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INTRODUCTION A LA THEORIE DES NOMBRES
ALGEBRIQUES 1)

par Charles Pisor.

ORIGINE DE LA THEORIE DES NOMBRES ALGEBRIQUES. — L’un
des principaux problémes dont s’occupe la théorie des nombres
est celui de la résolution des équations, en ajoutant la condition
que les solutions doivent étre des nombres entiers. Pour attaquer
cette question, on a été amené a étendre la notion de nombre
entier et plus généralement celle de nombre rationnel, non
seulement a celle de nombre réel ou complexe, mais a des ensem-
bles moins généraux. Nous allons essayer d’expliquer ce probléme

sur une équation particuliere, & savoir

2 _ gy =1

appelée £QuaTioN DE PELL-FERMAT; d est un entier ne conte-
nant aucun facteur carré parfait, donc aussi d # 0. On peut écrire
cette équation sous la forme

(z — yJ/d) (@ +yJd)=1. (1)

Cette écriture suppose bien entendu que nous connaissions déja
I’ensemble R des nombres réels et méme (si d < 0) ’ensemble €
des nombres complexes.

ANNEAU. — La forme (1) de I'équation de Pell-Fermat
suggére d’étudier les quantités de la forme o = a+-a’ Jd ou
a et a’ sont des entiers. Nous appellerons « I’ensemble de ces
quantités o.

Il est clair que st ae o, fe L, on a ausst o + fe A et
af € /. On dit que </ est un ANNEAU. Ainsi I'ensemble & des
entiers est un anneau.

1) Conférence prononcée a Grenoble, dans le cadre des « Journées mathématiques
de Grenoble », 21-22 mai 1960.
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Comrps. — Plus généralement considérons des nombres de la
forme ¢ = s+’ \/—cf, T = 1+t \/c?, ou s, s’, t,t' sont des nombres
‘rationnels. Nous appellerons leur ensemble %. Il est encore clair
que % est un anneau et que % € &/; mais ici il y a plus. Définis-
sons en effet pour tout nombre ¢ = s+’ \/d—e % son CONJUGUE

G par ¢ = s—s\/@ alors aussi ¢ € €, et appelons NORME de ¢
le nombre N(o) = 66 = s2—ds’? alors N(o) est rationnel et
N(o) = 0 entraine ¢ = 0, car d n’est pas le carré d’un nombre
rationnel.

Par suite site %, o0 € € avec 0 # 0, on a

10

" No)’

(2

10
oo

donc — e %. On dit que P’ensemble % est un corps. Ainsi en-
o

semble des nombres rationnels Q, celui des nombres réels R,
celui des nombres complexes €, sont des corps.

Remarquons encore tout élément o = s+s’\/d € est
racine d’une équation du second degré (x—s)? —ds2=0 a
coefficients rationnels.

De tels nombres sont appelés NOMBRES ALGEBRIQUES. Plus
généralement, on appellera NOMBRE ALGEBRIQUE tout zéro réel
ou complexe d’'un polynéme a coefficients rationnels.

ANNEAU EUCLIDIEN. — Un anneau a des propriétés sem-
blables & celles de I’ensemble des entiers. Cherchons & pousser
cette analogie plus loin en essayant de définir une division avec
reste dans 'anneau o/ précédent. Nous dirons que & est un
ANNEAU EUCLIDIEN, si & posseéde la propriété suivante:

Quels que soient o€ o et e of avec B # 0, on peut toujours
trouver dans &/ deux éléments y et p tels que Uont ait:

w=Py+p et |[Np)|<|N@BI|.

On n’exige pas l'unicité pour ces nombres y et p. Si &/ est
euclidien, on peut - définir l'algorithme d’Euclide pour deux
éléments o # 0, f # 0 de &, donc leur p.g.c.d. et de 14, comme
pour les entiers, obtenir la décomposition d’un élément « € o,
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o # 0 en « nombres premiers» de o, c’est-a-dire en nombres
de o/ n’ayant pas d’autres diviseurs dans o/ qu’eux-mémes ou
des «unités» de o; on dira que n € & est une unité de of si

1 " :
n # 0 et s1— e oZ. La décomposition de « en nombres premiers
n ’ X

est alors unique & des unités pres.

