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TRANSFORMATIONS DES VARIÉTÉS A CONNEXION
LINÉAIRE

ET DES VARIÉTÉS RIEMANNIENNES1

par André Lichnerowicz

1. Dans cette conférence dexposition, je me propose d'indiquer les

principaux résultats obtenus dans une période récente et concernant

les transformations affines dune variété à connexion

linéaire, ou plus particulièrement dune variété riemannienne.

La variété sera parfois supposée complète pour la connexion:
nous entendons par là que tout arc géodésique peut être prolongé
à des valeurs arbitrairement grandes (en module) du paramètre
affine. Dans le cas d'une variété riemannienne, cette condition
équivaut à la suivante: l'espace métrique défini sur la variété par
la métrique riemannienne est complet (théorème de Hopf-Rinow).
En particulier toute variété riemannienne compacte est complète.

Les transformations affines envisagées présentent avec l'holo-
nomie de la variété des relations que nous analyserons. Rappelons
que le groupe d'holonomie de la connexion en un point x est
le groupe d'automorphismes de l'espace vectoriel tangent défini
par le transport (parallèle) le long de tous les lacets en x. Aux
lacets homotopes à zéro correspond le plus grand sous-groupe
connexe de Wx — ou groupe d'holonomie connexe. Ce groupe
de Lie est, dans le cas d'une variété riemannienne, un groupe
compact. L'étude du cas important des espaces homogènes à
connexion linéaire invariante s'introduira d'elle-même.

Dans une première partie, nous étudions une notion
intéressante élaborée par Kostant dans le cas des variétés rieman-
niennes et qui s'étend sans grandes difficultés au cas des variétés
à connexion linéaire: le groupe de Kostant. Une seconde partie
est relative aux transformations affines et isométries d'une
variété riemannienne complète. Enfin une troisième partie est

i) Conférence prononcée au Colloque sur la géométrie différentielle et la topologie,
Zürich, juin 1960.



2 A. LICHNEROWICZ

consacrée à l'étude géométrique d'espaces homogènes
particulièrement importants. Les différents résultats présentés sont
dus principalement à Kobayashi, Kostant, Nomizu, Wang, Yano
et à l'auteur de cette conférence.

2. Transformations infinitésimales affines.

a) Soit Vm une variété différentiable 1) de dimension m1

munie Tune connexion linéaire. Cette connexion est définie par
sa forme co, 1-forme sur l'espace fibré principal E{Vm) des

repères de Vm et à valeurs dans l'algèbre de Lie du groupe
linéaire. A la 2-forme de torsion 2 de type vectoriel de la
connexion correspond canoniquement une 1-forme X (2) de type
adjointe à valeurs dans l'algèbre de Lie du groupe linéaire.
Désignons par m la connexion associée à oo définie par 2) :

et par V et V les opérateurs de différentiation absolue par rapport
aux connexions co et œ. A tout champ de vecteurs A, nous
faisons correspondre le champ de tenseurs Ax de type (1, 1) défini

par la 1-forme de type vectoriel — VA. En chaque point x de

Fm, Ax (x) est un endomorphisme de l'espace vectoriel Tx
tangent en x à Fm. Le champ Ax intervient dans l'expression de

l'opérateur de transformation infinitésimale if (A) en termes de

dérivée covariante. En particulier, si t est un tenseur de type

où i (A) est l'opérateur de produit intérieur par A sur une forme
et où le crochet est entendu au sens du crochet des endomor-

phismes.

b) Un champ de vecteurs A définit une transformation
infinitésimale (t.i.) affine si cette t.i. laisse co invariante, c'est-à-dire si

I. Le groupe de Kostant.

œ œ + X (2)

(1, 1):

(2-1) £Û(X)t i(X)V

(2-2) i?(.X)œ 0

i) Dans cette conférence, tous les éléments introduits sont supposés indéfiniment
difïérentiables.

_2 Pour une connexion sans torsion, œ coïncide avec co.



VARIÉTÉS .4 CONNEXION LINÉAIRE 3

où if (I) a été étendu à E (FJ; (2-2) peut être traduite par:

où Q, est la forme de courbure de la connexion et Y un vecteur
arbitraire. De (2-3) il résulte que deux t.i. affines pour lesquelles
X et Ax ont mêmes valeurs en un point coïncident sur Vm. Ainsi
les t.i. affines définissent par le crochet usuel [X, Y] SC (X) Y,

une algèbre de Lie de dimension finie.

e) Une transformation affine est une transformation p. de Vm

laissant invariante la connexion co. Si p/ est l'application linéaire

tangente définie par p, et t (l) le transport au sens de la connexion
le long d'un chemin l de Vm joignant x à x', on a alors l'égalité:

entre applications linéaires de Tx sur TßX>.

