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2 A. LICHNEROWICZ

consacrée & l'étude géométrique d’espaces homogénes parti-
culitrement importants. Les différents résultats présentés sont
dus principalement & Kobayashi, Kostant, Nomizu, Wang, Yano
et & l'auteur de cette conférence.

I. L GrRouPE DE KOSTANT.

2. Transformations infinitésimales affines.

a) Soit V, une variété différentiable!) de dimension m,
munie d’'une connexion linéaire. Cette connexion est définie par
sa forme w, 1-forme sur I’espace fibré principal E (V,,) des
repéres de V, et & valeurs dans I’algebre de Lie du groupe
linéaire. A la 2-forme de torsion X de type vectoriel de la con-
nexion correspond canoniquement une 1-forme A (2) de type
adjointe & valeurs dans I’algébre de Lie du groupe linéaire.
Désignons par @ la connexion associée & « définie par 2):

&=0w+A(Z)

et par Vet V les opérateurs de différentiation absolue par rapport
- aux connexions » et @. A tout champ de vecteurs X, nous fai-
sons correspondre le champ de tenseurs 4y de type (1, 1) défini

par la 1-forme de type vectoriel — V X. En chaque point z de
Vo Ax (x) est un endomorphisme de I'espace vectoriel T, tan-
gent en z & V,. Le champ Ay intervient dans ’expression de
Popérateur de transformation infinitésimale & (X) en termes de
dérivée covariante. En particulier, si ¢ est un tenseur de type
(1, 1): |
(2-1) FX)t=i(X)Vi+[4x, t] .

ot 7 (X) est Popérateur de produit intérieur par X sur une forme
et ou le crochet est entendu au sens du crochet des endomor-
phismes.

b) Un champ de vecteurs X définit une transformation infi-
nitésimale (t.1.) affine si cette t.1. laisse w Invariante, ¢’est-a-dire si

22 LX) o= 0

1) Dans cette conférence, tous les éléments introduits sont supposés indéfiniment

différentiables. .
2 Pour une connexion sans torsion, « coincide avec w.
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ol & (X) a été étendu & E (V,,); (2-2) peut étre traduite par:
(2-3) i(Y)VAx =Q(X,Y)

ou Q est la forme de courbure de la connexion et Y un vecteur
arbitraire. De (2-3) il résulte que deux t.i. affines pour lesquelles
X et Ay ont mémes valeurs en un point coincident sur V. Ainsi
les t.i. affines définissent par le crochet usuel [ X, Y] = £ (X)Y,
une algébre de Lie de dimension finte.

¢) Une transformation affine est une transformation u de V,,
laissant invariante la connexion w. Si p’ est Papplication linéaire
tangente définie par p. et 7 () le transport au sens de la connexion
le long d’un chemin [ de V,, joignant x & 2’, on a alors I'égalité:

(2-4) prot(l) = (u)op

entre applications linéaires de 7', sur T',,.

On sait que le groupe A4 (V,) de toutes les transformations
affines de V,, admet une structure naturelle de groupe de Lte
(Nomizu ou corollaire d’un théoréme plus général d’Ehresmann).
Nous désignons par A% (V,) le plus grand sous-groupe connexe
de A (V,). St V,, est compléte pour la connexion w, toute t.i.
affine définit un groupe a un parameétre de transformations
affines globales de V,,. |

3. Interprétation de Ay.

Etant donné un champ de vecteurs X, désignons par
z (1) = exp (tX) z, pour ¢ suffisamment petit, la solution de
dz/dit = X (x) telle que z (0) = =z,. Pour 0 <t < u (u suffisam-
ment petit), z () engendre un chemin [, issu de z,.

Pour X définissant une t.i. affine, Ay admet une interprétation
géométrique simple: considérons les automorphismes de T,
définis, pour u variable, par exp (— uX) =t (I,). Ces automor-
phismes appartiennent & un groupe & un paramétre d’auto-
morphismes de 7', et I'on a:

(3-1) exp [u Ay (xo)] = exp (—uX)' z(l,).




T S

e B C

A A. LICHNEROWICZ

4. Le groupe de Kostant.

a) Soit X et Y deux t.i. affines. De 'invariance de @ par Y
résulte:

Ay, x; = L (Y) Ax
De (2-1) et (2-3) il vient:
Apy,xy = 1(Y)V Ay + [Ay, Ax] = QX Y) + [Ay, A4] -
On obtient ainsi la relation simple:
(4-1) QX,Y) = [4x, Ay] — Aix,vy s

b) Soit L une algebre de Lie de t.i. affines de V,,. Pour X € L,
les endomorphismes Ay (z) de T, engendrent une algebre de Lie
K, (L) d’endomorphismes qui est I'algebre de Lie d’un groupe
connexe K, (L) d’automorphismes de 7.; K, (L) sera dit le
groupe de Kostant en z de 'algébre L1). Il a ét6 un peu généralisé
par Wang.

