Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 8 (1962)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: TRANSFORMATIONS DES VARIÉTÉS A CONNEXION LINÉAIRE ET

DES VARIÉTÉS RIEMANNIENNES

Autor: Lichnerowicz, André

Kapitel: II. Transformations affines et isométries d'une variété riemannienne.

DOI: https://doi.org/10.5169/seals-37948

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

6. Tenseurs invariants.

Si un tenseur t est invariant par transport, t (x) est invariant par le groupe d'holonomie Ψ_x . De la formule (3-1) et de l'étude précédente, il résulte:

Théorème. — Sur un espace homogène $V_m = G/H$ (G effectif) à connexion linéaire invariante, si un tenseur t satisfait deux des trois conditions suivantes, il satisfait la troisième.

- a) t est invariant par l'action de G;
- b) t est invariant par transport;
- c) t(x) est invariant par le groupe de Kostant K_x (G) en un point x de V_m .

Au champ t on peut substituer un champ Q de sous-espaces vectoriels. Si la connexion est à holonomie normale, b entraîne c, donc a: Tout tenseur invariant par transport est invariant par G.

II. Transformations affines et isométries d'une variété riemannienne.

7. Transformations affines et réductibilité.

Soit V_m une variété riemannienne de tenseur métrique g, que nous considérons toujours comme munie de sa connexion riemannienne. Toute isométrie ou similitude ($\mu^* g = c^2 g$; c = const.) est une transformation affine pour cette connexion. Inversement, dans l'hypothèse où le groupe d'holonomie est irréductible, toute transformation affine reproduit la métrique à un facteur nécessairement constant près, et par suite est une similitude. En utilisant cette remarque, nous nous proposons d'étudier les rapports généraux entre transformations affines et isométries.

a) La variété V_m est dite réductible si son groupe d'holonomie connexe Ψ_x^0 est réductible dans le réel. S'il en est ainsi, l'espace vectoriel T_x peut être décomposé, d'une manière et d'une seule à l'ordre près, en somme directe de sous-espaces orthogonaux T_x^a ($a=0,1,\ldots k$), invariants par Ψ_x^0 , tels que Ψ_x^0 induise l'identité sur T_x^0 et des représentations irréductibles sur

 T_x^a ($a \neq 0$). Cette décomposition est la décomposition canonique relative à la réductibilité. Il lui correspond une décomposition de Ψ_x^0 en produit direct $\Pi\Psi_{(b)x}$ ($b=1,\ldots k$), où $\Psi_{(b)x}$ induit sur T_x^a ($a \neq b$) la représentation triviale (Borel-Lichnerowicz); Ψ_x^0 étant sous-groupe invariant de Ψ_x , le sous-espace T_x^0 est aussi invariant par Ψ_x ; par transport de T_x^0 on obtient sur V_m le champ complètement intégrable T^0 et un feuilletage de V_m en feuilles localement euclidiennes. Si $T_x^0=0$, nous dirons brièvement que V_m est sans partie euclidienne.

b) Soit μ une transformation affine de V_m , S l'ensemble des sous-espaces de T_x invariants par Ψ_x . Si l est un chemin joignant x à $\mu^{-1}(x)$ l'automorphisme de T_x défini par:

$$\mu \ o \ \tau(l)$$

détermine une substitution $s(\mu)$ de S ne dépendant que de μ . On obtient ainsi un homomorphisme de $A(V_m)$, dans le groupe des substitutions de S. Si Ψ_x induit sur un élément $U_x \in S$ une représentation irréductible (resp. l'identité), il en est de même pour $s(\mu)$ U_x .

c) Supposons V_m simplement connexe. La décomposition canonique définit alors (k+1) champs T^a de sous-espaces, invariants par transport le long d'un chemin arbitraire. Par suite si $\mu \in A$ (V_m) , μ laisse invariant T^0 et permute éventuellement les T^a $(a \neq 0)$. Si $\mu \in A^0$ (V_m) , tous les T^a sont invariants. Ainsi:

Théorème. — Sur une variété riemannienne simplement connexe, chaque champ T^a défini par la décomposition canonique relative à la réductibilité est invariant par toute transformation affine de A^0 (V_m).