On sait que le groupe A Vm) de toutes les transformations
affines de Vm admet une structure naturelle de groupe de Lie
(Nomizu ou corollaire d'un théorème plus général d'Ehresmann).
Nous désignons par A0 (Vm) le plus grand sous-groupe connexe
de A (Vm). Si Vm est complète pour la connexion co, toute t.i.
affine définit un groupe à un paramètre de transformations
affines globales de Vm.

3. Interprétation de Ax.

Etant donné un champ de vecteurs X, désignons par
x {t) exp (tX) x0 pour t suffisamment petit, la solution de

dxjdt X {x) telle que x (0) x0. Pour 0 < t < u (u suffisamment

petit), x (t) engendre un chemin lu issu de x0.
Pour X définissant une t.i. affine, Ax admet une interprétation

géométrique simple: considérons les automorphismes de Tx
définis, pour u variable, par exp (— uX)f t (lu). Ces automorphismes

appartiennent à un groupe à un paramètre d'auto-
morphismes de TXq et l'on a:

(2-3) i(Y)VAx G(X, Y)

(2-4) jJLr 0 T (/) T (/il) 0 \l'

(3-1) exp Mx(x0)] exp — mX)' t (Jm)
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4. Le groupe de Kostant.

a) Soit X et Y deux t.i. affines. De l'invariance de œ par Y
résulte :

^[r,x] & (Y) Ax

De (2-1) et (2-3) il vient:

Ar,xi ï(Y)VAx+[Ar,Ax]Q(X,

On obtient ainsi la relation simple:

(4-1) Q(X, Y) \_AX, Ay] — ^ix,Y]

b Soit L une algèbre de Lie de t.i. affines de Vm. Pour leL,
les endomorphismes Ax (x) de Tx engendrent une algèbre de Lie
Kx (L) d'endomorphismes qui est l'algèbre de Lie d'un groupe
connexe KX{L) d'automorphismes de Tx; KX(L) sera dit le

groupe de Kostant en x de l'algèbre L1). Il a été un peu généralisé

par Wang.
Soit Y'x l'algèbre cVholonomie infinitésimale: c'est l'algèbre

engendrée, en tant qu'espace vectoriel, par les endomorphismes
de Tx déduits des dérivées covariantes successives du tenseur
de courbure. D'après (2-1), le groupe de Kostant est sous-groupe
du normalisateur connexe iV° Ç¥'x) du groupe d'holonomie
infinitésimale dans le groupe de tous les automorphismes de Tx.

Supposons l'algèbre L transitive: le sous-espace de Tx engendré

par les X (x) (X e L) coïncide avec Tx. Dans ce cas coïncide

avec le groupe d'holonomie connexe T°. De (4-1), il résulte

que les éléments de J'algèbre d'holonomie engendrés par le

tenseur de courbure lui-même sont dans KX(L) et, par récurrence

sur l'ordre des dérivations du tenseur de courbure, on déduit de

(2-1) qu'il en est de même pour tous les éléments de l'algèbre
d'holonomie. Ainsi si L est transitive:

(4-2) c Kx(L)c N°(î?®)
5. Espace homogène à connexion linéaire invariante.

Soit Vm G/H (G effectif) un espace homogène muni d'une
connexion linéaire invariante. Dans ce cas le groupe linéaire d'iso-

i) Ce groupe a été introduit par Kostant [1] dans le cas des variétés riemanniennes
et des algèbres d'isométries infinitésimales.
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tropie H est isomorphe à H. A chaque élément g de G correspond

une transformation affine \ig de Vm. Le groupe G définit sur Vm

une algèbre transitive L de t.i. affines; nous désignons par Kx (G)

le groupe de Kostant correspondant à L:

(5-1) ¥°x<= KX(G)aJV°(f°)
Si X e L, \xg transforme le tenseur Ax (x) en le tenseur Aß>gX (gx).

Par suite, chaque élément g de G établit un isomorphisme de Kx (G)

sur Kgx (G) (isomorphisme qui applique sur En particulier

(5-2) Hx a N [Kx (G)] (H°x cz Kx (G))

où N désigne le normalisateur dans le groupe des automorphismes
de Tx.

