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ON THE CONSTRUCTION OF RELATED EQUATIONS 231

with each ¢{°)(z) analytic, and ¢{’)(z, A) bounded. We shall

show that the elements «{°) (z) in (6. 7) may be so specified as
to yield

0, _ f1when(j,v) = (1,0, v=0,1,2,..,(0-1)-
(2) = 0 when (j,v) # (1,0). (6, 14)

The effect of this will be to give the formula (6. 11) the form

p

1 . .
m*(n;) = A {v,-(z, )+ = 3 A6 (2, A)Dl‘lvi}. (6. 15)
j=1 ‘
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The dependence of the functions (6. 12) upon the unspecified
ones &) (z) of (6.7) is advantageously set forth in terms of
vector-matrix notation. To this end, let a column vector with
the components ¢;, ¢t = 1, 2, ..., p, be denoted by (¢) and let
the vector whose components are the terms in 1/’ of (¢),
namely with the components ¢; , t = 1, 2, ..., p, be denoted

by (¢),. Also let H designate the square matrix

2D 0 0 - - B,
1 27D 0 - - B,
.—.1 _ N ._"“
a=| " VAP (7. 1)
0 0 - - - BtitD

the elements of which are in part functions of z and A, and 1n
part the indicated differential operator. Again let H, designate
the matrix that is obtainable from (7. 1) by replacing its elements
by their terms in 1/1". The relations (6. 10) are then seen at
once to take the form |

(oc(k)) — H(oc(""“) .
With iteration defined in the manner

H™ (¢) = H(H" '1(p)), H'" = H , (7.2)
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and-with HL°! s1gn1fy1ng the unit matrlx 1t is then easﬂy seen that

(oc(k)) = H*I (oc(o)) ' (7. 3)
The relation (6. 12) may thus be written in the form
| (0@) = J (a9, (7.9

with J standing for the matrix

q

=Y § HEa ¥ | (7. 5)

The evaluations

(0(0))v = Z Jj (cx(O)) v—j >

qa J
ZZ)—, HM~ k]

J i

evidently combine to yield the formula

©O), = ¥ T i HEE), . 0.6
k=0 j=0 i=0 | |
In connection with this, certain observations are apropos.
To begin with, the index value j = 0 implies ¢ = 0, whereas
by (6. 5) and (4. 1), ¥, 0 = ¢ (z). Further when ¢ = j the matrix
H'5*¥ reduces to precisely K4 *(z), with K (z) as given in (3. 3).
On the basis of these facts the equation (7. 6) may be arranged
imnto the form

q

Y ¢ (2) K75 (2) (@), = (6'9), - Z Z

k-0 k=0 j=1 i

- -k
T, [q ](cx(O))v i

M\

0

II

(7.7)

This is a vector equation for (¢'®’),, which we shall consider for
successive values of v, assuming that the values (6. 14) have
been assigned.

When v = 0, the tmple sum on the right of the equality in
(7. 7) vanishes, and the right-hand member is, therefore, the
vector (6(?’), whose first component is 1 and whose other com-
ponents are 0. The equation is therefore a non-homogeneous




ON THE CONSTRUCTION OF RELATED EQUATIONS 233

one, and accordingly admits of an analytic solution for (a‘®),
provided the matrix multiplier of this vector on the left 1s non-
singular. This condition is assured by the relation (3. 4).
Now we may proceed by induction. Assuming that the
vectors (a(®); for j =1, 2, ..., (v—1), have been determined
and are analytic, the right-hand member of the equation (7. 7)
is known. As in the case v = 0, so now, the equation is analy-
tically solvable. The solutions for the successive values v = 0,
1,2, ..., (r—1), yield the coefficients (6. 7) for which the functions
1; (3, 1), as given by the formulas (6. 8), fulfill the relations (6. 5).

8. ON LINEAR INDEPENDENCE.

With the functions a{® (z, 4) now at hand, we have at our
disposal the n known functions y; (3, 1), j = 1, 2, ..., ¢, which are
the solutions of the differential equation (6. 3), and #; (3, 4),
1 =1, 2, ..., p, which are given by the formulas (6. 8). We shall
show that these functions are linearly independent.

Let the Wronskians of the entire set and of the respective
sub-sets be denoted respectively by W,, W,(y) and W, (n). If
the usual form

Y1 __—‘yq M - = = Hp

Dy, - - - Dy, Dny - - - Dn,
Wy=| - - - - = - - - - = (8. 1)

Dn—lyl_ _ _Dn~1qun—1n1__ . _Dn—-lrlp

1s modified by adding to each of the last p rows suitable multiples -
of the preceding ones, the formula can be made to appear thus

Y1 - - - - Yq "1 - T~ Np
Dyl - T qu Dr’l - = Dr’p
D"ly, - - = = DUly, DUy - - - DTy,
m*y) - — - —  m*y,) m*(ny) — - —  m*(n,)
Dy) -~ -~ - - - -
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