Exempre : d= —1, alors o =ata' v —1=atia et
& =a—1a', donc N(a)= a’+a’?2 = |a|2. L’égalité o= fy+p
s’écrit aussi%——y =% et [N(p)| < |NV(B)| s’écrit |p|*> < |B|? ou.
encore El <1
B

Il est clair que quels que soient «, f # 0, on peut trouver

. : o A
y = c¢Fic’, ¢, ¢’ entiers tels que E—y < 1. Donc 'anneau 7,

appelé dans ce cas ANNEAU DE GAUSS, est un anneau euclidien.

Etudions les « nombres premiers » de cet anneau. Soit © un
tel nombre premier, alors 7 est manifestement aussi premier. Le
nombre N(n) = n7t est entier et cet entier n’a, dans ’anneau
de Gauss, que la décomposition unique N(n) = zn7w. Donc, ou
bien # = p est un nombre premier ordinaire, alors 7 = p et
N(rn) = p?, ou alors N(n) = p nombre premier ordinaire, qui
par suite est décomposable en p = n7w dans /. Dans ce dernier
cas, soit n = u-iu’, alors p =n%w = u?4-u'?, donc p =1
(mod 4). Réciproquement, si1 p = 4n-+1 avec n > 1, le théo-
réme de Wilson montre que (4n)!+1 = 0 (mod p); or 2n+-k =
k+1—2n (mod p), en remplacant pour k =1, ..., 2n on voit
aussi que (—1)>"(2n!)24+1 =0 (mod p). Si p était premier
dans «, il diviserait I'un des facteurs (2n)!--i, (2rn)! —i, donc
~aussi 'autre, par suite aussi leur somme 2(2r)!, ce qui est impos-
sible car p = 4n+-1 > 2n.

Ainsi un nombre premier ordinaire p impair n'est pas premier
dans < et se décompose dans </ en p = ni, oU = est premier
dans s, st et seulement st p = 1 (mod 4).

On peut déduire de cela que tout diviseur d’une somme de
deux carrés a?+a'?, ou a et a’ sont des entiers premiers entre
eux est lui-méme une somme de carrés.

]
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IpEAUX. — Malheureusement tous les anneaux ./ ne sont
pas euclidiens et il existe des anneaux & ou la décomposition
en nombres premiers de I'anneau n’est pas unique a des unités
prés. Exemple: d = —5. On a (24—1\/5) (2—i\/5) = 3.3; 3 et

vy | 2+i/5 o
9+i+/5 sont premiers dans &/ et —3 n’est pas une unité
de . ,

La propriété caractéristique des multiples d’un élément de o/
est la suivante: les multiples forment un ensemble S tel que si
veSfetfeSf,onaatpe s etaye s quel que soity e . Tout
ensemble # ayant ces deux propriétés est appelé un IDEAL de /.
Les multiples d’un élément « € o/ forment donc un idéal noté («)
et appelé mEAL principAL. Dans tout anneau euclidien, tous
les idéaux sont principaux. Dans I'anneau & avec d = —5, 1l
existe des idéaux non principaux, par exemple ’ensemble des

éléments de la forme 3u—l—(2+i\/5)0, ou u et ¢ sont des entiers
ordinaires arbitraires est un idéal non principal. On s’assure en
effet sans peine que cet ensemble est un idéal et cet idéal ne
peut étre principal, car pour v =0, u =1 et pouru =0,¢ =1
on obtient deux nombres premiers dans ., dont le rapport
n’est pas une unité de .

La notion d’idéal est due a Kummer qui en 1840 s’en est
servi pour étudier 'équation de Fermat x"-+y" = z". La défi-
nition donnée 1c1 est due & Dedekind.

