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INTRODUCTION A LA THÉORIE DES NOMBRES

ALGÉBRIQUES1)

par Charles Pisot.

Origine de la théorie des nomrres algérriques. — L'un
des principaux problèmes dont s'occupe la théorie des nombres
est celui de la résolution des équations, en ajoutant la condition
que les solutions doivent être des nombres entiers. Pour attaquer
cette question, on a été amené à étendre la notion de nombre
entier et plus généralement celle de nombre rationnel, non
seulement à celle de nombre réel ou complexe, mais à des ensembles

moins généraux. Nous allons essayer d'expliquer ce problème
sur une équation particulière, à savoir

x2 — dy2 1

appelée équation de Pell-Fermat; d est un entier ne contenant

aucun facteur carré parfait, donc aussi d ^ 0. On peut écrire
cette équation sous la forme

(x - yy/d) (x + y-Jd) 1. (1)

Cette écriture suppose bien entendu que nous connaissions déjà
l'ensemble 91 des nombres réels et même (si d < 0) l'ensemble (£

des nombres complexes.

Anneau. — La forme (1) de l'équation de Pell-Fermat

suggère d'étudier les quantités de la forme a a-\-a' ^Jd où

a et a' sont des entiers. Nous appellerons sé l'ensemble de ces

quantités a.

Il est clair que si a ei, ß e si, on a aussi a + ß e sé et

aß e sé. On dit que sé est un anneau. Ainsi l'ensemble des

entiers est un anneau.

i) Conférence prononcée à Grenoble, dans le cadre des « Journées mathématiques
de Grenoble », 21-22 mai 1960.
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Corps. — Plus généralement considérons des nombres de la

forme a s+s' Vd, t t+t' Vd, où 5, s', t, t' sont des nombres

rationnels. Nous appellerons leur ensemble Il est encore clair

que # est un anneau et que ^ g sé\ mais ici il y a plus. Définissons

en effet pour tout nombre g s-^s' Vd e son conjugué

g par a — s—s'\]d, alors aussi et appelons norme de g
le nombre iV(cr) gg s2 — ds'2 alors N(g) est rationnel et

JV(cr) 0 entraîne g 0, car d n'est pas le carré d'un nombre

rationnel.
Par suite si t g g g ^ avec <r 0, on a

T T(T T(T

cr gg N(g)
'

T
donc — e On dit que l'ensemble ^ est un corps. Ainsi l'en-

<7

semble des nombres rationnels Q, celui des nombres réels 91,

celui des nombres complexes (£, sont des corps.

Remarquons encore tout élément g s-{-s' %/d e < est

racine d'une équation du second degré (x—s)2 — ds'2 — 0 à

coefficients rationnels.
De tels nombres sont appelés nombres algébriques. Plus

généralement, on appellera nombre algérrique tout zéro réel

ou complexe d'un polynôme à coefficients rationnels.

Anneau euclidien. — Un anneau a des propriétés
semblables à celles de l'ensemble des entiers. Cherchons à pousser
cette analogie plus loin en essayant de définir une division avec

reste dans Vanneau sé précédent. Nous dirons que sé est un
anneau euclidien, si sé possède la propriété suivante:

Quels que soient oc e sé et ß e sé avec ß 0, on peut toujours
trouver dans sé deux éléments y et p tels que Vont ait :

a ßy + p et | N(p) \ < | N(ß) |

On n'exige pas l'unicité pour ces nombres y et p. Si sé est
euclidien, on peut définir l'algorithme d'Euclide pour deux
éléments a ^ 0, ß # 0 de sé, donc leur p.g.c.d. et de là, comme
pour les entiers, obtenir la décomposition d'un élément oc e sé,
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a 7^ 0 en « nombres premiers » de sé, c'est-à-dire en nombres
de stf n'ayant pas d'autres diviseurs dans sé qu'eux-mêmes ou
des, « unités » de sé ; on dira que r\ e est une unité de sé si

rj 7^ 0 et si — g sé. La décomposition dé a en nombres premiers
n

est alors unique à des unités près.

Exemple : d -r-1, alors a a+a'V — 1 a-\-ia' et
ä — a — ia\ donc N(a) a2-\-a'2 |a|2. L'égalité oc ßy-\-p

s'écrit aussi ~—y ~ et |iV(p)| < \N(ß)\ s'écrit |p|2 < \ß\2 ou

encore < 1.

