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256 A. CHATELET

Cette théorie étudie F arithmétique et l'algèbre des entiers
définis à l'addition près d'un multiple d'un entier fixe p; les

relations obtenues sont appelées congruences suivant le module p.
Les entiers, ainsi définis, ne déterminent qu'un nombre fini
d'êtres, encore appelées classes de congruence.

Si l'entier p (caractéristique) est premier, l'ensemble des
classes forme un corps, c'est-à-dire que les 4 opérations élémentaires

sont possibles. Mais le polynome —1 est nul pour toute
valeur x du corps, sans être identiquement nul; plus généralement

un polynome F (x?) peut être irréductible et n'avoir
que des racines multiples.

Dans une note assez brève, E. Galois complète ces résultats

par l'introduction d'imaginaires. Il considère des êtres /(&),
définis suivant 2 modules p et <p(i), où cp est un polynome
irréductible de degré /. Il obtient ainsi prêtres, ou imaginaires
de Galois; toute équation de degré / à coefficients rationnels
est decomposable.

Dickson a montré que les ensembles d'imaginaires de Galois
forment tous les corps qui ne contiennent qu'un nombre fini
d'éléments (corps finis). L'étude de ces corps est indispensable
pour la résolution des équations diophantiennes.

Hensel a introduit des corps (infinis) —les corps locaux ou
/?-adiques — qui permettent d'utiliser les propriétés des congruences

suivant les modules puissances de nombres premiers. Un
tel corps est constitué par les séries formelles (a0 + aiP + • ••)?

où les at sont des entiers définis au module p près.

Bibliographie: 2, 3, 9, 12, 13, 14, 15, 18, 27, 30, 37.

6. Formes quadratiques

L'équation congruentielle:

x2 — q 0 (mod. p)

a été particulièrement étudiée à 2 points de vue différents:

p étant donné, trouver les q (appelés restes quadratiques mod. p) ;

q étant donné, trouvé les p.
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La loi de réciprocité quadratique de Gauss lie ces 2 points
de vue.

Mais les diviseurs p de x2—q sont les mêmes que ceux de

x2—qy2 (si ces diviseurs p sont sans facteurs carrés et premiers
à q) ; cette dernière expression est un cas particulier d'une forme

quadratique binaire

ax2 + bxy +cy2.

L'étude des formes quadratiques binaires a été débutée par
Gauss et continuée par Hermite. On appelle formes équivalentes
celles qui représentent les mêmes nombres; elles peuvent être
déduites les unes des autres par des substitutions unimodulaires.
Dans chaque classe de formes équivalentes, on cherche des

formes réduites. Ces problèmes sont liés, en analyse, à l'étude
des fonctions fuchsiennes.

L'étude des formes quadratiques à 3, 4, variables a donné
lieu à de nombreux travaux, mais pose encore des problèmes
importants. L'étude des formes de degré supérieur est seulement
ébauchée.

L'étude des formes quadratiques binaires a été partiellement
abandonnée et remplacée par celle des corps quadratiques, grâce
à la relation:

ax2 +bxy +cy2 (ax + ßy) (a'x + ß' y)

avec a, ß nombres quadratiques.

Bibliographie: 15, 18, 21, 30, 34, 43.

7. Approximations diophantiennes

Etant donné un nombre rationnel ou irrationnel, on peut
chercher les fractions rationnelles à termes simples qui en diffèrent

peu; c'est le problème des approximations diophantiennes.
La seule solution entièrement satisfaisante est celle des

fractions continues. Il est remarquable qu'elle soit liée à la théorie
des formes quadratiques binaires, du développement pé:iodique
des irrationnelles du second degré et aux substitutions uni-
modulaires.
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