NomBRES ALGEBRIQUES. — Nous allons maintenant indiquer
comment on peut généraliser les idées précédentes.

Soit P(z) un polyndéme de degré n > 2, a coefficients ration-
nels. Nous supposons P(x) IRREDUCTIBLE sur le corps Q des
nombres rationnels, c’est-a-dire nous supposons que P(x) ne
puisse pas étre décomposé en un produit de deux polyndmes non
constants a coefficients rationnels. Alors tout polynéme A(x) a
coefficients rationnels est ou bien divisible par P(x) ou premier
a P(x), car le p.g.c.d. de A(z) et de P(x) divise P(x) et est a
coefficients rationnels (car il est obtenu par P’algorithme d’Eu-
clide); 1l est donc, ou constant, ou égal a P(z).

Dans Panneau, noté R[z], des polyndmes & une variable z,
a coeflicients dans le corps des nombres rationnels R nous

L’Enseignement mathém., t. VIII, fasc. 3-4. 16
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définissons une relation d’équivalence par A(x) ~ A,(x) si
Ay(x) — Ay(x) est divisible par P(x) (en convenant que le poly-
nome identiquement nul est divisible par tout polyndme). I1 est
immédiat de voir que nous avons bien défini une relation d’équi-
valence. | ' |

Désignons par « la classe du polyndme A(z), par B la classe
du polynéme B(z), alors tout polynéme de a est de la forme
A(z) + U(z) P(z) et tout polyndme de B est de la forme
B(z)4-V(x) P(z), ou U(z) et V(z) sont . des polynémes arbi-
traires de Q[z]. On voit ainsi que la classe de A(z)+B(x) est
indépendante des polyndmes choisis dans o et B; nous noterons
cette classe a+4-f. De méme la classe de A(z) B(z) est indépen-
dante des polyndmes choisis dans « et ; nous la noterons af.
L’ensemble de ces classes est donc un anneau. La classe O est
la classe des polyndémes divisibles par P(x). Soit alors B # 0;
si B(z) est un polyndme de B, les polyndmes B(z) et P(x) sont
donc premiers entre eux. Si A(z) est un polynéme arbitraire,
identité de Bezout montre qu’il existe deux polyndmes U(zx)
et V(z) dans Q[x] tels que U(x) B(x)+V(z) P(x) = A(z). En
passant aux classes et en appelant # la classe de U(z), on a

np+0 = o donc —; = 5 existe pour tout B # 0. L’ensemble de

ces classes forme donc un corps €.

Dans chaque classe « de % il y a un polyndéme et un seul
s0it a;+a,x+...4a,2""! de degré n—1 au plus; en effet, si
A(z) est un polynéme de la classe o, le reste de la division de
A(x) par P(z) est aussi dans la classe «. Deux polynémes de
degré n—1 au plus ne peuvent étre dans la méme classe sans
étre identiques, car leur différence doit étre divisible par P(x);
comme le degré de cette différence est au plus n—1, cette diffé-
rence est le polynéme identiquement nul. |

Les classes contenant un polyndéme constant forment un
sous-corps de ¢ isomorphe & Q; nous identifions ce sous-corps
avec R et écrivons a = classe du polyndéme constant a.

Soit ¢ la classe contenant le polynéme z, alors la classe P(&)

contient le polynéme P(z), donc est la classe 0; on peut donc
écrire P({) = 0. Le polynéme P(z) n’est donc plus inéductible




THEORIE DES NOMBRES ALGEBRIQUES 243

dans ’anneau des polyndémes 4[x] & coefficients dans %, car il
_posséde le facteur x —¢. Au lieu de € on emploie alors la nota-
tion Q[&] et on appelle ce corps 'EXTENSION ALGEBRIQUE de 9
par le polynéme P(z), ou ausst 'apjoncTioN @ R d'un zéro &
de P(x).