Il est clair que quels que soient oc, ß ^ 0, on peut trouver

y c-\-icc, c' entiers tels que
ß

7 < 1. Donc l'anneau j/,
appelé dans ce cas anneau de Gauss, est un anneau euclidien.

Etudions les « nombres premiers » de cet anneau. Soit n un
tel nombre premier, alors 7c est manifestement aussi premier. Le
nombre N(n) nïi est entier et cet entier n'a, dans l'anneau
de Gauss, que la décomposition unique N(n) nn. Donc, ou
bien n p est un nombre premier ordinaire, alors n p et
N{n) — p2, ou alors N(n) p nombre premier ordinaire, qui
par suite est décomposable en p nn dans sé. Dans ce dernier
cas, soit 7i u-\-iu\ alors p nn u2jru'2, donc p 1

(mod 4). Réciproquement, si p 4^+1 avec n > 1, le théorème

de Wilson montre que (4^)! + l 0 (mod p); or 2n+k
k-\-l—2n (mod p), en remplaçant pour k 1, 2n on voit
aussi que — l)2n (2^!)2+l 0 (mod p). Si p était premier
dans j/, il diviserait l'un des facteurs (2ri)\-\-i, (2ri)\—i, donc
aussi l'autre, par suite aussi leur somme 2(2^)!, ce qui est impossible

car p 4#+l > 2n.

Ainsi un nombre premier ordinaire p impair n'est pas premier
dans sé et se décompose dans sé en p — 7T7Ë, où % est premier
dans sé, si et seulement si p 1 (mod 4).

On peut déduire de cela que tout diviseur d'une somme de

deux carrés a2+a'2, où a et a' sont des entiers premiers entre

eux est lui-même une somme de carrés.
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Idéaux. — Malheureusement tous les anneaux sé ne sont

pas euclidiens et il existe des anneaux sé où la décomposition
en nombres premiers de l'anneau n'est pas unique à des unités

près. Exemple: d — —5. On a (2+i Vö) (2 — i yjh) 3.3; 3 et

/— 2 + i Vb
2+i>/5 sont premiers dans sé et n est pas une unite

de sé.

La propriété caractéristique des multiples d'un élément de sé

est la suivante: les multiples forment un ensemble J> tel que si

aeJ et ßeJ, on aa±ßeJr et aye<é quel que soit y e sé. Tout
ensemble «/ ayant ces deux propriétés est appelé un idéal de sé.

Les multiples d'un élément a e sé forment donc un idéal noté (a)

et appelé idéal principal. Dans tout anneau euclidien, tous
les idéaux sont principaux. Dans l'anneau sé avec d — 5, il
existe des idéaux non principaux, par exemple l'ensemble des

éléments de la forme 3uJr(2Jri V5)e, où u et ç sont des entiers
ordinaires arbitraires est un idéal non principal. On s'assure en
effet sans peine que cet ensemble est un idéal et cet idéal ne

peut être principal, car pour 9 0, u 1 et pour u 0, v 1

on obtient deux nombres premiers dans sé1 dont le rapport
n'est pas une unité de sé.

La notion d'idéal est due à Kummer qui en 1840 s'en est
servi pour étudier l'équation de Fermât xnjryn zn. La
définition donnée ici est due à Dedekind.

Nombres algébriques. — Nous allons maintenant indiquer
comment on peut généraliser les idées précédentes.

Soit P(x) un polynôme de degré n ^ 2, à coefficients rationnels.

Nous supposons P(x) irréductible sur le corps Q des

nombres rationnels, c'est-à-dire nous supposons que P(x) ne
puisse pas être décomposé en un produit de deux polynômes non
constants à coefficients rationnels. Alors tout polynôme A{x) à

coefficients rationnels est ou bien divisible par P(x) ou premier
à P{x), car le p.g.c.d. de A(x) et de P(x) divise P(x) et est à

coefficients rationnels (car il est obtenu par l'algorithme <PEu-
clide); il est donc, ou constant, ou égal à P(x).