On peut obtenir pour Kx (G) un résultat analogue en ce qui
concerne le transport. En considérant, dans chaque classe

d'homotopie de lacets en x, un lacet composé d'un nombre fini
d'arcs de trajectoires de sous-groupes à un paramètre de G et en
évaluant le transport le long de chacun de ces arcs au moyen
de la formule (3-1), on établit d'abord, grâce à (3-1),

(5-3) Wx czN[Kx(G)]

On voit de même que le transport le long d'un chemin l (x, x')
composé d'un nombre fini d'arcs de trajectoires de sous-groupes
à un paramètre de G établit un isomorphisme entre Kx (G) et
Kx> (G). Il résulte de (5-3) que le transport le long d'un chemin
arbitraire reliant x à x' établit un isomorphisme entre (G) et

E*' (G).
^Il existe, comme nous le verrons, des cas nombreux où:

ïC KX(G)

Lorsqu'il en est ainsi, nous dirons que sur l'espace homogène
Fm G\H, la connexion linéaire invariante est à holonomie
normale.
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6. Tenseurs invariants.

Si un tenseur t est invariant par transport, t (x) est invariant
par.le groupe d'holonomie Yx. De la formule (3-1) et de l'étude
précédente, il résulte:

Théorème. — Sur un espace homogène Vm G/H (G effectif) à

connexion linéaire invariante, si un tenseur t satisfait deux des

trois conditions suivantes, il satisfait la troisième.

a) t est invariant par Vaction de G;
b) t est invariant par transport;
c) t (x) est invariant par. le groupe de Kostant (G) en un

point x de Vm.

Au champ t on peut substituer un champ Q de sous-espaces
vectoriels. Si la connexion est à holonomie normale, b entraîne c,

donc a: Tout tenseur invariant par transport est invariant par G.

II. Transformations affines et isométries
d'une variété riemannienne. '

7. Transformations affines et réductibilité.

Soit Vm une variété riemannienne de tenseur métrique g,

que nous considérons toujours comme munie de sa connexion
riemannienne. Toute isométrie ou similitude (p* g c2 g\
c const.) est une transformation affine pour cette connexion.
Inversement, dans l'hypothèse où le groupe (Tholonomie est

irréductible, toute transformation affine reproduit la métrique à un
facteur nécessairement constant près, et par suite est une
similitude. En utilisant cette remarque, nous nous proposons d'étudier

les rapports généraux entre transformations affines et
isométries.

a) La variété Vm est dite réductible si son groupe Tholonomie
connexe est réductible dans le réel. S'il en est ainsi, l'espace
vectoriel Tx peut être décomposé, d'une manière et d'une seule

à l'ordre près, en somme directe de sous-espaces orthogonaux
Tx (a 0, 1, k), invariants par tels que induise
l'identité sur Tx et des représentations irréductibles sur
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Tax (a^0). Cette décomposition est la décomposition canonique

relative à la réductibilité. Il lui correspond une décomposition
de Y° en produit direct nY(6)x (b 1, k), où Y(t)x induit sur
Tax a^b) la représentation triviale (Borel-Lichnerowicz) ; Y°
étant sous-groupe invariant de Yx, le sous-espace T° est aussi

invariant par T,; par transport de T°x on obtient sur Vm le

champ complètement intégrable T° et un feuilletage de Vm en

feuilles localement euclidiennes. Si T°x — 0, nous dirons briève-

ment que Fm est sans partie euclidienne.

b) Soit p une transformation affine de Fm, S l'ensemble des

sous-espaces de Tx invariants par Yx. Si l est un chemin joignant
x à g"1 (x) l'automorphisme de Tx défini par:

Jl O T (Z)

détermine une substitution s (p.) de S ne dépendant que de p.
On obtient ainsi un homomorphisme de A (Fm), dans le groupe
des substitutions de S. Si induit sur un élément Ux e S une

représentation irréductible (resp. l'identité), il en est de même

pour 5 (p) Ux.

c) Supposons Vm simplement connexe. La décomposition
canonique définit alors (k + 1) champs Ta de sous-espaces,
invariants par transport le long d'un chemin arbitraire. Par suite si

p g A (Fm), p laisse invariant T° et permute éventuellement les
Ta (a =£ 0). Si p ei°(FJ, tous les Ta sont invariants. Ainsi:

Théorème. — Sur une variété riemannienne simplement connexe,
chaque champ Ta défini par la décomposition canonique relative
à la réductibilité est invariant par toute transformation affine
de A« (VJ.

