chaque champ Ta défini par la décomposition canonique relative
à la réductibilité est invariant par toute transformation affine
de A« (VJ.

8. Etude des variétés riemanniennes complètes.

Sur Fm, la distance d (x, x') définie par le minimum de la
longueur des chemins continûment différentiables par morceaux
joignant x k x' détermine une structure d'espace métrique. Nous

supposons Fm complète, c'est-à-dire complet l'espace métrique
précédent

a) Soit p une similitude qui ne soit pas une isométrie; en
passant au besoin à l'inverse, on peut supposer p* g c2 g avec
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c < 1. Par suite, (x réduit les longueurs et distances dans le

rapport c. Du caractère complet, il résulte que jx admet un point
fixe xQ. Si l est un lacet arbitraire en x0 et si rh est l'élément du

groupe d'holonomie induit par le lacet fxÄ l {h 0, 1, rh tend
vers l'identité quand A-> oo. D'après (2-4), rh [i,h o r0 o \i'~h
et le polynôme caractéristique de rh est indépendant de h et
coïncide avec celui de l'identité. On peut en déduire que le groupe
d'holonomie de Vm est réduit à l'identité.

Theoreme. — Sur une variété riemannienne complète qui n'est

pas localement euclidienne, toute similitude est une isométrie

[Kobayashi].
Si Vm complète est irréductible (m > 2) toute transformation

affine est une isométrie.

b) Supposons Vm complète et simplement connexe. D'après
un théorème classique de Georges de Rham, il existe une
isométrie globale de Vm sur le produit riemannien de (k + 1)

variétés Wa complètes simplement connexes. Pour a 0, W°
est euclidienne et pour a ^ 0, Wa est irréductible (de dimension

>2).
Soit 1° (Vm) le plus grand groupe connexe d'isométries de Vm.

A l'aide du théorème du § 7, on établit que A0 (Vm) (resp. 1° (Fm))

peut être identifié au produit direct IIA0 (Wa) (resp. II 7° (Wa)).
Du résultat précédent on déduit que A0 (Wa) 7° (Wa) pour
a A2 0. Ainsi:

Théorème. — Pour une variété riemannienne complète, simple¬
ment connexe, Vm W° X Vf où W° est euclidienne ßt W sans

partie euclidienne, A0 (Vm) est identique au produit direct
A0 (W°) X 1° (W) agissant naturellement sur Vm.

Les transformations strictement affines de A0 (Vm) proviennent

ainsi des transformations strictement affines de l'espace
euclidien. Par étude du revêtement universel, on voit que pour
toute variété riemannienne complète (sans hypothèse de simple
connexité) sans partie euclidienne A? (Vm) 1° (Vm). Une étude
directe montre qu'on a la même conclusion pour toute variété
riemannienne compacte (avec ou sans partie euclidienne) [Ken-
karo Yano].



VARIÉTÉS A CONNEXION LINÉAIRE 9

9. Holonomie et isométries infinitésimales sur une variété

riemannienne.

a) Pour une variété riemannienne, les endomorphismes de

l'espace vectoriel euclidien Tx peuvent être identifiés à des

2-formes. Ainsi l'algèbre d'holonomie Yx en x définit un sous-

espace (désigné par la même notation) de l'espace vectoriel des

2-formes en x. Soit Bx l'orthocomplément de ce sous-espace par
rapport au produit scalaire, noté défini sur les 2-formes

par la métrique. Si Y est un champ de vecteurs sur un voisinage U

de la variété Fm, oc une 2-forme sur U telle que a (x) e Yx pour
x e t/, on sait que :

De même si ß est une 2-forme sur U telle que ß (x) e Bx pour
X E U

Cela posé si X est une isométrie infinitésimale, Ax (x) définit une
2-forme en x. Avec un abus de notation, nous pouvons poser

(9-3) Ax a + ß (avec a (x) e Tx ß (x) e Bx).

D'après (2-3), (i (F) VAX) (x) eYx. De (9-1) et (9-2) il résulte
V ß 0 et ß (x) est dans l'algèbre de Lie du centralisateur
connexe de Y° dans le groupe des rotations de Tx.