8. Etude des variétés riemanniennes complètes.

Sur V_m , la distance d(x, x') définie par le minimum de la longueur des chemins continûment différentiables par morceaux joignant x à x' détermine une structure d'espace métrique. Nous supposons V_m complète, c'est-à-dire complet l'espace métrique précédent

a) Soit μ une similitude qui ne soit pas une isométrie; en passant au besoin à l'inverse, on peut supposer $\mu^* g = c^2 g$ avec

c < 1. Par suite, μ réduit les longueurs et distances dans le rapport c. Du caractère complet, il résulte que μ admet un point fixe x_0 . Si l est un lacet arbitraire en x_0 et si r_h est l'élément du groupe d'holonomie induit par le lacet $\mu^h l$ (h = 0, 1, ...), r_h tend vers l'identité quand $h \to \infty$. D'après (2-4), $r_h = \mu'^h o r_0 o \mu'^{-h}$ et le polynôme caractéristique de r_h est indépendant de h et coıncide avec celui de l'identité. On peut en déduire que le groupe d'holonomie de V_m est réduit à l'identité.

Théorème. — Sur une variété riemannienne complète qui n'est pas localement euclidienne, toute similitude est une isométrie [Kobayashi].

Si V_m complète est irréductible $(m \ge 2)$ toute transformation affine est une isométrie.

b) Supposons V_m complète et simplement connexe. D'après un théorème classique de Georges de Rham, il existe une isométrie globale de V_m sur le produit riemannien de (k+1) variétés W^a complètes simplement connexes. Pour $a=0, W^0$ est euclidienne et pour $a \neq 0, W^a$ est irréductible (de dimension ≥ 2).

Soit I^0 (V_m) le plus grand groupe connexe d'isométries de V_m . A l'aide du théorème du § 7, on établit que A^0 (V_m) (resp. I^0 (V_m)) peut être identifié au produit direct ΠA^0 (W^a) (resp. Π I^0 (W^a)). Du résultat précédent on déduit que A^0 (W^a) = I^0 (W^a) pour $a \neq 0$. Ainsi:

Théorème. — Pour une variété riemannienne complète, simplement connexe, $V_m = W^0 \times W$ où W^0 est euclidienne et W sans partie euclidienne, A^0 (V_m) est identique au produit direct A^0 (W^0) \times I^0 (W) agissant naturellement sur V_m .

Les transformations strictement affines de $A^0(V_m)$ proviennent ainsi des transformations strictement affines de l'espace euclidien. Par étude du revêtement universel, on voit que pour toute variété riemannienne complète (sans hypothèse de simple connexité) sans partie euclidienne $A^0(V_m) = I^0(V_m)$. Une étude directe montre qu'on a la même conclusion pour toute variété riemannienne compacte (avec ou sans partie euclidienne) [Kenkaro Yano].

- 9. Holonomie et isométries infinitésimales sur une variété riemannienne.
- a) Pour une variété riemannienne, les endomorphismes de l'espace vectoriel euclidien T_x peuvent être identifiés à des 2-formes. Ainsi l'algèbre d'holonomie $\underline{\Psi}_x$ en x définit un sous-espace (désigné par la même notation) de l'espace vectoriel des 2-formes en x. Soit B_x l'orthocomplément de ce sous-espace par rapport au produit scalaire, noté $(\ ,\)$, défini sur les 2-formes par la métrique. Si Y est un champ de vecteurs sur un voisinage U de la variété V_m , α une 2-forme sur U telle que α $(x) \in \underline{\Psi}_x$ pour $x \in U$, on sait que:

$$(9-1) \qquad (i(Y) \nabla \alpha)(x) \in \underline{\Psi}_x$$

De même si β est une 2-forme sur U telle que β $(x) \in B_x$ pour $x \in U$

$$(9-2) \qquad (i(Y) \nabla \beta)(x) \in B_x$$

Cela posé si X est une isométrie infinitésimale, A_X (x) définit une 2-forme en x. Avec un abus de notation, nous pouvons poser

(9-3)
$$A_X = \alpha + \beta$$
 (avec $\alpha(x) \in \underline{\Psi}_x$, $\beta(x) \in B_x$).

D'après (2-3), $(i(Y) \nabla A_x)(x) \in \underline{\Psi}_x$. De (9-1) et (9-2) il résulte $\nabla \beta = 0$ et $\beta(x)$ est dans l'algèbre de Lie du centralisateur connexe de Ψ_x^0 dans le groupe des rotations de T_x .

Si V_m est à Ψ_x^0 irréductible et admet une 2-forme à dérivée covariante nulle, elle est $k\ddot{a}hlerienne$ (m=2n). Dans ce cas, si la courbure de Ricci de la variété est non nulle, le centralisateur connexe de Ψ_x^0 est contenu dans Ψ_x^0 et l'on voit que $A_X(x) \in \underline{\Psi}_x$. On déduit de ces remarques.

