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La loi de réciprocité quadratique de Gauss lie ces 2 points
de vue.

Mais les diviseurs p de z2—¢q sont les mémes que ceux de
x2—qy? (si ces diviseurs p sont sans facteurs carrés et premiers
a q); cette derniére expression est un cas particulier d’une forme
quadratique binatre

ax® +bxy +cy>.

L’étude des formes quadratiques binaires a été débutée par
Gauss et continuée par Hermite. On appelle formes équivalentes
celles qui représentent les mémes nombres; elles peuvent étre
déduites les unes des autres par des substitutions unimodulaires.
Dans chaque classe de formes équivalentes, on cherche des
formes réduites. Ces problémes sont liés, en analyse, & I’étude
des fonctions fuchsiennes.

L’étude des formes quadratiques & 3, 4, ... variables a donné
lieu & de nombreux travaux, mais pose encore des problémes
importants. I’étude des formes de degré supérieur est seulement
ébauchée.

L’étude des formes quadratiques binaires a été partiellement
abandonnée et remplacée par celle des corps quadratiques, grace
a la relation:

ax*> +bxy +cy?* = (ax+py) (¢’ x +5y)

avec o, 3 nombres quadratiques.
Bibliographie: 15, 18, 21, 30, 34, 43.

7. APPROXIMATIONS DIOPHANTIENNES

Etant donné un nombre rationnel ou irrationnel, on peut
chercher les fractions rationnelles & termes simples qui en diffé-
rent peu; c’est le probléme des approximations diophantiennes.

La seule solution entiérement satisfaisante est celle des
fractions continues. Il est remarquable qu’elle soit liée & la théorie
des formes quadratiques binaires, du développement pé:iodique
des irrationnelles du second degré et aux substitutions uni-
modulaires.

L’Enseignement mathém., t. VIII, fasc. 3-4. 17
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Ces théories ont été reprises et généralisées d’un point de
vue géométrique trés simple par Minkowskr. Cette méthode
conduit & des théorémes d’existence en théorie des nombres.

On peut rattacher & ces questions la démonstration de la
transcendance des nombres e et = par HERMITE et LINDEMANN.
SiEGEL a aussi démontré la transcendance d’autres nombres.

Bibliographie: 5, 6, 11, 15, 22, 23, 24, 29, 30, 31, 32, 38, 39,
40, 42. | -

8. LES NOMBRES PREMIERS

Les nombres premiers forment la base minimum pérmettant
d’engendrer le groupe multiplicatif des entiers: n = pf{! p3®...
Ce fait a pour conséquence une propriété des séries:

/1 1
H—f;=2,;;
1—=

p

Cette série ne converge que pour s>1; mais la série:

! L
1 - ps pzs s o
I=-
p
converge» pour s=1.
La divergence de la série 2 — pour s = 1 a notamment
n

.

pour conséquence I'existence d’une infinité de nombres premiers.
L’étude de cette série, appelée {(s), a fourni plus généralement
des renseignements sur la répartition des nombres premiers.

. On peut y rattacher les études sur les séries de DIRICHLET,

les études de HapamarD sur les fonctions entiéres, notamment
la définition du genre et les études de la VALLEE Poussion.

La méthode précédente pour démontrer I'existence d’une
infinité de nombres premiers peut étre généralisée. Par exemple,
en désignant par p les nombres premiers égaux a la somme de 1
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