Dans l'anneau, noté Q[>], des polynômes à une variable x,
à coefficients dans le corps des nombres rationnels El nous

L'Enseignement mathém., t. VIII, fasc. 3-4. 46
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définissons une relation d'équivalence par Ax(x) ~ si
A\(x) — A 2(x)est divisible par P(x) (en convenant que le
polynôme identiquement nul est divisible par tout polynôme). Il est
immédiat de voir que nous avons bien défini une relation
d'équivalence.

Désignons par ocla classe du polynôme par ß la classe
du polynôme B(x), alors tout polynôme de a est de la forme

A{x)+ U{x) P(x) et tout polynôme de ß est de la forme
B(x)JrV(x) P(x), où U(x) et V(x) sont des polynômes
arbitraires de û[a:]. On voit ainsi que la classe de A(x)-\-B(x) est
indépendante des polynômes choisis dans et nous noterons
cette classe oc+ß.De même la classe de A{x) B(x) est indépendante

des polynômes choisis dans et nous la noterons ocß.
L'ensemble de ces classes est donc un anneau. La classe 0 est
la classe des polynômes divisibles par P(x). Soit alors # 0;
si B(x) est un polynôme de ß, les polynômes B{x) et P(x) sont
donc premiers entre eux. Si A(xestun polynôme arbitraire,
l'identité de Bezout montre qu'il existe deux polynômes U(x)
et V(x) dans Q|>] tels que U(xEn
passant aux classes et en appelant la classe de U(x), on a

OC

rjß-\-0 a donc — rj existe pour tout ß =£ 0. Uensemble de

ces classes forme donc un corps
Dans chaque classe a de ^ il y a un polynôme et un seul

soit ax+^2^+• • •de degré n — 1 au plus; en effet, si
A{x) est un polynôme de la classe a, le reste de la division de
A(x) par P(x) est aussi dans la classe a. Deux polynômes de
degré n — 1 au plus ne peuvent être dans la même classe sans
être identiques, car leur différence doit être divisible par*.P(;r);
comme le degré de cette différence est au plus n-1, cette
différence est le polynôme identiquement nul.

Les classes contenant un polynôme constant forment un
sous-corps de isomorphe à Q; nous identifions ce sous-corps
avec a et écrivons a — classe du polynôme constant a.

Soit £ la classe contenant le polynôme alors la classe P(Ç)
contient le polynôme P(x), donc est la classe 0; on peut donc
écrire P(Ç) 0. Le polynôme P(x) n'est donc plus inéductible
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dans l'anneau des polynômes <#[x] à coefficients dans car il
possède le facteur x — Au lieu de ^ on emploie alors la notation

Q[£] et on appelle ce corps /'extension algébrique de G

par le polynôme P(x), ou aussi /'adjonction à G d'un zéro Ç

de P(x).
Si la classe a contient le polynôme a1-\-a2x-\-.

de degré /i-l au plus, on a a1Jra2^Jr.. classe du
polynôme a1-\-a2xJr • • • • + a„£M~1 a, Tout ae^ se représente
donc d'une manière et d'une seule sour la forme

a
1

•

Base: Soit a le vecteur de l'espace vectoriel Qn, ayant pour
composantes (ax, a2, aM). La correspondance a -» a est alors
un isomorphisms entre et G" pour l'addition des classes et
la multiplication par un nombre de G.

—^ —>• —>

A toute base Zq, Z>2, de G" correspond par cet isomor-
phisme un système (aq, co2, con) d'éléments de # tels que,
quel que soit a g on ait

a w1co1+w2co2-f- • • + ^n<un

avec Uj g G pour / 1, 2, n, et cette représentation est
unique. Elle correspond en effet par l'isomorphisme à la repré-

y
—> —> —>

sentation a — u1b1~\-u2b2-\- • •. H- unbn. système (ciq, oq)
appelé une base de

Considérons alors une base (aq, con) fixe de Pour
tout a g #, on a

aaq — #naq + • • • +
(2)

aaq anl(D1Jr ~^annaq

où atj g G pour / 1, m; j 1, On associe ainsi
à tout a g ^ une matrice
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à éléments atj de Q. Cette correspondance est un isomorphisme
entre et un sous-ensemble des matrices carrés à n lignes et n
colonnes à éléments dans Q.