Soit W, l'algébre d’holonomie infinitésimale: ¢’est 1'algébre
engendrée, en tant qu’espace vectoriel, par les endomorphismes
de T, déduits des dérivées covariantes successives du tenseur
de courbure. D’aprés (2-1), le groupe de Kostant est sous-groupe

~du normalisateur connexe N°(¥,) du groupe d’holonomie

infinitésimale dans le groupe de tous les automorphismes de 7,.

Supposons 'algébre L transitive: le sous-espace de 7', engen-
dré par les X (z) (X e L) coincide avec T,. Dans ce cas ¥ coin-
cide avec le groupe d’holonomie connexe ¥y. De (4-1), il résulte
que les éléments de I’algébre d’holonomie engendrés par le ten-
seur de courbure lui-méme sont dans K, (L) et, par récurrence
sur 'ordre des dérivations du tenseur de courbure, on déduit de

(2-1) qu’il en est de méme pour tous les éléments de I’algebre

d’holonomie. Ainst st i est transitive:
(4-2) - Yo = K (L) = N°(¥Y).

5. Espace homogéne d connexion linéaire invariante.

Soit V,, = G/H (G effectif) un espace homogéne muni d’une

connexion linéaire invariante. Dans ce cas le groupe linéaire d’iso-

1) Ce groupe a été introduit par Kostant [1] dans le cas des variétés riemanniennes

et des algébres d’isométries infinitésimales.
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tropie H est isomorphe & H. A chaque élément g de G correspond
une transformation affine p, de V,,. Le groupe G définit sur V,
une algebre transitive L de t.1. affines; nous désignons par K, (G)
le groupe de Kostant correspondant a L:

(5-1) 0 <« K. (G) =« N°(¥P)) .

Si X e L, y, transforme le tenseur Ay (z) en le tenseur A4,y (gz).
Par suite, chaque élément g de G établit un tsomorphisme de K, (G)
sur K,, (G) (isomorphisme qui applique P9 sur 1I”gx). En parti-
culier

~

(52)  H, < N[K.(O)] | (HC < K, (G))

ou IV désigne le normalisateur dans le groupe des automorphismes
de 7,. ,

On peut obtenir pour K, (G) un résultat analogue en ce qui
concerne le transport. En considérant, dans chaque classe
d’homotopie de lacets en x, un lacet composé d’un nombre fini
d’arcs de trajectoires de sous-groupes & un parametre de G et en
évaluant le transport le long de chacun de ces arcs au moyen
de la formule (3-1), on établit d’abord, grace a (3-1),

(5-3) v, = N[K,(G)].

On voit de méme que le transport le long d’un chemin [ (z, 2')
composé d’un nombre fini d’arcs de trajectoires de sous-groupes
a un parametre de G établit un isomorphisme entre K, (G) et
K. (G). 1l résulte de (5-3) que le transport le long d’un chemin
arbitraire reliant x a x’ établit un isomorphisme entre K, (G) et
K. (G).

11 existe, comme nous le verrons, des cas nombreux ou:

) = K.(G) .
Lorsqu’il en est ainsi, nous dirons que sur l'espace homogéne

V= G|H, la connexion linéaire invariante est & holonomie
normale.
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6. Tenseurs tnvariants.

Si un tenseur ¢ est invariant par transport, ¢ (z) est invariant
par.le groupe d’holonomie W¥,. De la formule (3-1) et de I’étude
précédente, il résulte:

THEOREME. — Sur un espace homogéne V,, = G/H (G effectif) a
connexion linéaire invariante, si un tenseur t satisfait deux des
_trois conditions suivantes, il satisfait la troisieme.

a) t est invartant par Uaction de G;
b) t est invariant par transport;

c) t(x) est invariant par le groupe de Kostant K, (G) en un
point x de V,,.

Au champ ¢ on peut substituer un champ Q de sous-espaces
vectoriels. Si la connexion est a kolonomie normale, b entraine c,
donc a: Tout tenseur invariant par transport est invariant par G.

II. TRANSFORMATIONS AFFINES ET ISOMETRIES
D’UNE VARIETE RIEMANNIENNE. '

7. Transformations affines et réductibilité.

Soit V, une variété riemannienne de tenseur métrique g,
que nous considérons toujours comme munie de sa connexion
riemannienne. Toute isométrie ou similitude (p*g = c®g;
¢ = const.) est une transformation affine pour cette connexion.
Inversement, dans I’hypothese ou le groupe d’holonomie est irré-
ductible, toute transformation affine reproduit la métrique & un
facteur nécessairement constant prés, et par suite est une simi-
litude. En utilisant cette remarque, nous nous proposons d’étu-
dier les rapports généraux entre transformations affines et iso-
métries.

a) La variété V,, est dite réductible si son groupe d’holonomie
connexe V2 est réductible dans le réel. S’il en est ainsi, espace
vectoriel 7', peut étre décomposé, d’une maniére et d’une seule
a lordre prés, en somme directe de sous-espaces orthogonaux
T4 (a = 0,1, ... k), invariants par W3, tels que ¥y induise
- Tidentité sur T2 et des représentations irréductibles sur
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