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ON THE CONSTRUCTION OF RELATED EQUATIONS 233

one, and accordingly admits of an analytic solution for (a(0))0

provided the matrix multiplier of this vector on the left is non-
singular. This condition is assured by the relation (3. 4).

Now we may proceed by induction. Assuming that the
vectors (a(0))j for j 1, 2, (v —1), have been determined
and are analytic, the right-hand member of the equation (7. 7)
is known. As in the case v 0, so now, the equation is

analytically solvable. The solutions for the successive values v 0,

1, 2, (r — 1), yield the coefficients (6. 7) for which the functions
rjt (2, A), as given by the formulas (6. 8), fulfill the relations (6. 5).

8. On linear independence.

With the functions aj0) (z, X) now at hand, we have at our
disposal the n known functions (2, X), / 1, 2, g, which are
the solutions of the differential equation (6. 3), and rji (z, A),

i 1, 2, p, which are given by the formulas (6. 8). We shall
show that these functions are linearly independent.

Let the Wronskians of the entire set and of the respective
sub-sets be denoted respectively by Wn, Wq (y) and Wp(rj). If
the usual form
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is modified by adding to each of the last p rows suitable multiples
of the preceding ones, the formula can be made to appear thus
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In this, however, each of the elements occupying a position in
one of the first q columns and in one of the last p rows is zero.
The formula therefore reduces at once to

with

T

Wn Wq(y)T,

*(h)
- Dm*{r\p)

- - Dp~1m^(f]p)

(8.3)

(8.4)

Now m*(r}j) is given by the formula (6. 15). If this is

repeatedly differentiated, and at each step the element DpVj is
eliminated by use of the equation (6. 1), the results are the
formulas

D'm*^) .WDivJ + X*+t-rYiX1-"(T%rD''-1Vj, i= 0,1,2,....
{JL — 0

(8.5)

We may write this also, with the use of the symböl ôitj to denote
1 when / i and 0 when / ^ i, in the form

D'1 m* (r]j) X£ \ôt>ll +
/•=!

Î-• (8. 6)
XrJ A"-1 v

This shows, now, at once, that the determinant T can be

factored, thus
T XpqEWp(v) (8.7)

in which E is the determinant whose element in the ith row and
jth column is indicated thus

E ài, j +
JJ, r (8.8)

It is clear that E differs from 1 by terms of at least the degree r
in l/L Since Wp (p) and Wq(y) are non-vanishing, it follows
from (8. 3) and (8. 7) that the same is true of Wn.
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9. The related equation.

We are prepared now to make the construction toward
which this entire discussion has been directed.

Consider the equation

L*0) 0 (9. 1)

with

L*(u) —

m*(rj i)
Dm*{r\j)

j)P

- - m*(rjp) m*(u)
- - Dm*(rjp) Dm*(u)

Dp 1m*(r\p)

l*(m*(rjp))
Dp 1m*(u)

' (9.2)

T being the determinant given in (8. 4). This is clearly a
differential equation of the nth order in u, for which each one
of the functions yj(z,X) and r\i{z1 X) is a solution. For if yj{

is substituted for u two of the columns of the determinant (9. 2)

are the same, and if u is replaced yj every element of the last
column vanishes. Because the n solutions thus produced are
linearly independent the solutions of the equation (9. 1) are
completely known.

The co-factor of the element l*(m(u)) in the formula (9. 2) is
the determinant T. The expansion of the formula thus gives
it the aspect

L*(u) /*(ra*(w))-
p ty —dp~

v i T
(9.3)

where Tv is the determinant that is obtainable from the formula
(8. 4) by replacing its elements Dp~v m* (rjj) by Z*(?n* (rjjj).

From the formula (8. 5) it is seen that

l*(m* (tjj)) A" £ (9.4)

with

Tv (z, A) L h (Z, X) (z, A) (9. 5)
/c=0
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The replacements which change T to Tv are thus seen to be ones
which replace

+by

It follows that
7; Oy(z,X)

T r *

with some function 0v(z,X) which is bounded over the 2 and
A domains. This gives to the relation (9. 3) the form

1 p

L* (u) Z* (m* (u)) - - £ Xy 0VDP~V m* (u) (9. 7)
Ar v=i

With the substitution of the expression for Dp~v m* (w), as it may
be obtained from (4. 3) by writing yt-s in the place of yt-s, it is
found that

1 n

L* (u) Z* (m* (w)) J] XJ coj z, X) Dn j u (9. 8)
Xr j=1

with

Z Z X-s(
v=l s 0 \ ^ /

A comparison of this with the earlier result (6. 6) shows that

L* (u) L(u) - Yrl X { (z> V + (z> V } Dn~J u • (9- 9)
A j=1

The equation (9. 1), whose solutions are completely known, thus
has coefficients which differ from those of the given equation
(2. 1) only by terms that are of at least the rth degree in I/A.
It is, therefore, by definition, a related equation.
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