En effet plaçons-nous dans l'espace vectoriel %n sur le

corps # et soit co (aq, œn) e n. Le système (2) s'écrit
alors occb A(œ).

Soit / la matrice unité à n lignes et n colonnes; on a donc
(aI — A){œ) 0; a est donc zéro du polynôme D(xl — A) où
D(A) représente le déterminant de la matrice A.

Comme D(xl — A) e û[x], on voit ainsi que tout nombre a e <6

est un nombre algébrique, zéro d^un polynôme inéductible de degré n
au plus (car il divise nécessairement D(xl — A)). D(xl — A) est

appelé polynôme normal de oc.

Soit B la matrice associée à un nombre ß e on a donc
ßco B(œ) dans et

(a+/?)co ^(<3)+i?(c5) — (^4+^)(S)

aßco ocB(œ) B(occb) BA(œ)

Par suite A-{-B correspond à oc-\-ß et BA correspond à ocß

nous avons bien un isomorphisme. Comme ocß ßoc, on a
BA AB, les matrices sont permutables.

Si a e Cl, on a acot acOi donc la matrice correspondante
à a est a/; en particulier à a 0 correspond la matrice 0 et
à a 1 la matrice I.

Un changement de base se traduit par a>' U(œ)1 où U est

une matrice carrée à n lignes et n colonnes inversible, donc avec

D(U) 7^0, à éléments dans Q. Si ocœ A(œ), on a

occo' ocU(œ) U(ocm) UA(œ) UAU~l(œ')

donc la matrice associée à oc dans la base co' est A' — UAU_1.
Le polynôme normal est le déterminant de xI — A'\ mais

xi — A' U(xl — A)U~1

et

JD(xI — A') D(U)D(xI-A)D(U~1) D(xl-A) ;

D{xl — A) est indépendant de la base particulière choisie pour <ê.
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Les coefficients du polynôme normal de a ne dépendent donc

que de # et non de la base. En particulier le terme constant

multiplié par -l)n, c'est-à-dire D(A) est indépendant de la base

et est appelé norme de a et noté N(oc). Gomme D(AB)=D(A)D(B)
on a N(aß) N(oc)N(ß) et N(<x) 0 si et seulement si a ^ 0.

Le coefficient de — xn~x dans D(xl — A) est an+. • •+&««? ü

est appelé trace de a et noté Tr(a). On a Tr(ot-\-ß) Tr(oc)-\-Tr(ß).
Les nombres 7V(oc) et Tr(oc) sont tous les deux rationnels.

Conjugués. —- Le polynôme dérivé P'{x) est de degré n — l
et appartient à &[>], donc il est premier à P(x); les racines

£n de P(x) — 0 sont donc toutes distinctes. Nous posons

aj a1+a2Çj+. +anÇ"~1 et nous dirons que oq, ccn sont
CONJUGUÉS.

Soit W(x) un polynôme de Q[>]; si pour un indice k on a

W(oLk) 0, on a aussi W(otj) 0 pour tout j 1, n. En
effet le polynôme W*(x) W(a1Jra2xJr • • • e Q[^]. On

a W*(Çk) 0; par suite W*(x) et P(x) ne sont pas premiers
entre eux, doncLL*(^) est divisible par P(x) et W*(Çj) W(otj)=0
pour tout /=1, n.

Désignons par a(x) le Polynôme minimal ayant pour zéro

ak1 c'est-à-dire a(x) est le polynôme de plus petit degré de Q[x]
ayant ak pour zéro; a(x) est alors irréductible De plus a{x) est

polynôme minimal pour tous les conjugués.
Le polynôme normal D(xl — A) a aussi pour zéros tous les a,-;

n

si donc a(x) est de degré n, on aura D(xl — A) a(x) (x — ocj).

