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258 A. CHATELET

Ces théories ont été reprises et généralisées (Tun point de

vue géométrique très simple par Minkowski. Cette méthode
conduit à des théorèmes d'existence en théorie des nombres.

On peut rattacher à ces questions la démonstration de la
transcendance des nombres e et tu par Hermite et Lindemann.
Siegel a aussi démontré la transcendance d'autres nombres.

Bibliographie: 5, 6, 11, 15, 22, 23, 24, 29, 30, 31, 32, 38, 39,
40, 42.

8. Les nombres premiers

Les nombres premiers forment la base minimum permettant
d'engendrer le groupe multiplicatif des entiers: n — pï^p^2---
Ce fait a pour conséquence une propriété des séries:

Cette série ne converge que pour s>l; mais la série:

1 1 1

~T~1 + + 7i+-
ps

converge pour

La divergence de la série 1 — pour s la notamment

pour conséquence l'existence d'une infinité de nombres premiers.
L'étude de cette série, appelée ((s), a fourni plus généralement
des renseignements sur la répartition des nombres premiers.
On peut y rattacher les études sur les séries de Dirichlet,
les études de Hadamard sur les fonctions entières, notamment
la définition du genre et les études de la Vallée Poussion.

La méthode précédente pour démontrer l'existence d'une
infinité de nombres premiers peut être généralisée. Par exemple,
en désignant par p les nombres premiers égaux à la somme de 1
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et d'un multiple de 4 et par q les nombres premiers égaux à

la différence d'un multiple de 4 et de 1, on obtient:

où m décrit tous les entiers impairs décomposables en une somme
de 2 carrés (a?-\-b2). La divergence de la série pour s 1 entraine

l'existence d'une infinité de nombres premiers de la forme p
et de la forme q. Plus généralement Lejeune-Dirichlet a

démontré l'existence d'une infinité de nombres premiers dans

toute progression arithmétique dont la raison et le premier terme
sont premiers entre eux.

Hecke a étudié de façon analogue les nombres premiers
qui sont normes d'idéaux d'un corps de nombres algébriques
donné.

Bibliographie: 11, 15, 18, 19, 23, 27, 28, 30, 38.

9. Théorie des groupes et surstitutions

La notion de groupe est apparue dans l'étude des permutations
d'un nombre fini d'éléments, et plus particulièrement dans l'étude
des permutations entre différentes racines d'une même équation

algébrique.
On peut faire remonter l'origine de cette notion et de ces

méthodes à Pascal, Newton, et surtout Vandermonde, dans
leurs recherches sur les équations binômes et la construction
des polygones. Mais c'est Lagrange et Arel qui les ont clairement

dégagées pour les équations abéliennes et Galois pour le

cas général. Jordan a repris les méthodes de Galois et les a

exposées magistralement.

Sophus Lie, Elie Cartan ont généralisé ces méthodes à
des opérations sur des fonctions.

Plus récemment a été introduite une définition abstraite
des groupes et ont été étudiées les propriétés de ces ensembles.

Bibliographie: 8, 9, 13, 20, 25, 36, 44.
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