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TRANSFORMATIONS DES VARIETES A CONNEXION
LINEAIRE
ET DES VARIETES RIEMANNIENNES!

par André LICHNEROWICZ

1. Dans cette conférence d’exposition, je me propose d’indiquer les
principaux résultats obtenus dans une période récente et concer-
nant les transformations affines d’une variété a connexion
linéaire, ou plus particuliérement d'une variété riemannienne.

La variété sera parfois supposée compléte pour la connexion:
nous entendons par 1a que tout arc géodésique peut étre prolongé
& des valeurs arbitrairement grandes (en module) du parametre
affine. Dans le cas d’une variété riemannienne, cette condition
équivaut a la suivante: 'espace métrique défini sur la variété par
la métrique riemannienne est complet (théoréme de Hopf-Rinow).
En particulier toute variété riemannienne compacte est compleéte.

Les transformations affines envisagées présentent avec I’holo-
nomie de la variété des relations que nous analyserons. Rappelons
que le groupe d’holonomie ¥, de la connexion en un point x est
le groupe d’automorphismes de I’espace vectoriel tangent défini
par le transport (parallele) le long de tous les lacets en x. Aux
lacets homotopes & zéro correspond le plus grand sous-groupe
connexe ¥ de ¥, — ou groupe d’holonomie connexe. Ce groupe
de Lie est, dans le cas d’une variété riemannienne, un groupe
compact. L’étude du cas important des espaces homogénes a
connexion linéaire invariante s’introduira d’elle-méme.

Dans une premiére partie, nous étudions une notion inté-
ressante élaborée par Kostant dans le cas des variétés rieman-
niennes et qui s’étend sans grandes difficultés au cas des variétés
a connexion linéaire: le groupe de Kostant. Une seconde partie
est relative aux transformations affines et isométries d’une
variété riemannienne compléte. Enfin une troisiéme partie est

1) Conférence prononcée au Colloque sur la géométrie différentielle et la topologie,
Zurich, juin 1960. .

et
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2 A. LICHNEROWICZ

consacrée & l'étude géométrique d’espaces homogénes parti-
culitrement importants. Les différents résultats présentés sont
dus principalement & Kobayashi, Kostant, Nomizu, Wang, Yano
et & l'auteur de cette conférence.

I. L GrRouPE DE KOSTANT.

2. Transformations infinitésimales affines.

a) Soit V, une variété différentiable!) de dimension m,
munie d’'une connexion linéaire. Cette connexion est définie par
sa forme w, 1-forme sur I’espace fibré principal E (V,,) des
repéres de V, et & valeurs dans I’algebre de Lie du groupe
linéaire. A la 2-forme de torsion X de type vectoriel de la con-
nexion correspond canoniquement une 1-forme A (2) de type
adjointe & valeurs dans I’algébre de Lie du groupe linéaire.
Désignons par @ la connexion associée & « définie par 2):

&=0w+A(Z)

et par Vet V les opérateurs de différentiation absolue par rapport
- aux connexions » et @. A tout champ de vecteurs X, nous fai-
sons correspondre le champ de tenseurs 4y de type (1, 1) défini

par la 1-forme de type vectoriel — V X. En chaque point z de
Vo Ax (x) est un endomorphisme de I'espace vectoriel T, tan-
gent en z & V,. Le champ Ay intervient dans ’expression de
Popérateur de transformation infinitésimale & (X) en termes de
dérivée covariante. En particulier, si ¢ est un tenseur de type
(1, 1): |
(2-1) FX)t=i(X)Vi+[4x, t] .

ot 7 (X) est Popérateur de produit intérieur par X sur une forme
et ou le crochet est entendu au sens du crochet des endomor-
phismes.

b) Un champ de vecteurs X définit une transformation infi-
nitésimale (t.1.) affine si cette t.1. laisse w Invariante, ¢’est-a-dire si