j - i
Si les ocj ne sont pas tous distincts, il y a une infinité de nombres
rationnels r tels que les nombres 0Cj-\-rÇj soient tous distincts,
car l'égalité de deux tels nombres n'est possible que pour une
seule valeur de r. Soit A la matrice correspondant aux ocj et X
celle correspondant aux alors on aura D(xl — A—rX) —

n

Y\(x~aj~r^j) pour une infinité de r. Mais les coefficients de ces
j i
deux polynômes en x sont des polynômes en r de degré n au
plus; ils sont égaux pour une infinité de valeurs de r, donc ils
sont identiques et par suite, que les conjugués soient distincts ou
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non, on a D(xl — A) Yl(x~~aj) (#(^))s- Le degré de a(x) est
j= 1 n

donc un diviseur de n. On voit aussi que iV(afc) a7- et que

Tr{ak) £ «y.
J 1

Discriminant d'une base. — Soit œ1 (con, ..coln) une
base du corps soient cojk les conjugués de colk alors
C0j (coj1? œjn) est une base de On pose

A(co) D2(cd^ œn)

CD11 CDln

CD ni CD„

Tr(œnon) Tr(cDllLcDln])

Tr(cDincDn) Tr(œlnœln)

donc A(cd) est un nombre rationnel, appelé discriminant de la
BASE CO (C0l7 CDn).

En changeant la base, soit œ) [/(co,-), on aura

D(cdu cDn) D{U)D(cd^ û)b),

donc A(cd') D2(U)A(œ), Le signe de A(œ) ne change donc

pas. Si co-L est la base particulière i, ^_1, son discriminant

est ri(^)2 ^ 0, donc pour chaque base A(œ) ^ 0.
J>i

Entiers algébriques. — Nous considérons maintenant des

polynômes à coefficients entiers; nous désignons leur ensemble

par &[x]. Un polynôme de &[x] est appelé primitif, si ses

coefficients sont des entiers premiers dans leur ensemble. Pour
des polynômes primitifs, on a le lemme suivant:

Lemme de Gauss: Le produit de deux polynômes primitifs
est primitif. Soit en effet A(x) &<)-[-%£+• •

et
B(x) — b0-\-biX-{- - - •

A(x) B (x)' C(x) f + cn+mxn+m.

SupposonsA(x) et B(x) primitifs et C(x) non primitif. Alors il
existe un nombre premier p divisant tous les Cj, mais il ne peut
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diviser tous les ani tous les bj. Soit h le plus petit indice tel

que p ne divise pas ah et k le plus petit indice tel que p ne

divise pas bk. On a alors

Cft+h — (a0 ^k + h~\~ • • • + ah-ibk+1)-\~ahbk-\r (ak + • • • + Uh+lfio)

alors p divise toutes ces quantités sauf ahbk ce qui est une

contradiction.
n + m

Corollaire: Si C(x) Yjcjxi e a^ec cn+m l et si
j=o

dans £[x]f C(x) A' (x) B' (x) avec

n m

A'(x) Y a'jx' B'(x) l'j a'j e bj e a'
j-o j-o

aZors il existe aussi deux polynômes

n m

A(x) — X! G #(#) Z e
i=o J=0

avec an 1, èm 1 tels que C(x) A(x)B(x).
En effet, il existe deux nombres rationnels ra et rb tels que

raA'(x) A(x) e &[x] et rbB'(x) B(x) e 2£\x\ et que A(x) et

B(x) soient primitifs. Alors A(x)B(x) est primitif, donc

A(x)B(x) C(x) et anbm 1, d'où an 1, bm 1.

Définition: Un nombre algébrique a est appelé entier
algébrique sHl existe un polynôme dans ££\x], ayant a pour
zéro et ayant 1 pour coefficient du terme de plus haut degré.

Le polynôme minimal de a a alors aussi cette propriété; par
suite aussi le polynôme normal et Tr(oc) et N(a) sont des entiers
ordinaires, qui sont les entiers du corps Cl et que nous appellerons
maintenant entiers rationnels.

Les entiers algébriques forment un anneau. En effet, soit
n-1

oc zéro du polynôme A (x) xn + Z aj °°j e ^ M ß z®ro de
m—1 j=O

B(x) xm+ Yjbjxi e 2£[x\. Posons coj ah~1 ßk~l pour
j 0

h 1, n; k —1,m, alors / 1, ..N nm. En
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n—1 m—1

tenant compte de ce que ocn — Y a7.aJ, ßm — Y bjßj en
j=0 j-o

désignant pour y soit le nombre a+ß, soit le nombre aß, on a

ycoj %co1+ +ujNœN pour / 1, ...9N
et les Uji sont des entiers rationnels. Si V désigne la matrice
(liji), on a D(yl — U) 0; le polynôme D(xl — U) e £g[x\ et son
terme de plus haut degré a pour coefficient 1. Par suite y est

un entier algébrique.
Pour tout nombre algébrique oc on peut trouver un entier rationnel

q tel que y qoc soit entier algébrique. En effet si a est racine
n

de A(x) Y ajxJ e 2£\x\ alors q an est une valeur possible;
J~Q /

en effet y est alors zéro du polynôme qn~1A — le &[x], dont le
U

coefficient du terme de plus haut degré est 1.