8. Etude des variétés riemanniennes complètes.

Sur Fm, la distance d (x, x') définie par le minimum de la
longueur des chemins continûment différentiables par morceaux
joignant x k x' détermine une structure d'espace métrique. Nous

supposons Fm complète, c'est-à-dire complet l'espace métrique
précédent

a) Soit p une similitude qui ne soit pas une isométrie; en
passant au besoin à l'inverse, on peut supposer p* g c2 g avec
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c < 1. Par suite, (x réduit les longueurs et distances dans le

rapport c. Du caractère complet, il résulte que jx admet un point
fixe xQ. Si l est un lacet arbitraire en x0 et si rh est l'élément du

groupe d'holonomie induit par le lacet fxÄ l {h 0, 1, rh tend
vers l'identité quand A-> oo. D'après (2-4), rh [i,h o r0 o \i'~h
et le polynôme caractéristique de rh est indépendant de h et
coïncide avec celui de l'identité. On peut en déduire que le groupe
d'holonomie de Vm est réduit à l'identité.

Theoreme. — Sur une variété riemannienne complète qui n'est

pas localement euclidienne, toute similitude est une isométrie

[Kobayashi].
Si Vm complète est irréductible (m > 2) toute transformation

affine est une isométrie.

b) Supposons Vm complète et simplement connexe. D'après
un théorème classique de Georges de Rham, il existe une
isométrie globale de Vm sur le produit riemannien de (k + 1)

variétés Wa complètes simplement connexes. Pour a 0, W°
est euclidienne et pour a ^ 0, Wa est irréductible (de dimension

>2).
Soit 1° (Vm) le plus grand groupe connexe d'isométries de Vm.

A l'aide du théorème du § 7, on établit que A0 (Vm) (resp. 1° (Fm))

peut être identifié au produit direct IIA0 (Wa) (resp. II 7° (Wa)).
Du résultat précédent on déduit que A0 (Wa) 7° (Wa) pour
a A2 0. Ainsi:

Théorème. — Pour une variété riemannienne complète, simple¬
ment connexe, Vm W° X Vf où W° est euclidienne ßt W sans

partie euclidienne, A0 (Vm) est identique au produit direct
A0 (W°) X 1° (W) agissant naturellement sur Vm.

Les transformations strictement affines de A0 (Vm) proviennent

ainsi des transformations strictement affines de l'espace
euclidien. Par étude du revêtement universel, on voit que pour
toute variété riemannienne complète (sans hypothèse de simple
connexité) sans partie euclidienne A? (Vm) 1° (Vm). Une étude
directe montre qu'on a la même conclusion pour toute variété
riemannienne compacte (avec ou sans partie euclidienne) [Ken-
karo Yano].
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9. Holonomie et isométries infinitésimales sur une variété

riemannienne.

a) Pour une variété riemannienne, les endomorphismes de

l'espace vectoriel euclidien Tx peuvent être identifiés à des

2-formes. Ainsi l'algèbre d'holonomie Yx en x définit un sous-

espace (désigné par la même notation) de l'espace vectoriel des

2-formes en x. Soit Bx l'orthocomplément de ce sous-espace par
rapport au produit scalaire, noté défini sur les 2-formes

par la métrique. Si Y est un champ de vecteurs sur un voisinage U

de la variété Fm, oc une 2-forme sur U telle que a (x) e Yx pour
x e t/, on sait que :

De même si ß est une 2-forme sur U telle que ß (x) e Bx pour
X E U

Cela posé si X est une isométrie infinitésimale, Ax (x) définit une
2-forme en x. Avec un abus de notation, nous pouvons poser

(9-3) Ax a + ß (avec a (x) e Tx ß (x) e Bx).

D'après (2-3), (i (F) VAX) (x) eYx. De (9-1) et (9-2) il résulte
V ß 0 et ß (x) est dans l'algèbre de Lie du centralisateur
connexe de Y° dans le groupe des rotations de Tx.

Si Vm est à Y° irréductible et admet une 2-forme à dérivée
covariante nulle, elle est kählerienne (m — 2n). Dans ce cas, si

la courbure de Ricci de la variété est non nulle, le centralisateur
connexe de Y° est contenu dans Y° et l'on voit que Ax (x) e Yx.
On déduit de ces remarques.