Si la classe « contient le polyndéme a;+a,x+...+ax
de degré n—1 au plus, on a a;-+a,é-+...+a," ' = classe du
polynéme a,+a,z+....+a,xz" ' = a, Tout o € € se représente
donc d’une maniére et d’une seule sour la forme

n—1

o= aytapé-. . FaEt

Bask: Soit @ le vecteur de I'espace vectoriel Q", ayant pour
composantes (a,, as, ..., a,). La correspondance « — @ est alors
un isomorphisme entre € et Q" pour 'addition des classes et
la multiplication par un nombre de K.

A toute base by, by, ..., b, de Q" correspond par cet isomor-
phisme un systéme (w;, w,, ..., w,) d’éléments de ¥ tels que,

quel que soit o € €, on ait

o = u1w1+u2602—|— o« o +una)n

~avec u;€Q pour j =1, 2, ..., n, et cette représentation est
unique. Elle correspond en effet par I'isomorphisme & la repré-

- -

sentation @ = u;b,+u,by+...4u,b,. Le systeme (@, ..., ®,)
est appelé une BASE de €.

Considérons alors une base (wy, ..., w,) fixe de ¥. Pour
tout o« € ¢, on a

“wl —_ alla)l '—l— . W ow + (llna)n
(2)
oww, = Gy, + ...+ a,,0,
ou a;eQ pourt=1, ..., n;j=1, ..., n. On associe ainsi

a tout o € € une matrice

A1y .- Ay,

A =
Apy - .. @

nn
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a éléments a;; de Q. Cette correspondance est un isomorphisme
entre € et un sous-ensemble des matrices carrés- 4 n lignes et n
colonnes d éléments dans Q.

En effet placons-nous dans I’espace vectoriel %" sur le
corps € et soit @ = (wy, ..., w,) € €". Le systéme (2) s’écrit
alors ao = A(®). - " |

- Soit I la matrice unité & n lignes et n colonnes; on a done
(e —A)(@) = 0; o est donc zéro du polynéme D(zl—A) ou
D(A) représente le déterminant de la matrice A.

Comme D(zl — A) € {[z], on voit ainsi que tout nombre a € €
est un nombre algébrique, zéro d’un polynéme inéductible de degré n
au plus (car il divise nécessairement D(xl —A4)). D(zl —A4) est
appelé POLYNOME NORMAL de a. '

Soit B la matrice associée & un nombre peé, on a donc
o = B(®) dans %" et

(a+B)o = A(@D)+B(@) = (A+B)(d)
afw = aB(&) = B(oaw) = BA(®) .

Par suite A-+B correspond & «+f et BA correspond a «off
nous avons bien un isomorphisme. Comme of = fo, on a
BA = AB, les matrices sont permutables. |

Si aefQ, on a aw; = aw; donc la matrice eorrespondante ‘
a a est al; en‘ particulier & a = 0 correspond la matrice 0 et
& a =1 la matrice I. '

Un changement de base se traduit par o’ = U(®), ot U est
une matrice carrée a n lignes et n colonnes inversible, donec avec
D(U) # 0, & éléments dans Q. Si aw = A(®), on a

aw’ = aU(@) = Ulaw) = UA(®) = UAU Y (@)

donec la matrice associée & « dans la base o’ est A’ = UAU™!.
Le polynéme normal est le déterminant de x/—A’; mais

2l — A" = Ulgl — A)U*
et
D@l — A"y = D(U)D(@l — A)D(U~") = D(zl —A) ;

D(xI — A) est indépendant de la base particuliére choisie pour .
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Les coefficients du polynéme normal de « ne dépendent donc
que de % et non de la base. En particulier le terme constant

multiplié par (—1)", c’est-a-dire D(A) est indépendant de la base -

et est appelé NORME de o et noté N(a). Comme D(AB)=D(A)D(B)
on a N(ap) = N(a)N(B) et N(x) = 0 si et seulement si o == 0.