Base des entiers. — Si cou œn est une base de l'extension

algébrique Q[£], on peut multiplier co) par un entier qj tel
que cojqj — cOj soit un entier algébrique; cox, con est encore
une base de &[£] et ses éléments sont des entiers algébriques.
Soit y un entier algébrique arbitraire de £t[£], alors

y <^0^+. -\~cncon avec Cj e G. Si c1 ^ 0, alors y, co2, con

est aussi une base de G[£]. En effet, la matrice de passage d'une
base à l'autre est

(c1
c2 en \

0 1 0

0 0 1 /
et D(U) cx ^ 0, donc U est inversible.

Si œ (nq, con) est une base formée d'entiers algébriques
de Q[£], le discriminant A(œ) est un entier rationnel, car c'est
le déterminant dès traces des cotcOj qui sont des entiers
algébriques. D'autre part A(œ) # 0; il existe donc au moins une
base, supposons que ce soit la base cox, con, telle que |d(co)|

prenne sa plus petite valeur. Alors si on écrit un entier algébrique
arbitraire y de Q[<f] sous la forme y — • .+uncon avec

Uj g G, les Uj sont des entiers rationnels. En effet, supposons le
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contraire et que par exemple ux ne soit pas un entier. Alors

ux u-\-r, où u [ux] est la partie entière de ux et r un nombre
rationnel avec 0 < r < 1. Le nombre y' — y — uœx est encore

un entier algébrique et on a y' — rcjox-{-u2co2+• • • Soit
<3' (y', co2, cort), comme r 7^ 0, co' est une base 'et son
discriminant est A(œr) /,2d(co) donc |^(<3')| < \A(œ)\ ce qui
contredit notre hypothèse de minimum. Ainsi:

Il existe dans le corps &[£] des bases cox, con formées
d'entiers algébriques telles que tout entier algébrique y de Q[£] est

de la forme y uxcox+. + ^ncon, où ux, un sont des entiers
rationnels. La base mx, œn est appelée une base des entiers
de &[£]. On passe d'une base d'entiers à une autre par une
matrice à coefficients entiers rationnels de déterminant ^ 1. Le
discriminant d'une base des entiers du corps û[£] est donc un
entier rationnel non nul indépendant de la base. Cet entier
rationnel s'appelle le discriminant du corps.

Unités algébriques. — Le nombre algébrique oc est appelé

unité algébrique si oc et — sont à la fois des entiers algébriques ;

alors N (a) et N (—) — —— sont des entiers rationnels, donc
W N&)

N(cc) ± 1. Réciproquement, si a est un entier algébrique avec
iV(a) +1, alors l'équation normale de oc est de la forme
xnjran_xxn~ljr...jraxx± 1 0 où al7 an_x sont entiers

rationnels. Donc - + (ax+ +an_xocn~2+oclt~1) et i est un
oc OC

entier algébrique, donc oc est une unité algébrique.

L'ensemble des unités algébriques dune extension Q[£] forme
un groupe relativement à la multiplication. En effet, si a et ß
sont des unités algébriques, ocß l'est aussi, car