- Тне́овѐме. Un espace homogène riemannien $V_m = G/H$ est certainement à holonomie normale ($\Psi^0_x = K_x(G)$) sous l'une des hypothèses suivantes:
 - a) Si V_m n'admet pas de 2-formes à dérivée covariante nulle, en particulier si V_m irréductible n'est pas kählerien;
 - b) $Si V_m$ est kählerien, à Ψ_x^0 irréductible est à courbure de Ricci non nulle;

c) Si V_m admet une courbure de Ricci non dégénérée.

c se déduit de a et b à l'aide du théorème de réductibilité de G. de Rham.

b) De ce même théorème et du § 8, on déduit que si V_m est une variété riemannienne complète, I^0 (V_m) son plus grand groupe connexe d'isométries (non nécessairement transitif), le groupe K (I^0 (V_m)) est produit direct de groupes orthogonaux connexes irréductibles et d'un groupe certainement compact correspondant à la partie euclidienne.

Тне́опѐме. — Pour toute variété riemannienne complète, K_x (I° (V_m)) est compact.

c) Supposons V_m compacte. On sait que $I^0(V_m)$ est alors compact (Elie Cartan). Si X est une isométrie infinitésimale, considérons la décomposition (9-3) et la 1-forme

$$\eta = i(X)\beta$$

De (9-3) on déduit:

$$\delta \eta(x) = (A_X(x), \beta(x)) = (\beta(x), \beta(x)) \ge 0$$

où δ est l'opérateur de codifférentiation. Si V_m est compacte orientable, on en déduit par intégration $\beta=0$ et, par passage à un revêtement, il en est de même si V_m est seulement compacte. Ainsi $K_x\left(I^0\left(V_m\right)\right) \subset \Psi_x^0$.

Soit J_{x_0} le sous-groupe d'isotropie d'un point x_0 , c'est-à-dire le sous-groupe de $I^0(V_m)$ laissant x_0 fixe, h un élément de J_{x_0} . Le groupe $I^0(V_m)$ étant compact, il existe un sous-groupe à un paramètre $\exp(tX)$ tel que $h = \exp(uX)$; $x(t) = \exp(tX)$ ($0 \le t \le u$) engendre un lacet l en x_0 . Si r est l'élément de Ψ_{x_0} correspondant à l, on a d'après (3-1)

$$\exp(uX)' = r \cdot \exp[-uA_X(x_0)].$$

Ainsi, si J_{x_0} est le groupe linéaire d'isotropie, $J_{x_0} \subset \Psi_{x_0}$. Nous énoncerons:

Théorème. — Si V_m est une variété riemannienne compacte, $I^0(V_m)$ son plus grand groupe connexe d'isométries (non nécessairement transitif), J_x le sous-groupe d'isotropie en x, on a

$$(9-4) K_x(I^0(V_m)) \subset \Psi_x^0$$

et

$$(9-5) \qquad \qquad \tilde{J}_x \subset \Psi_x .$$

En particulier pour tout espace homogène riemannien compact, l'holonomie est normale.

III. Espaces homogènes réductifs. Cas riemannien.

10. Notion d'espace homogène réductif (Nomizu].

Sur un espace homogène $V_m=G/H$ une structure réductive (ou d'espace homogène réductif) est définie par la donnée d'une décomposition en somme directe de l'algèbre de Lie G de G

$$(10-1) \underline{G} = \underline{H} + M (\underline{H} \cap M = 0)$$

telle que le sous-espace M vérifie

$$(10-2) adj(H) M \subset M,$$

adj (H) est ici la restriction à H de la représentation adjointe de G. Tout élément λ de G s'écrit d'une manière et d'une seule $\lambda = \lambda_{\underline{H}} + \lambda_{\underline{M}} \ (\lambda_{\underline{H}} \in \underline{H}; \ \lambda_{\underline{M}} \in M)$. Par la projection naturelle p de G sur V_m , on peut identifier M avec l'espace vectoriel Tx_0 tangent en $x_0 = pe$ à V_m et adj (H) avec le groupe linéaire d'iso-

tropie \tilde{H} . Les cas où H est compact ou connexe réductif dans G fournissent des exemples de structure réductive.

D'après (10-2), M définit sur l'espace fibré principal G de base V_m une connexion infinitésimale invariante par G. Si $P(V_m)$ est l'espace de repères défini par les repères de V_m déduits de l'un d'entre eux par l'action de G, le fibré $P(V_m)$ est isomorphe au fibré G. De la connexion invariante obtenue sur