Le coefficient de —2"~ ! dans D(xI —A) est a;;+ ...+ 11

est appelé TraCE de a et noté Tr(a). On a Tr(a—+p)="Tr(x)+Tr(p).
Les nombres N(«) et Tr(x) sont tous les deux rationnels.

CoNJUGUES. — Le polynome dérivé P’(x) est de degré n—1
et appartient a Q[z], donc il est premier & P(x); les racines
&, ..., &, de P(x) = 0 sont donc toutes distinctes. Nous posons
o0 = ay+aé;+ . .. +a,} ! et nous dirons que «y, ..., o, sont
CONJUGUES.

Soit W(x) un polynome de Q[z]; si pour un indice £ on a
W(oy) = 0, on a aussi W(x;) = 0 pour tout j =1, ..., n. En
effet le polyndme W*(z) = W(a,+ax+. .. +a,2""") € [z]. On
a W*(&) = 0; par suite W*(x) et P(x) ne sont pas premiers
- entre eux, donc W*(z) est divisible par P(z) et W*(&,)=W(«;)=0
pour tout j =1, ..., n.

Désignons par a(x) le POLYNOME MINIMAL ayant pour zéro
o, ¢’est-a-dire a(x) est le polyndéme de plus petit degré de Q[x]
ayant o, pour zéro; a(x) est alors irréductible De plus a(x) est
polynéme minimal pour tous les conjugués.

Le polynéme normal D(xI — A) a aussi pour zéros tous les o;;

si donc a(z) est de degré n, on aura D(zl — A)=a(z) = [] (x — ;).
j=1

Si les a; ne sont pas tous distincts, il y a une infinité de nombres

rationnels r tels que les nombres o;+r¢; soient tous distincts,

car 1’égalité de deux tels nombres n’est possible que pour une

seule valeur de r. Soit 4 la matrice correspondant aux o; et X

celle correspondant aux ¢&;, alors on aura D(z/—A —rX) =

n

[1(x—a;—r&;) pour une infinité de r. Mais les coefficients de ces

deux polyndémes en x sont des polyndmes en r de degré n au
plus; ils sont égaux pour une infinité de valeurs de r, donc ils
sont 1dentiques et par suite, que les conjugués soient distincts ou
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non, on a Dzl —A) = [[ (z—0a;) = (a(x))". Le degré de a(z) est
, j=1 n
~ donc un diviseur de n. On voit aussi que N(w,) = []o; et que
- n j=1
Tr(og) = ) a;.
=t
'DISCRIMINANT D’UNE BASE. — Soit 0, = (wy,, ..., ®;,) une
base du corps RQ[¢&;]; soient w; les conjugués de w,; alors

—

w; = (@1, ..., w;,) est une base de Q[£;]. On pose

A(w) = D¥wq, .., 0,) =

D11 ... Wqy 2 Tr(wy04) ... Tr(wg;my,)

Dpy - ‘wnn Tr(a)lnwll) L Tr‘(wlna)ln)

donc A(w) est un nombre rationnel, appelé DISCRIMINANT DE LA
BASE @ = (@, ..., ®,).
En changeant la base, soit w; = U(w;), on aura

D(w’h ) CO;,) = D(U)D(wb SRR CO,,),
donc A(w’) = D¥U)A(®), Le signe de A(w) ne change donc

pas. Si o, est la base particuliére 1, &, ..., &1, son discrimi-
nant est [[(&,—¢,)2 # 0, done pour chaque base A(w) # 0.
Jj>i - ’

EnTIERS ALGEBRIQUES. — Nous considérons maintenant des
polyndmes & coefficients entiers; nous désignons leur ensemble
par Z[z]. Un polynéme de Z[x] est appelé PRIMITIF, si ses
coefficients sont des entiers premiers dans leur ensemble. Pour
des polyndomes primitifs, on a le lemme suivant:

