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256. | . A. CHATELET

Cette théorie étudie Iarithmétique et 1’algébre des entiers
définis & ’addition prés d’un multiple d’un entier fixe p; les
relations obtenues sont appelées congruences suivant le module p.
"Les entiers, ainsi définis, ne déterminent qu’un-nombre fini
d’étres, encore appelées classes de congruence. |

S1 I'entier p (caractéristique) est premier, 'ensemble des
classes forme un corps, c¢’est-a-dire que les 4 opérations élémen-
‘taires sont possibles. Mais le polynome 2?~'—1 est nul pour toute
valeur x du corps, sans étre identiquement nul; plus générale-
ment un polynome F (z?) peut étre irréductible et n’avoir
que des racines multiples.

Dans une note assez bréve, E. GaLois compléte ces résultats
par l'introduction d’imaginaires. Il considére des étres f(z),
définis suivant 2 modules p et ¢(z), ou ¢ est un polynome
irréductible de degré f. Il obtient ainsi p’ étres, ou imaginaires
de Galois; toute équation de degré f a ccefficients rationnels
est décomposable.

DicksonN a montré que les ensembles d’imaginaires de Galois
forment tous les corps qui ne contiennent quun nombre fini
@’ éléments (corps finis). I’étude de ces corps est indiSpensable
pour la résolution des équations diophantiennes.

HeNSEL a introduit des corps (infinis) — les corps locaux ou
p-adiques — qui permettent d’utiliser les propriétés des congruen-
ces suivant les modules puissances de nombres premiers. Un
tel corps est constitué par les séries formelles (ao+a;p+ ...),
ou les a; sont des entiers définis au module p prés.

Bibliographie: 2, 3, 9, 12, 13, 14, 15, 18, 27, 30, 37.

- 6. FORMES QUADRATIQUES

I’équation congruentielle: |
x*—q = 0 (mod. p)

a été particuliérement étudiée & 2 points de vue différents:
p étant donné, trouver les ¢ (appelés restes quadratiques mod. p);
g étant donné, trouvé les p.
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La loi de réciprocité quadratique de Gauss lie ces 2 points
de vue.

Mais les diviseurs p de z2—¢q sont les mémes que ceux de
x2—qy? (si ces diviseurs p sont sans facteurs carrés et premiers
a q); cette derniére expression est un cas particulier d’une forme
quadratique binatre

ax® +bxy +cy>.

L’étude des formes quadratiques binaires a été débutée par
Gauss et continuée par Hermite. On appelle formes équivalentes
celles qui représentent les mémes nombres; elles peuvent étre
déduites les unes des autres par des substitutions unimodulaires.
Dans chaque classe de formes équivalentes, on cherche des
formes réduites. Ces problémes sont liés, en analyse, & I’étude
des fonctions fuchsiennes.

L’étude des formes quadratiques & 3, 4, ... variables a donné
lieu & de nombreux travaux, mais pose encore des problémes
importants. I’étude des formes de degré supérieur est seulement
ébauchée.

L’étude des formes quadratiques binaires a été partiellement
abandonnée et remplacée par celle des corps quadratiques, grace
a la relation:

ax*> +bxy +cy?* = (ax+py) (¢’ x +5y)

avec o, 3 nombres quadratiques.
Bibliographie: 15, 18, 21, 30, 34, 43.

7. APPROXIMATIONS DIOPHANTIENNES

Etant donné un nombre rationnel ou irrationnel, on peut
chercher les fractions rationnelles & termes simples qui en diffé-
rent peu; c’est le probléme des approximations diophantiennes.

La seule solution entiérement satisfaisante est celle des
fractions continues. Il est remarquable qu’elle soit liée & la théorie
des formes quadratiques binaires, du développement pé:iodique
des irrationnelles du second degré et aux substitutions uni-
modulaires.
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