22 LX) o= 0

1) Dans cette conférence, tous les éléments introduits sont supposés indéfiniment

différentiables. .
2 Pour une connexion sans torsion, « coincide avec w.
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ol & (X) a été étendu & E (V,,); (2-2) peut étre traduite par:
(2-3) i(Y)VAx =Q(X,Y)

ou Q est la forme de courbure de la connexion et Y un vecteur
arbitraire. De (2-3) il résulte que deux t.i. affines pour lesquelles
X et Ay ont mémes valeurs en un point coincident sur V. Ainsi
les t.i. affines définissent par le crochet usuel [ X, Y] = £ (X)Y,
une algébre de Lie de dimension finte.

¢) Une transformation affine est une transformation u de V,,
laissant invariante la connexion w. Si p’ est Papplication linéaire
tangente définie par p. et 7 () le transport au sens de la connexion
le long d’un chemin [ de V,, joignant x & 2’, on a alors I'égalité:

(2-4) prot(l) = (u)op

entre applications linéaires de 7', sur T',,.

On sait que le groupe A4 (V,) de toutes les transformations
affines de V,, admet une structure naturelle de groupe de Lte
(Nomizu ou corollaire d’un théoréme plus général d’Ehresmann).
Nous désignons par A% (V,) le plus grand sous-groupe connexe
de A (V,). St V,, est compléte pour la connexion w, toute t.i.
affine définit un groupe a un parameétre de transformations
affines globales de V,,. |

3. Interprétation de Ay.

Etant donné un champ de vecteurs X, désignons par
z (1) = exp (tX) z, pour ¢ suffisamment petit, la solution de
dz/dit = X (x) telle que z (0) = =z,. Pour 0 <t < u (u suffisam-
ment petit), z () engendre un chemin [, issu de z,.

Pour X définissant une t.i. affine, Ay admet une interprétation
géométrique simple: considérons les automorphismes de T,
définis, pour u variable, par exp (— uX) =t (I,). Ces automor-
phismes appartiennent & un groupe & un paramétre d’auto-
morphismes de 7', et I'on a:

(3-1) exp [u Ay (xo)] = exp (—uX)' z(l,).
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4. Le groupe de Kostant.

a) Soit X et Y deux t.i. affines. De 'invariance de @ par Y
résulte:

Ay, x; = L (Y) Ax
De (2-1) et (2-3) il vient:
Apy,xy = 1(Y)V Ay + [Ay, Ax] = QX Y) + [Ay, A4] -
On obtient ainsi la relation simple:
(4-1) QX,Y) = [4x, Ay] — Aix,vy s

b) Soit L une algebre de Lie de t.i. affines de V,,. Pour X € L,
les endomorphismes Ay (z) de T, engendrent une algebre de Lie
K, (L) d’endomorphismes qui est I'algebre de Lie d’un groupe
connexe K, (L) d’automorphismes de 7.; K, (L) sera dit le
groupe de Kostant en z de 'algébre L1). Il a ét6 un peu généralisé
par Wang.

Soit W, l'algébre d’holonomie infinitésimale: ¢’est 1'algébre
engendrée, en tant qu’espace vectoriel, par les endomorphismes
de T, déduits des dérivées covariantes successives du tenseur
de courbure. D’aprés (2-1), le groupe de Kostant est sous-groupe

~du normalisateur connexe N°(¥,) du groupe d’holonomie

infinitésimale dans le groupe de tous les automorphismes de 7,.

Supposons 'algébre L transitive: le sous-espace de 7', engen-
dré par les X (z) (X e L) coincide avec T,. Dans ce cas ¥ coin-
cide avec le groupe d’holonomie connexe ¥y. De (4-1), il résulte
que les éléments de I’algébre d’holonomie engendrés par le ten-
seur de courbure lui-méme sont dans K, (L) et, par récurrence
sur 'ordre des dérivations du tenseur de courbure, on déduit de

(2-1) qu’il en est de méme pour tous les éléments de I’algebre

d’holonomie. Ainst st i est transitive:
(4-2) - Yo = K (L) = N°(¥Y).

