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I(m®) = Y, 2 ¥,(z, ) D"y, (4. 4)
i=0
with |

Y.(z,1) =

Z, (p S—J> ﬁjDs'}’i—j—s . (4.5

The functions ¥ '(z A), inasmuch as they are combinations of
those given in (4. 1), are polynom1als in 1/2. We may therefore
write them in the form

IIM@:

— o Vi, u(2) ¥y, (2, )
gji (Za ;L) - #;0 ).” - _ﬂ,r .

(4. 6)
A comparison of the terms in like powers of 1/1 in the rela-
tions (4. 5) and (4. 6) yields formulas for the functions ¥; , (z).
Those for which u = 0 are particularly easy to obtain. On
setting s = 0in (4. 5), and replacing f; and v;_; by their leading

terms b; and c¢;_;, we find that

lpi,o(z) = Z bj (2) Ci—j(Z) .
j=0

Recourse to the relation (2. 8) thus shows that
'J/i,O(z) =pi,0(z)9 S 1: 29 ..oy R (4' 7)

At least to the extent of the leading terms of their coefficients,
the forms (2. 2) and (4. 4) are, therefore, the same.

5. A DETERMINATION OF UNSPECIFIED COEFFICIENTS.

We propose now to deduce a formula for the general coeffi-
cient ¥; ,(2) in (4. 6) by selecting the multiplier of the appro-
priate power of 1/A4 from the formula (4.5). To begin with,
it follows from the relations (4. 1) that

2r—2 p

ﬂDS’Yle—Z Z)' ﬁ]szlesukv

p=0 k=0
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By virtue of this, the relation (4. 5) may be more precisely
written as

: p p—Jj2r=-2 p p—j
wi(za/l‘) Z Z Z Z )*—S ﬂ( )B_] szyl j—s,u—k *
. j=0 s=0 u=0 k=0

By the use of u+s as a variable of summation in place of p,
this is, however, seen to take the form (4. 6) with

t,u(z) Z Z Z (p—]>ﬁj,szyi—j—s,u—s;k' (5 1)
j=0 s=0 k=0 S

An inspection of this result reveals an important fact,
namely, that the functions y; ,(z), with any specific u, do not
depend at all upon any of the elements §; ;(z), v;,: (2) for which
t > u. Moreover these elements with i = u are involved in
them precisely to the respective extent

p

;{ﬁ;,u% Js 0+l81 0 Vi—j, u}

J_

namely, on dropping the terms to which the value zero must be
assigned, reversing one of the summations, and recalling that
Bj,o = b; and v; o = c;, to the extent

YoAbiiviuteiiBiu}

j=0

The formulas (5. 1) therefore have the form

Vi, w(2) = Z}{b, Vi utCizi By, u}+(Pl (25 (5.2)
J

with ¢; ,(z) denoting a function which is contructed of the ele-
ments f;; and y; ; in which i < p. |

We recall now that the elements B; ;(z), Yi,i(z) with ¢ > 1
were left unspecified, except that they be analytic, and inquire
whether they may be so specified as to make the formulas (5. 2)
yield assigned functions. The particular assignment envisaged is

Viu(@ =p,(2), i=1,2, .,n; u=1,2,..,0r—1). (53)
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This: question is, in other terms, whether the equations

i =1,2,...,n;

Z{bi,"})', tei-iBiu}t = pi,u(2)—0;,(2),
R itim JPin ,u' y p=1,2, ... (r—1),

(5.4)

can be fulfilled by choice of the functions ;(z, 1), y; (3, 4) of (4. 1).

Consider first the case in which g = 1. In this case the
right-hand members of the equations are known, since the func-
tions ¢; ; (z) are made up of the known elements ;(z), ¢;(2).
The equations therefore comprise a linear non-homogeneous
© systems in the “ unknowns ” vy i ... V.1, P1,1, --- Bp,1, and the
determinant of this system is seen to be A4(z), the determinant
(3. 2), written with rows and columns interchanged. Since this
1s nowhere zero in the z-region, by (3. 1), the system is analytically
solvable, and by the solution the equations (5. 3) for u = 1 are
assured.

We proceed now by induction. Assuming that the elements
Bi.i» Yj,: have been determined for 1 =1, 2, ..., (n—1), we
consider the system (5.4). The right-hand members of the
equations are known, and the determinant of the system is 4 (z).
The system is, therefore, analytically solvable for v; ,, ... v, .,
Bi,us - Bp,u, for successive values of u. By these solutions the
equations (5. 3) are fulfilled, and now, from a comparison of the
formula (2. 2) with (4. 4), and of (2.3) with (4.6) and (5. 3),
we see that |

12 .. . |
L@ = 1m@)+ 5 ¥ # {8105 A =¥ (5 HID . (5.9)

r .
j=

The differential operators (4. 2), and therewith the differential
equations |
I (v) =0, (5.6)

m(y) =0,

are now completely speciﬁc.




	5. A DETERMINATION OF UNSPECIFIED COEFFICIENTS.

