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On peut aussi chercher des relations arithmétiques entre

plusieurs corps algébriques; le point de départ de ces études

semble être la loi de réciprocité quadratique de Legendre et Gauss.

On étudie la possibilité de solutions en entiers x (ou y) des

congruences :

x2 — q 0 (mod. p)

y2 — p EE 0 (mod. p)

ou p et q sont 2 nombres premiers (positifs). La loi de réciprocité
quadratique établit un lien entre ces 2 congruences: si Tun des

nombres premiers p ou q est de la forme 4ra+l, avec n entier,
ces 2 congruences sont simultanément possibles ou impossibles;
si aucun des nombres p et q n'est de la forme 4ra+1, la possibilité
d'une des congruences exclut celle de l'autre.

Or la possibilité de la congruence:

x2 — q 0 (mod. p)

peut être interprétée comme une condition nécessaire et
suffisante pour que le nombre premier p soit décomposé en un produit
de 2 idéaux premiers dans le corps quadratique engendré par ^Jq.

La loi de réciprocité quadratique établit ainsi un lien entre
l'arithmétique dans les 2 corps quadratiques engendrés
respectivement par ^jp et ^Jq.

On peut d'ailleurs démontrer cette loi en construisant le

corps de yjq au moyen de racines qièmes de l'unité. L'idée
de cette démonstration provient de recherches de Gauss sur
la construction des polygones réguliers. Cette démonstration
introduit un lien entre l'arithmétique du corps des racines qièmes
de l'unité et du corps quadratique engendré par jp.

D'autres lois de réprocité ont pu être démontrées et rassemblées

dans la théorie du corps des classes.

Bibliographie: 1, 10, 17, 19, 20, 26, 27, 46.

12. Notion générale d'idéaux

L'extension d'un corps par un nombre algébrique a conduit à
introduire d'autres extensions et à les définir d'un point de vue plus
axiomatique. La notion d'anneau est ainsi apparue importante:
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ensemble qui forme un groupe pour une opération d'addition
et dans lequel est définie une opération de multiplication. Dans

un anneau, un idéal est un ensemble qui contient la somme
et la différence de 2 quelconques de ses éléments, ainsi que le

produit d'un de ses éléments par un élément quelconque de

l'anneau.
L'intérêt de ces notions est de permettre des raisonnements

généraux applicables à des cas particuliers très différents. Par
exemple: arithmétique dans un corps de nombres algébriques,
géométrie des variétés algébriques,

A ces propriétés, on peut rattacher les études sur les matrices.

Bibliographie: 8, 9 ,10, 17, 25, 35, 46.
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