5. Espace homogéne d connexion linéaire invariante.

Soit V,, = G/H (G effectif) un espace homogéne muni d’une

connexion linéaire invariante. Dans ce cas le groupe linéaire d’iso-

1) Ce groupe a été introduit par Kostant [1] dans le cas des variétés riemanniennes

et des algébres d’isométries infinitésimales.
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tropie H est isomorphe & H. A chaque élément g de G correspond
une transformation affine p, de V,,. Le groupe G définit sur V,
une algebre transitive L de t.1. affines; nous désignons par K, (G)
le groupe de Kostant correspondant a L:

(5-1) 0 <« K. (G) =« N°(¥P)) .

Si X e L, y, transforme le tenseur Ay (z) en le tenseur A4,y (gz).
Par suite, chaque élément g de G établit un tsomorphisme de K, (G)
sur K,, (G) (isomorphisme qui applique P9 sur 1I”gx). En parti-
culier

~

(52)  H, < N[K.(O)] | (HC < K, (G))

ou IV désigne le normalisateur dans le groupe des automorphismes
de 7,. ,

On peut obtenir pour K, (G) un résultat analogue en ce qui
concerne le transport. En considérant, dans chaque classe
d’homotopie de lacets en x, un lacet composé d’un nombre fini
d’arcs de trajectoires de sous-groupes & un parametre de G et en
évaluant le transport le long de chacun de ces arcs au moyen
de la formule (3-1), on établit d’abord, grace a (3-1),

(5-3) v, = N[K,(G)].

On voit de méme que le transport le long d’un chemin [ (z, 2')
composé d’un nombre fini d’arcs de trajectoires de sous-groupes
a un parametre de G établit un isomorphisme entre K, (G) et
K. (G). 1l résulte de (5-3) que le transport le long d’un chemin
arbitraire reliant x a x’ établit un isomorphisme entre K, (G) et
K. (G).

11 existe, comme nous le verrons, des cas nombreux ou:

) = K.(G) .
Lorsqu’il en est ainsi, nous dirons que sur l'espace homogéne

V= G|H, la connexion linéaire invariante est & holonomie
normale.
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6. Tenseurs tnvariants.

Si un tenseur ¢ est invariant par transport, ¢ (z) est invariant
par.le groupe d’holonomie W¥,. De la formule (3-1) et de I’étude
précédente, il résulte:

THEOREME. — Sur un espace homogéne V,, = G/H (G effectif) a
connexion linéaire invariante, si un tenseur t satisfait deux des
_trois conditions suivantes, il satisfait la troisieme.

a) t est invartant par Uaction de G;
b) t est invariant par transport;

c) t(x) est invariant par le groupe de Kostant K, (G) en un
point x de V,,.

Au champ ¢ on peut substituer un champ Q de sous-espaces
vectoriels. Si la connexion est a kolonomie normale, b entraine c,
donc a: Tout tenseur invariant par transport est invariant par G.

II. TRANSFORMATIONS AFFINES ET ISOMETRIES
D’UNE VARIETE RIEMANNIENNE. '

7. Transformations affines et réductibilité.

Soit V, une variété riemannienne de tenseur métrique g,
que nous considérons toujours comme munie de sa connexion
riemannienne. Toute isométrie ou similitude (p*g = c®g;
¢ = const.) est une transformation affine pour cette connexion.
Inversement, dans I’hypothese ou le groupe d’holonomie est irré-
ductible, toute transformation affine reproduit la métrique & un
facteur nécessairement constant prés, et par suite est une simi-
litude. En utilisant cette remarque, nous nous proposons d’étu-
dier les rapports généraux entre transformations affines et iso-
métries.