LemME pE GAvuss: Le produit de deux polyndmes primitifs
est primitif. Soit en effet A(zx) = ay+a2+...+a,z",

B(z) = by+byz+-. .. +b,2"
et .
A(z) B(z) = C(z) = cyF+ep+ ... FCpppm™™ ™

Supposons A(x) et B(z) primitifs e;t C(z) non.primitif. Alors il
existe un nombre premier p divisant tous les ¢;, mais il ne peut
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diviser tous les a;, ni tous les b;. Soit h le plus petit indice tel
que p ne divise pas a, et k le plus petit indice tel que p ne
divise pas b;. On a alors

Chok = (@obpnt - - -+ U1l 1)+ b+ (@ +1bi-1+ -~ -+ @uribo)

alors p divise toutes ces quantités sauf a,b, ce qui est une
contradiction.

n+m

COoROLLAIRE: St C(x) Zc v e Z[x] avec Cpim =1 et St
dans 2[x], C(x) = A’ (z) B ( ) avec
A'( Zax’B Z 2/, d;ef, bjeR,

i=

alors il existe ausst deux polynomes

A(x) = Y a;2' € Z[z], B(x) =), bja' e Z[x]
j=0 - j=0
avec a, =1, b, = 1 tels que C(z) = A(x)B‘(x).
En effet, il existe deux nombres rationnels r, et r, tels que
r,A'(x) = A(x) € Z[x] et r, B’ (x) = B(x) € Z[x] et que A(x) et
B(z) soient primitifs. Alors A(x)B(x) est primitif, donc

A(x)B(x) = C(z) et a,b,, =1, dou a,=1, b, = 1.

DeriniTiON: Un nombre algébrique o est appelé ENTIER
ALGEBRIQUE s’il existe un polynéme dans Z[x], ayant o pour
zéro et ayant 1 pour coefficitent du terme de plus haut degré.

Le polyndéme minimal de o a alors aussi cette propriété; par
suite aussi le polyndéme normal et Tr(x) et N(a) sont des entiers
ordinaires, qui sont les entiers du corps Q et que nous appellerons
maintenant ENTIERS RATIONNELS.

Les entiers algébriques forment un anneau. En effet, soit
n—1

o zéro du polynéme A(x) = 2"+ Y a;2° € Z[x] et B zéro de

m—1 j=0

B(z) = a™ + ), b;’ € Z[x]. Posons w; = o™t gt poﬁr
j=0

h=1, ..., n; k=1, ..., m,alors j=1, ..., N=nm. En
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tenant compte de ce que o = — ) a;o/, f" = — ) b;p’ et en
désignant pour y soit le nombre «+-f, soit le nombre «f, on a

90, = waor . Hugyoy pour j=1, ..., N

et les u;; sont des entiers rationnels. Si U désigne la matrice
(u;;), on a D(yl —U) = 0; le polyndéme D(xl —U) € Z[x] et son
terme de plus haut degré a pour coefficient 1. Par suite y est
un entier algébrique. |

Pour tout nombre algébrique a on peut trouver un entier ration-
nel q tel que y = qa soit entier algébrigue. En effet si o est racine

de A(z) = ) a;2’ e Z[x] alors ¢ = a, est une valeur possible;
Jj=0

en effet y est alors zéro du polynéme ¢"~ 14 ( ) e ¥[x], dont le
q
coefficient du terme de plus haut degré est 1.