Si Vm est à Y° irréductible et admet une 2-forme à dérivée
covariante nulle, elle est kählerienne (m — 2n). Dans ce cas, si

la courbure de Ricci de la variété est non nulle, le centralisateur
connexe de Y° est contenu dans Y° et l'on voit que Ax (x) e Yx.
On déduit de ces remarques.

Théorème. — Un espace homogène riemannien Vm G/H est
certainement à fiolonomie normale (Y° Kx (G)) sous Vune des

hypothèses suivantes :

a) Si Vm n'admet pas de 2-formes à dérivée covariante nulle,
en particulier si Vm irréductible n'est pas kählerien;

b) Si Vm est kählerien, à Y!J irréductible est à courbure de Ricci
non nulle ;

(9-1) (z(F)V a)(v)GYx

(9-2) (i(Y)Vß){x)eBx
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c) Si Vm admet une courbure de Ricci non dégénérée.

c se déduit de a et b à l'aide du théorème de réductibilité de

G. de Rham.

b) De ce même théorème et du § 8, on déduit que si Vm est

une variété riemannienne complète, /° (Vm) son plus grand groupe
connexe d'isométries (non nécessairement transitif), le groupe
K (1° (Vm)) est produit direct de groupes orthogonaux connexes
irréductibles et d'un groupe certainement compact correspondant

à la partie euclidienne.

Théorème. — Pour toute variété riemannienne complète, Kx
(1° (VJ) est compact.

c) Supposons Vm compacte. On sait que 1° (Vm) est alors

compact (Elie Cartan). Si X est une isométrie infinitésimale,
considérons la décomposition (9-3) et la 1-forme

n i(x)ß

De (9-3) on déduit:

ôt] (x) (Ax (x), ß (x)) (ß (x), ß (x)) ^ 0

où S est l'opérateur de codifîérentiation. Si Vm est compacte
orientable, on en déduit par intégration ß 0 et, par passage
à un revêtement, il en est de même si Vm est seulement
compacte. Ainsi Kx (/° (Fm)) c T®.

Soit JXq le sous-groupe d'isotropic d'un point x0, c;est-à-dire
le sous-groupe de 1° (Vm) laissant x0 fixe, h un élément de JXq.

Le groupe 1° Vm) étant compact, il existe un sous-groupe à

un paramètre exp (tX) tel que h — exp (uX)\ x (t) exp (tX)
(0 < t < u) engendre un lacet l en x0. Si r est l'élément de

correspondant à i, on a d'après (3-1)

exp (uX)r r • exp [ — uAx (x0)]

Ainsi, si JXQ est le groupe linéaire d'isotropie,' JXq c Y*o. Nous
énoncerons:



VARIÉTÉS A CONNEXION LINÉAIRE

Théorème. — Si Vm est une variété riemannienne compacte,

1° (Vm) son plus grand groupe connexe d'isométries (non
nécessairement transitif), J* le sous-groupe d'isotropie en x,.on a

(9-4) Kx(I°(Vm))czT0x

et

(9-5) Jx c= Wx

En particulier pour tout espace homogène riemannien

compact, Vholonomie est normale.

III. Espaces homogènes réductifs.
Cas riemannien.

10. Notion d'espace homogène réductif (Nomizu].

Sur un espace homogène Vm GfH une structure réductive

(ou d'espace homogène réductif) est définie par la donnée d'une

décomposition en somme directe de l'algèbre de Lie G de G

(10-1) G H + M (H n M 0)

telle que le sous-espace M vérifie

(10-2) adj {H) M a M,

adj (H) est ici la restriction à fi" de la représentation adjointe
de G. Tout élément X de G s'écrit d'une manière et d'une seule
X XH + (^h E e ilf). Par la projection naturelle p
de G sur Vm on peut identifier M avec l'espace vectoriel Tx0

tangent en x0 — pe à Vm et adj (H) avec le groupe linéaire d'iso-

tropie H. Les cas où H est compact ou connexe réductif dans G

fournissent des exemples de structure réductive.
D'après (10-2), M définit sur l'espace fibré principal G de

hase Vm une connexion infinitésimale invariante par G. Si
P (Vm) est l'espace de repères défini par les repères de Vm

déduits de l'un d'entre eux par l'action de G, le fibré P (Fm) est
isomorphe au fibré G. De la connexion invariante obtenue sur
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