N(ccß) N(a)N(ß) ± 1, ainsi que - car n(~\ —— +1;
a \ocJ N(a)

enfin 7V(1) 1, donc 1 est une unité algébrique.
Si gcj est un conjugué d'une unité algébrique, ocj est aussi une

unité. Posons rjj — log \ccj\ et considérons le vecteur rj de com-
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posantes r\l7 ..rjn dans 91". Les vecteurs rj correspondant aux
unités algébriques des corps Q[<y forment donc un groupe
additif Jt, ce que l'on appelle aussi un module. Si les rjf sont
bornés, les nombres \ocj\ eni le sont aussi, donc les coefficients

n

du polynôme normal —aj) sont bornés en valeur absolue;
.7 1

ce sont des entiers rationnels et leur nombre est n, donc il y
en a au plus un nombre fini. Soient Çl7 Çr un nombre maximum

de vecteurs linéairement indépendants de M, il y a par
conséquent un nombre fini de vecteurs rj e M de la forme

rj Xi -\-Xr |r avec 0 ^ ^ 1, 0 ^ Xr g 1. Pour
l'ensemble des rj e M, les Xj forment eux-mêmes des modules,

m •

or Xj 1 est une valeur qui convient, donc Xj — où qirijQj
1 -*

sont des entiers rationnels. En posant £.• — 6, on a donc
qJ

rj çr, où ml7 mr sont des entiers rationnels.

Le déterminant des entiers rrtj correspondant à r vecteurs
linéairement indépendants de M est donc un entier non nul.

En considérant alors un système 9l7 9r de tels vecteurs Tj

de M pour lequel la valeur absolue du déterminant précédent
est la plus petite possible, on voit (de manière analogue à ce

qui a été fait pour les bases des entiers) que tout rj e M est

de la forme rj ^ -\-nr 9n oil nl7 nr sont des entiers
rationnels arbitraires.

Soient sl7 sr des unités algébriques correspondant aux
*—^ ^

vecteurs 0l5 0r, et oc une unité algébrique arbitraire
correspondant à rj7 alors log | oc | log | s1 | + -f- nr log | sr | donc

a s0 si1 e"r, où s0 est une unité telle que toutes ses conjuguées

vérifient |g0.| 1. Il en est alors ainsi pour toutes ses
J

n

puissances entières e; les équations Yl(x~s0j) correspondantes
j-i

sont à coefficients entiers bornés, donc n'ont qu'un nombre
fini de possibilités. Il existe donc m et m-\-k telles que les équations

soient égales donc s s%+k, c'est-à-dire si 1; s0 est

une racine de l'unité.
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Supposons que parmi les nombres on ait rx racines réelles

et 2r2 racines complexes, donc rr+2r2 n. Si on a

rit log |«i[ log <y.j | t]j.
Les composantes de rj eJivérifientdonc relations liné-

n

aires. D'autre part N(oc) ±1, donc £ rjj — 0 ; le nombre r
j-1

de vecteurs rj e M linéairement indépendants est donc au plus
n - (r2+l) — r±+r2 ~ !•

On montre alors que l'on a effectivement r r1-\-r2 — 1,

ce nombre r s'appelle le nombre de Dirichlet du corps Q[£].
Toute unité algébrique de Q[£] s'exprime d'une manière et d'une
seule sous la forme a — s0 e"1.. e"r, où e0 est une racine de l'unité
du corps et el7 .er des unités algébriques non racines de l'unité,
rl7 nr e r 74+^2 — 1 oà rx est le nombre de racines
néelles de P(x) 0 et 2r2 fe nombre de racines non réelles.

Exemple: Revenons à l'équation de Pell-Fermat (1). En

posant a x-\-y\Jd, on voit que a est racine de l'équation en t
suivante (t — x)2 — dy2 0, a est donc un entier algébrique.
L'équation (1) s'écrit aâ =* iV(a) 1. La résolution de (1)

revient ainsi à la recherche des unités a du corps SL[y/d] telles
que N(oc) +1. Ces unités forment manifestement un sous-

groupe du groupe de toutes les unités du corps. Le nombre de

Dirichlet r r1Jrr2 — 1 de ce corps est 0 si d < 0 et 1 si d > 0.

Pour d < 0, il n'y a donc qu'un nombre fini de solutions qui
sont toutes racines de l'unité. Pour d > 0 il existe une unité
particulière e1 x1+y1\/d telle que a ± (x± + y1 Vd)n, en

effet ici Q[Vd] est réel, donc e0 ±1, n est un entier rationnel
arbitraire. On en déduit toutes les solutions de (1) par les
formules

X ± ~ (eï + 8Ï) y=± —V-= (8i-eï)2 2\]d

Par exemple pour i 2, onae^ 3+2 \/2; il existe des
tables numériques donnant e1 pour tout entier d < 104.
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