BASE DES ENTIERS. — Si w0}, ..., o, est une base de I'exten-
sion algebrlque Q[ ], on peut multlpher ®; par un entier q; tel
que co, q; = w; solt un entier algébrique; w,, ..., w, est encore
une base de D.[é] et ses éléments sont des entiers algébriques.
Soit y un entier algébrique arbitraire de Q[&], alors
Y= ¢+ ... +c,w, avec ¢; € Q. Si ¢y # 0, alors y, w,, ..., 0,
est aussi une base de RQ[£]. En effet, la matrice de passage d’une
base a l'autre est _

by Ly 0. O

U — 01 = 0
00 ...1
et D(U) = ¢, # 0, donc U est inversible. -
Siw = (wy, ..., w,) est une base formée d’entiers algébriques

de Q[¢], le discriminant  A(w) est un entier rationnel, car c’est
le déterminant des traces des w;w; qui sont des entiers algé-
briques. D’autre part A(w) # 0; il existe donc au moins une
base, supposons que ce soit la'base «y, ..., »,, telle que [4(o)|
prenne sa plus petite valeur. Alors si on écrit un entier algébrique
arbitraire y de Q[&] sous la forme y = uw0,+...+u,w, avec
u; € R, les u; sont des entiers rationnels. En effet, supposons le
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contraire et que par exemple u; ne soit pas un entier. Alors
u, = u-r, ou u = [u,] est la partie entiére de u, et r un nombre
rationnel avec 0 < r < 1. Le nombre 3’ =y —uw, est encore
un entier algébrique et on a y’ = ro;+u,w,+ . .. 41,0, Soit
& = (', 0y ..., ®,), comme r # 0, @ est une base et son
discriminant est A(®’) = r2A(o) done |A(0’)| < |4(®)| ce qui
contredit notre hypothése de minimum. Ainsi:

Il existe dans le corps Q[E&] des bases wy, ..., w, formées
d’entiers algébriques telles que tout entier algébrique y de RQ[E] est
de la forme y = w0+ . ..-tu,w,, ok u,, ..., u, sont des entiers
rationnels. La base w,, . .., o, est appelée une BASE DES ENTIERS
de Q[E]. On passe d'une base d’entiers & une autre par une
matrice a coefficients entiers rationnels de déterminant # 1. Le
discriminant d’une base des entiers du corps Q[¢&] est donc un
entier rationnel non nul indépendant de la base. Cet entier
rationnel s’appelle le DISCRIMINANT DU CORPS.

UNITES ALGEBRIQUES. — Le nombre algébrique o est appelé

: 1 i - :
UNITE ALGEBRIQUE St « et — sont ad la fois des entiers algébriques ;
o

o N(o)
N(a) = + 1. Réciproquement, si o est un entier algébrique avec
N(a) = +1, alors Péquation normale de « est de la forme
t"ta, 2" '+ 4ax+1 =0 o0l a, ..., a,_, sont entiers

1 1
alors N(a) et N (—> = —— sont des entiers rationnels, donec

. 1 - ) -1 1
rationnels. Donec — = F (a;+...4a,— " 2+a" 1) et —est un
o o

entier algébrique, donc o est une unité algébrique.

L’ensemble des unités algébriques d’une extension R[] forme
un GROUPE relativement a la multiplication. En effet, si o et f
sont des unités algébriques, «ff Pest aussi, car

| .. 1 1 1
N(ap) = N(a)N(f) = + 1, ainsi que—, car N[~ | = = +1;
o o N(x)
enfin N(1) = 1, donc 1 est une unité algébrique.
Si a; est un conjugué d’une unité algébrique, a; est aussi une
unité. Posons n; = log |o;| et considérons le vecteur 7 de com-
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- posantes 7y, ..., , dans R". Les vecteurs 7 correspondant aux
unités algébriques des corps R[&;] forment donc un groupe
additif ., ce que I'on appelle aussi un MopULE. Si les #; sont
bornés, les nombres |o; I = ¢" le sont aussi, donc les coefficients

du polyndéme normal H (x —a;) sont bornés en valeur absolue'
ji=1

ce sont des entiers rationnels et leur nombre est n, donc 1l y
en a au plus un nombre fini. Soient 61, .. é un nombre maxi-
mum de vecteurs linéairement mdependants de 4, il y a par
conséquent un nombre fini de vecteurs ¥ € .# de la forme
o= A Eavee 0=, <1, ...,0<4 <1 Pour
Pensemble des 7 € #, les A; forment eux-mémes des modules,

or ;=1 est une valeur qui convient, donc 1, = — ou ¢;, m

d;

sont des entiers rationnels. En posant ZJ = —Ej, on a donce
-, -, Jj .
n=mé+...+m.é&, oum,, ..., m, sont des entiers ration-
nels. Le déterminant des entiers m; correspondant & r vecteurs
linéairement indépendants de .# est donc un entier non nul

