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La loi de réciprocité quadratique de Gauss lie ces 2 points
de vue.

Mais les diviseurs p de x2—q sont les mêmes que ceux de

x2—qy2 (si ces diviseurs p sont sans facteurs carrés et premiers
à q) ; cette dernière expression est un cas particulier d'une forme

quadratique binaire

ax2 + bxy +cy2.

L'étude des formes quadratiques binaires a été débutée par
Gauss et continuée par Hermite. On appelle formes équivalentes
celles qui représentent les mêmes nombres; elles peuvent être
déduites les unes des autres par des substitutions unimodulaires.
Dans chaque classe de formes équivalentes, on cherche des

formes réduites. Ces problèmes sont liés, en analyse, à l'étude
des fonctions fuchsiennes.

L'étude des formes quadratiques à 3, 4, variables a donné
lieu à de nombreux travaux, mais pose encore des problèmes
importants. L'étude des formes de degré supérieur est seulement
ébauchée.

L'étude des formes quadratiques binaires a été partiellement
abandonnée et remplacée par celle des corps quadratiques, grâce
à la relation:

ax2 +bxy +cy2 (ax + ßy) (a'x + ß' y)

avec a, ß nombres quadratiques.

Bibliographie: 15, 18, 21, 30, 34, 43.

7. Approximations diophantiennes

Etant donné un nombre rationnel ou irrationnel, on peut
chercher les fractions rationnelles à termes simples qui en diffèrent

peu; c'est le problème des approximations diophantiennes.
La seule solution entièrement satisfaisante est celle des

fractions continues. Il est remarquable qu'elle soit liée à la théorie
des formes quadratiques binaires, du développement pé:iodique
des irrationnelles du second degré et aux substitutions uni-
modulaires.

L'Enseignement mathém., t. VIII, fasc. 3-4. 17
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Ces théories ont été reprises et généralisées (Tun point de

vue géométrique très simple par Minkowski. Cette méthode
conduit à des théorèmes d'existence en théorie des nombres.

On peut rattacher à ces questions la démonstration de la
transcendance des nombres e et tu par Hermite et Lindemann.
Siegel a aussi démontré la transcendance d'autres nombres.

Bibliographie: 5, 6, 11, 15, 22, 23, 24, 29, 30, 31, 32, 38, 39,
40, 42.

8. Les nombres premiers

Les nombres premiers forment la base minimum permettant
d'engendrer le groupe multiplicatif des entiers: n — pï^p^2---
Ce fait a pour conséquence une propriété des séries:

Cette série ne converge que pour s>l; mais la série:

1 1 1

~T~1 + + 7i+-
ps

converge pour

La divergence de la série 1 — pour s la notamment

pour conséquence l'existence d'une infinité de nombres premiers.
L'étude de cette série, appelée ((s), a fourni plus généralement
des renseignements sur la répartition des nombres premiers.
On peut y rattacher les études sur les séries de Dirichlet,
les études de Hadamard sur les fonctions entières, notamment
la définition du genre et les études de la Vallée Poussion.

La méthode précédente pour démontrer l'existence d'une
infinité de nombres premiers peut être généralisée. Par exemple,
en désignant par p les nombres premiers égaux à la somme de 1
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