Théorème. — Un espace homogène riemannien Vm G/H est
certainement à fiolonomie normale (Y° Kx (G)) sous Vune des

hypothèses suivantes :

a) Si Vm n'admet pas de 2-formes à dérivée covariante nulle,
en particulier si Vm irréductible n'est pas kählerien;

b) Si Vm est kählerien, à Y!J irréductible est à courbure de Ricci
non nulle ;

(9-1) (z(F)V a)(v)GYx

(9-2) (i(Y)Vß){x)eBx
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c) Si Vm admet une courbure de Ricci non dégénérée.

c se déduit de a et b à l'aide du théorème de réductibilité de

G. de Rham.

b) De ce même théorème et du § 8, on déduit que si Vm est

une variété riemannienne complète, /° (Vm) son plus grand groupe
connexe d'isométries (non nécessairement transitif), le groupe
K (1° (Vm)) est produit direct de groupes orthogonaux connexes
irréductibles et d'un groupe certainement compact correspondant

à la partie euclidienne.

Théorème. — Pour toute variété riemannienne complète, Kx
(1° (VJ) est compact.

c) Supposons Vm compacte. On sait que 1° (Vm) est alors

compact (Elie Cartan). Si X est une isométrie infinitésimale,
considérons la décomposition (9-3) et la 1-forme

n i(x)ß

De (9-3) on déduit:

ôt] (x) (Ax (x), ß (x)) (ß (x), ß (x)) ^ 0

où S est l'opérateur de codifîérentiation. Si Vm est compacte
orientable, on en déduit par intégration ß 0 et, par passage
à un revêtement, il en est de même si Vm est seulement
compacte. Ainsi Kx (/° (Fm)) c T®.

Soit JXq le sous-groupe d'isotropic d'un point x0, c;est-à-dire
le sous-groupe de 1° (Vm) laissant x0 fixe, h un élément de JXq.

Le groupe 1° Vm) étant compact, il existe un sous-groupe à

un paramètre exp (tX) tel que h — exp (uX)\ x (t) exp (tX)
(0 < t < u) engendre un lacet l en x0. Si r est l'élément de

correspondant à i, on a d'après (3-1)

exp (uX)r r • exp [ — uAx (x0)]

Ainsi, si JXQ est le groupe linéaire d'isotropie,' JXq c Y*o. Nous
énoncerons:
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Théorème. — Si Vm est une variété riemannienne compacte,

1° (Vm) son plus grand groupe connexe d'isométries (non
nécessairement transitif), J* le sous-groupe d'isotropie en x,.on a

(9-4) Kx(I°(Vm))czT0x

et

(9-5) Jx c= Wx

En particulier pour tout espace homogène riemannien

compact, Vholonomie est normale.

III. Espaces homogènes réductifs.
Cas riemannien.

10. Notion d'espace homogène réductif (Nomizu].

Sur un espace homogène Vm GfH une structure réductive

(ou d'espace homogène réductif) est définie par la donnée d'une

décomposition en somme directe de l'algèbre de Lie G de G

(10-1) G H + M (H n M 0)

telle que le sous-espace M vérifie

(10-2) adj {H) M a M,

adj (H) est ici la restriction à fi" de la représentation adjointe
de G. Tout élément X de G s'écrit d'une manière et d'une seule
X XH + (^h E e ilf). Par la projection naturelle p
de G sur Vm on peut identifier M avec l'espace vectoriel Tx0

tangent en x0 — pe à Vm et adj (H) avec le groupe linéaire d'iso-

tropie H. Les cas où H est compact ou connexe réductif dans G

fournissent des exemples de structure réductive.
D'après (10-2), M définit sur l'espace fibré principal G de

hase Vm une connexion infinitésimale invariante par G. Si
P (Vm) est l'espace de repères défini par les repères de Vm

déduits de l'un d'entre eux par l'action de G, le fibré P (Fm) est
isomorphe au fibré G. De la connexion invariante obtenue sur
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P Em), on déduit une connexion linéaire invariante pour
Vm — G/H. Cette connexion où est dite la connexion canonique
de la structure.

A tout élément X de G correspond un sous-groupe à un
paramètre noté exp [sX (X)] où X (X) est la t.i. correspondante.
Si X g M, le transport le long de x (5) exp [sX (X)] xQ relativement

à (ù coïncide avec l'action correspondante de exp [sX (X)];
x (s) est ainsi une géodésique de où rapportée à un paramètre
affine. L'espace homogène réductif Vm — G/H est complet pour
sa connexion canonique.

