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2 A. LICHNEROWICZ

consacrée à l'étude géométrique d'espaces homogènes
particulièrement importants. Les différents résultats présentés sont
dus principalement à Kobayashi, Kostant, Nomizu, Wang, Yano
et à l'auteur de cette conférence.

2. Transformations infinitésimales affines.

a) Soit Vm une variété différentiable 1) de dimension m1

munie Tune connexion linéaire. Cette connexion est définie par
sa forme co, 1-forme sur l'espace fibré principal E{Vm) des

repères de Vm et à valeurs dans l'algèbre de Lie du groupe
linéaire. A la 2-forme de torsion 2 de type vectoriel de la
connexion correspond canoniquement une 1-forme X (2) de type
adjointe à valeurs dans l'algèbre de Lie du groupe linéaire.
Désignons par m la connexion associée à oo définie par 2) :

et par V et V les opérateurs de différentiation absolue par rapport
aux connexions co et œ. A tout champ de vecteurs A, nous
faisons correspondre le champ de tenseurs Ax de type (1, 1) défini

par la 1-forme de type vectoriel — VA. En chaque point x de

Fm, Ax (x) est un endomorphisme de l'espace vectoriel Tx
tangent en x à Fm. Le champ Ax intervient dans l'expression de

l'opérateur de transformation infinitésimale if (A) en termes de

dérivée covariante. En particulier, si t est un tenseur de type

où i (A) est l'opérateur de produit intérieur par A sur une forme
et où le crochet est entendu au sens du crochet des endomor-

phismes.

b) Un champ de vecteurs A définit une transformation
infinitésimale (t.i.) affine si cette t.i. laisse co invariante, c'est-à-dire si

I. Le groupe de Kostant.

œ œ + X (2)

(1, 1):

(2-1) £Û(X)t i(X)V

(2-2) i?(.X)œ 0

i) Dans cette conférence, tous les éléments introduits sont supposés indéfiniment
difïérentiables.

_2 Pour une connexion sans torsion, œ coïncide avec co.
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où if (I) a été étendu à E (FJ; (2-2) peut être traduite par:

où Q, est la forme de courbure de la connexion et Y un vecteur
arbitraire. De (2-3) il résulte que deux t.i. affines pour lesquelles
X et Ax ont mêmes valeurs en un point coïncident sur Vm. Ainsi
les t.i. affines définissent par le crochet usuel [X, Y] SC (X) Y,

une algèbre de Lie de dimension finie.

e) Une transformation affine est une transformation p. de Vm

laissant invariante la connexion co. Si p/ est l'application linéaire

tangente définie par p, et t (l) le transport au sens de la connexion
le long d'un chemin l de Vm joignant x à x', on a alors l'égalité:

entre applications linéaires de Tx sur TßX>.

On sait que le groupe A Vm) de toutes les transformations
affines de Vm admet une structure naturelle de groupe de Lie
(Nomizu ou corollaire d'un théorème plus général d'Ehresmann).
Nous désignons par A0 (Vm) le plus grand sous-groupe connexe
de A (Vm). Si Vm est complète pour la connexion co, toute t.i.
affine définit un groupe à un paramètre de transformations
affines globales de Vm.

3. Interprétation de Ax.

Etant donné un champ de vecteurs X, désignons par
x {t) exp (tX) x0 pour t suffisamment petit, la solution de

dxjdt X {x) telle que x (0) x0. Pour 0 < t < u (u suffisamment

petit), x (t) engendre un chemin lu issu de x0.
Pour X définissant une t.i. affine, Ax admet une interprétation

géométrique simple: considérons les automorphismes de Tx
définis, pour u variable, par exp (— uX)f t (lu). Ces automorphismes

appartiennent à un groupe à un paramètre d'auto-
morphismes de TXq et l'on a:

(2-3) i(Y)VAx G(X, Y)

(2-4) jJLr 0 T (/) T (/il) 0 \l'

(3-1) exp Mx(x0)] exp — mX)' t (Jm)
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4. Le groupe de Kostant.

a) Soit X et Y deux t.i. affines. De l'invariance de œ par Y
résulte :

^[r,x] & (Y) Ax

De (2-1) et (2-3) il vient:

Ar,xi ï(Y)VAx+[Ar,Ax]Q(X,

On obtient ainsi la relation simple:

(4-1) Q(X, Y) \_AX, Ay] — ^ix,Y]

b Soit L une algèbre de Lie de t.i. affines de Vm. Pour leL,
les endomorphismes Ax (x) de Tx engendrent une algèbre de Lie
Kx (L) d'endomorphismes qui est l'algèbre de Lie d'un groupe
connexe KX{L) d'automorphismes de Tx; KX(L) sera dit le

groupe de Kostant en x de l'algèbre L1). Il a été un peu généralisé

par Wang.
Soit Y'x l'algèbre cVholonomie infinitésimale: c'est l'algèbre

engendrée, en tant qu'espace vectoriel, par les endomorphismes
de Tx déduits des dérivées covariantes successives du tenseur
de courbure. D'après (2-1), le groupe de Kostant est sous-groupe
du normalisateur connexe iV° Ç¥'x) du groupe d'holonomie
infinitésimale dans le groupe de tous les automorphismes de Tx.