a) La variété V,, est dite réductible si son groupe d’holonomie
connexe V2 est réductible dans le réel. S’il en est ainsi, espace
vectoriel 7', peut étre décomposé, d’une maniére et d’une seule
a lordre prés, en somme directe de sous-espaces orthogonaux
T4 (a = 0,1, ... k), invariants par W3, tels que ¥y induise
- Tidentité sur T2 et des représentations irréductibles sur
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T° (a # 0). Cette décomposition est la décomposition canonique
relative a la réductibilité. Il lui correspond une décomposition
de W2 en produit direct ITW 4, (b = 1, ... k), ot ¥, induit sur
T (a = b) la représentation triviale (Borel-Lichnerowicz); PO
étant sous-groupe invariant de ¥, le sous-espace T? est aussi
invariant par ¥,; par transport de T % on obtient sur V, le
champ complétement intégrable 70 et un feuilletage de V,, en
feuilles localement euclidiennes. Si 79 = 0, nous dirons brieve-
ment que V,, est sans partie euclidienne.

b) Soit w une transformation affine de V,, S I'ensemble des
sous-espaces de 7', invariants par ¥'. Si [ est un chemin joignant
z & p~ ! (z) Vautomorphisme de 7T, défini par:

o t(l)

détermine une substitution s (u) de S ne dépendant que de .
On obtient ainsi un homomorphisme de A (V,), dans le groupe
des substitutions de S. Si ¥, induit sur un élément U, € § une
représentation irréductible (resp. I'identité), il en est de méme
pour s (p) U,.

¢) Supposons V, simplement connexe. La décomposition
canonique définit alors (k + 1) champs 7“ de sous-espaces, inva-
riants par transport le long d’un chemin arbitraire. Par suite si
we A (V,), wlaisse invariant 7° et permute éventuellement les
T (a # 0). Si pe A°(V,,), tous les T° sont invariants. Ainsi:

THEOREME. — Sur une variété riemannienne simplement connezxe,
chaque champ T défint par la décomposition canonique relative

a la réductibilité est invariant par toule transformation affine
de A° (V,).

8. LEtude des variétés riemanniennes complétes.

Sur V,, la distance d (x, 2") définie par le minimum de la
longueur des chemins continiment différentiables par morceaux
joignant x & 2" détermine une structure d’espace métrique. Nous
supposons V,, compléte, ¢’est-a-dire complet I'espace métrique
précédent

a) Soit w une similitude qui ne soit pas une isométrie; en
passant au besoin & 'inverse, on peut supposer p* g = ¢ g avec

8 e PP = A=
Sl




8 A. LICHNEROWICZ

¢ < 1. Par suite, p réduit les longueurs et distances dans le
rapport ¢. Du caractére complet, il résulte que w admet un point
fixe x,. Si [ est un lacet arbitraire en x, et si r, est I’élément du
groupe d’holonomie induit par le lacet p*1 (2 =0, 1, ...), r, tend
vers l'identité quand A — co. D’aprés (2-4), r, = p™oryo p' ™"
et le polyndme caractéristique de r, est indépendant de % et
coincide avec celui de I'identité. On peut en déduire que le groupe
d’holonomie de V,, est réduit a Pidentité.

TatorEME. — Sur une variéié riemannienne compléte qui n’est
pas localement euclidienne, toute similitude est une isométrie
[ Kobayashi].
Si V,, compléte est irréductible (m > 2) toute transformation
affine est une isométrie.

b) Supposons V,, compléte et stmplement connexe. D’apres
un théoréeme classique de Georges de Rham, il existe une iso-
métrie globale de V, sur le produit riemannien de (k& + 1)
variétés W* complétes simplement connexes. Pour a =0, W°
est euclidienne et pour a 5= 0, W* est irréductible (de dimen-
- sion > 2). '

Soit I° (V,,) le plus grand groupe connexe d’isométries de V,,.
A Taide du théoréme du § 7, on établit que A° (V) (resp. 1°(V,,))
peut étre identifié au produit direct IIA° (W*) (resp. II I0 (W9)).
Du résultat précédent on déduit que A°(W*) = I° (W) pour
a % 0. Ainsi:

TutorEME. — Pour une variété riemannienne compléte, simple-
ment connexe, V,, = WO X W ot WO est euclidienne et W sans
partie euclidienne, A°(V,) est identique au produit direct
A (W9 x I°(W) agissant naturellement sur V,,.