Sans entrer dans le détail de la théorie, je me bornerai à

indiquer des résultats liés à la considération du groupe de Kos-
tant. On voit sur (3-1) que pour X g M

A-X(À) Oo) 0 •

Le groupe de Kostant relatif à où ne provient que des éléments

de H et si H° est le groupe linéaire connexe d'isotropie en x0:

(10-3) KXQ (G) J?o

Ainsi, d'après le § 6, tout tenseur invariant par G est invariant par
transport relativement à où. En particulier les tenseurs de courbure

et de torsion de la connexion canonique sont à dérivée
covariante nulle. Les espaces homogènes réductifs constituent
une généralisation naturelle des espaces homogènes symétriques
d'Elie Cartan.

11. Connexion de Cartan d'un espace réductif.

A partir de la connexion canonique, les connexions linéaires
invariantes de l'espace correspondent biunivoquement aux
tenseurs invariants de type (1, 2). Il existe une connexion invariante
et une seule sans torsion telle que les géodésiques issues de x0
et rapportées à un paramètre affine coïncident avec celles de la
connexion canonique. J'appelle cette connexion la connexion de

Cartan de l'espace; celui-ci est toujours complet pour sa connexion
de Cartan.

Si X g G, l'endomorphisme AX(À) (x0) relatif à la connexion de

Cartan est tel que :
'

'
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11-1) AX(X)(x0)'PR= -p(^lAM,fi]M + M) •

Considérons les endomorphismes B; de M définis par:

(11-2) Bxix - (A e G, /i E M)

Le groupe de Kostant KXq (G) relatif à la eonnexion de Cartan

peut être identifié par p avec le groupe connexe K (G) d'automor-

phismes de M admettant pour algèbre de Lie Valgèbre d*endomorphismes

engendrée par les BÀ.

12. Espace homogène riemannien naturellement réductif.

Soit Vm GjH (G effectif) un espace homogène muni

1° d'une métrique riemannienne invariante ds2;

2° d'une structure réductive G H + M

telles que la connexion riemannienne de la métrique coïncide

avec la connexion de Cartan de la structure réductive. Pour qu'il
en soit ainsi, il faut et il suffit que le tenseur métrique soit invariant

par transport relativement à la connexion de Cartan, c'est-
à-dire que la forme quadratique correspondante sur M soit
invariante par le groupe K (G). Nous dirons que GjH est muni
d'une structure d'espace homogène riemannien naturellement

réductif. Si H est compact ou connexe, pour qu'à une structure
réductive corresponde une structure d'espace homogène riemannien

naturellement réductif, il suffit que K (G) soit compact.
Soit l± un lacet en x0 pe. La variété riemannienne Vm étant

complète, il existe sur son revêtement universel une géodésique
joignant deux points arbitraires. Par suite, par projection, il
existe sur Vm un lacet l2 en x0, homotope à l± et qui est un arc
géodésique de la connexion de Cartan de la structure réductive;
un tel arc peut être défini par

x (t) exp \tX (2)] x0 (A e M)

avec 0 < t < u et pour t m, exp \uX (X)] e H.

Soit oo une connexion linéaire invariante arbitraire et étudions
son holonomie. Si rx (resp r2) est l'élément de son groupe d'holo-
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nomie WXq obtenu par transport le long de (resp. Z2), on a:

rier2V°Xo.
Mais d'après (3-1)

r2exp (iixy exp [uAxw(x0)] e

où KX() G)est le groupe de Kostant relatif à co. Comme Y°0 ci Kx
(G), on voit que pour toute connexion invariante sur un tel espace

(12-1) WXqczH'KXq(G)

13. Cas où G est compact.

Soit Vm GjH un espace homogène où G effectif est
compact. Un tel espace admet certainement une structure d'espace
homogène riemannien naturellement réductif. En effet, soit M
l'orthocomplément de H dans G par rapport au produit scalaire
défini par une forme quadratique définie positive de G

invariante par G. D'après l'invariance de ce produit scalaire

[A, fi] • v + u • [A, v] 0 (A, fi, v e. G)

En particulier si (x, v g M

[U fi]M - v + fi • [A, v]M 0 (À e G; fi, v e M)

et le produit scalaire p v de M est invariant par le groupe K (G)

correspondant à la structure réductive G — H-\- M.
Considérons sur l'espace Vm G/H à G compacte une

métrique riemannienne invariante arbitraire. L'holonomie est
normale: pour la connexion riemannienne correspondante

(13-1) K0 KXo(G)

D'autre part, d'après (9-5):

HerXq

De (12-1) on déduit que pour toute métrique invariante

YX0 H KXo (G), soit:

(13-2) ¥Xo=H-¥°Xo-
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