Supposons l'algèbre L transitive: le sous-espace de Tx engendré

par les X (x) (X e L) coïncide avec Tx. Dans ce cas coïncide

avec le groupe d'holonomie connexe T°. De (4-1), il résulte

que les éléments de J'algèbre d'holonomie engendrés par le

tenseur de courbure lui-même sont dans KX(L) et, par récurrence

sur l'ordre des dérivations du tenseur de courbure, on déduit de

(2-1) qu'il en est de même pour tous les éléments de l'algèbre
d'holonomie. Ainsi si L est transitive:

(4-2) c Kx(L)c N°(î?®)
5. Espace homogène à connexion linéaire invariante.

Soit Vm G/H (G effectif) un espace homogène muni d'une
connexion linéaire invariante. Dans ce cas le groupe linéaire d'iso-

i) Ce groupe a été introduit par Kostant [1] dans le cas des variétés riemanniennes
et des algèbres d'isométries infinitésimales.
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tropie H est isomorphe à H. A chaque élément g de G correspond

une transformation affine \ig de Vm. Le groupe G définit sur Vm

une algèbre transitive L de t.i. affines; nous désignons par Kx (G)

le groupe de Kostant correspondant à L:

(5-1) ¥°x<= KX(G)aJV°(f°)
Si X e L, \xg transforme le tenseur Ax (x) en le tenseur Aß>gX (gx).

Par suite, chaque élément g de G établit un isomorphisme de Kx (G)

sur Kgx (G) (isomorphisme qui applique sur En particulier

(5-2) Hx a N [Kx (G)] (H°x cz Kx (G))

où N désigne le normalisateur dans le groupe des automorphismes
de Tx.

On peut obtenir pour Kx (G) un résultat analogue en ce qui
concerne le transport. En considérant, dans chaque classe

d'homotopie de lacets en x, un lacet composé d'un nombre fini
d'arcs de trajectoires de sous-groupes à un paramètre de G et en
évaluant le transport le long de chacun de ces arcs au moyen
de la formule (3-1), on établit d'abord, grâce à (3-1),

(5-3) Wx czN[Kx(G)]

On voit de même que le transport le long d'un chemin l (x, x')
composé d'un nombre fini d'arcs de trajectoires de sous-groupes
à un paramètre de G établit un isomorphisme entre Kx (G) et
Kx> (G). Il résulte de (5-3) que le transport le long d'un chemin
arbitraire reliant x à x' établit un isomorphisme entre (G) et

E*' (G).
^Il existe, comme nous le verrons, des cas nombreux où:

ïC KX(G)

Lorsqu'il en est ainsi, nous dirons que sur l'espace homogène
Fm G\H, la connexion linéaire invariante est à holonomie
normale.
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6. Tenseurs invariants.

Si un tenseur t est invariant par transport, t (x) est invariant
par.le groupe d'holonomie Yx. De la formule (3-1) et de l'étude
précédente, il résulte:

Théorème. — Sur un espace homogène Vm G/H (G effectif) à

connexion linéaire invariante, si un tenseur t satisfait deux des

trois conditions suivantes, il satisfait la troisième.

a) t est invariant par Vaction de G;
b) t est invariant par transport;
c) t (x) est invariant par. le groupe de Kostant (G) en un

point x de Vm.

Au champ t on peut substituer un champ Q de sous-espaces
vectoriels. Si la connexion est à holonomie normale, b entraîne c,

donc a: Tout tenseur invariant par transport est invariant par G.

II. Transformations affines et isométries
d'une variété riemannienne. '

7. Transformations affines et réductibilité.

Soit Vm une variété riemannienne de tenseur métrique g,

que nous considérons toujours comme munie de sa connexion
riemannienne. Toute isométrie ou similitude (p* g c2 g\
c const.) est une transformation affine pour cette connexion.
Inversement, dans l'hypothèse où le groupe (Tholonomie est

irréductible, toute transformation affine reproduit la métrique à un
facteur nécessairement constant près, et par suite est une
similitude. En utilisant cette remarque, nous nous proposons d'étudier

les rapports généraux entre transformations affines et
isométries.

a) La variété Vm est dite réductible si son groupe Tholonomie
connexe est réductible dans le réel. S'il en est ainsi, l'espace
vectoriel Tx peut être décomposé, d'une manière et d'une seule

à l'ordre près, en somme directe de sous-espaces orthogonaux
Tx (a 0, 1, k), invariants par tels que induise
l'identité sur Tx et des représentations irréductibles sur
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