-

En considérant alors un systéme 0,, ..., 5, de tels vecteurs 7
de .# pour lequel la valeur absolue du déterminant précédent
est la plus petite possible, on voit (de maniére analogue a ce
qui a été fait pour . les bases des entiers) que tout 7 € . est

de la forme 7 = n, 1+ +n . OU g, ..., n,sont des entiers
rationnels arbitraires. '

- Soient &, ..., & des unités algébriques correspondant aux
—

—

vecteurs 6;, ..., 0,, et o une unité algébrique arbitraire corres-
pondant & 7, alors log |a| = ny log |& | +. ..+ n,log |&,| done
o= g€ ... &, ou g est une unité telle que toutes ses conju-
guées vérifient |g,.| = 1. Il en est alors ainsi pour toutes ses

n

puissances entiéres &g ; les équations [ ( —83’.) correspondantes
ji=1

sont a coefficients entiers bornés, donc n’ont qu’'un nombre
fini de possibilités. Il existe donc m et m--k telles que les équa-
tions soient égales donc &y = & 7¥, c’est-a-dire &5 = 1; g, est
une racine de I'unité. ‘
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Supposons que parmi les nombres &; on ait ry Eéwines réelles
et 2r, racines complexes, done r,-+2r, =n. Si §; = ¢;, on a

n; = log |a;| = log |y = N . .
Les composantes de n € .# vérifient donc r, relations liné-

aires. D’autre part N(x) = 41, donc ) n; = 0; le nombre r
j=1

de vecteurs 7 € .# linéairement indépendants est donc au plus
n — (ro+1) =ri+r, — 1.

On montre alors que l'on a effectivement r = r;+r, — 1,
ce nombre r s'appelle le NOMBRE DE DIRICHLET du corps Q[<].
Toute unité algébrique de Q& s’exprime d'une maniére et d’ une
seule sous la forme o = gy €{t. .. &7, ot & est une racine de l'unité
du corps et ¢, ..., &, des unités algébriques non racines de l'unité,
Py «ooy Np€ X5 r=r1+ry, — 1 ot ry est le nombre de racines
néelles de P(x) = 0 et 2r, le nombre de racines non réelles.

ExemprLE: Revenons a l'équation de Pell-Fermat (1). En

posant o« = z+y \/E, on voit que « est racine de ’équation en ¢
suivante (t—z)?—dy? =0, a« est donc un entier algébrique.
L’équation (1) s’écrit ad = N(a) = 1. La résolution de (1)
revient ainsi a la recherche des unités o du corps &[\/ d] telles
que N(a) = +1. Ces unités forment manifestement un sous-
groupe du groupe de toutes les unités du corps. Le nombre de
-Dirichlet r = r;+r, = 1 de ce corps est O0sid < Oet 1sid > O.
Pour d < 0, 1l n’y a donc qu’un nombre fini de solutions qui
sont toutes racines de I'unité. Pour d > 0 il existe une unité
particuliere ¢ = z;4y, Jd telle que o = =+ (z;+ y, N d,_)", en
effet ici Q[\/d] est réel, donc ¢, = -1, n est un entier rationnel
arbitraire. On en déduit toutes les solutions de (1) par les for-
mules '

1 1
r=*(1+8&), y= =+ —=(h—¢).
2\/d 1 1
Par exemple pour d = 2, on a & = 3-+2+/2; il existe des
tables numériques donnant & pour tout entier d < 104

o
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