Les transformations strictement affines de A4° (V,,) provien-
nent ainsi des transformations strictement affines de I'espace
euclidien. Par étude du revétement universel, on voit que pour
toute variété riemannienne compléte (sans hypothése de simple
connexité) sans partie euclidienne A® (V,,) = I° (V,). Une étude
~directe montre qu’on a la méme conclusion pour toute variété
riemannienne compacte (avec ou sans partie euclidienne) [Ken-
karo Yano]. |
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9. Holonomie et isoméiries infinitésimales sur une variété
riemannienne.

@) Pour une variété riemannienne, les endomorphisnes de
Pespace vectoriel euclidien 7', peuvent étre identifiés a des
2-formes. Ainsi I’algébre d’holonomie W', en z définit un sous-
espace (désigné par la méme notation) de I'espace vectoriel des
9-formes en z. Soit B, orthocomplément de ce sous-espace par
rapport au produit scalaire, noté ( , ), défini sur les 2-formes
par la métrique. Si Y est un champ de vecteurs sur un voisinage U
de la variété V,, « une 2-forme sur U telle que o (x) € ¥, pour
x € U, on sait que:

(- ((V)Va)(x) e,

De méme si $ est une 2-forme sur U telle que B (z) € B, pour
xelU

(9-2) (i(Y)V p)(x) € B,

Cela posé si X est une isométrie infinitésimale, Ay (x) définit une
2-forme en z. Avec un abus de notation, nous pouvons poser

(9-3) Ay = a+ p (avec a(x)e ¥, B(x)eB,).

D’apres (2-3), (i (Y) VAyx) () e ¥,. De (9-1) et (9-2) il résulte
VB =0 et B (x) est dans l'algebre de Lie du centralisateur
connexe de ¥ dans le groupe des rotations de T,.

Si V,, est a W2 irréductible et admet une 2-forme a dérivée
covariante nulle, elle est kdhlerienne (m = 2n). Dans ce cas, si
la courbure de Ricci de la variété est non nulle, le centralisateur
connexe de ¥ est contenu dans W3 et ’on voit que Ay (z) € ¥,
On déduit de ces remarques. N

TutoriME. — Un espace homogéne riemannien V,, = G/H est
certatnement d holonomie normale (¥ = K (G)) sous une des
hypotheéses suivantes :

a) SiV,, n’admet pas de 2-formes & dérivée covariante nulle,
en particulier sv 'V, irréductible n’est pas kihlerien ;

b) SiV,, est kihlerien, a VY, irréductible est d courbure de Ricci
non nulle ;
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c) Si V,, admet une courbure de Ricct non dégénérée.

; ¢ se déduit de ¢ et b a4 Taide du theoreme de réductibilité de
G. de Rham.

b) De ce méme théoréme et du § 8, on déduit que si V,, est
une variété riemannienne compléte, I° (V,,) son plus grand groupe
connexe d’isométries (non nécessairement transitif), le groupe
K (I°(V,,)) est produit direct de groupes orthogonaux connexes
irréductibles et d’un groupe certainement compact correspon-
dant & la partie euclidienne.

THEOREME. — Pour toute variété riemannienne compléte, K,
(I°(V,,) est compact.

c) Supposons V, compacte. On sait que I°(V,) est alors
compact (Elie Cartan). S1 X est une isoméftrie infinitésimale,
considérons la décomposition (9-3) et la 1-forme

| =i
- De (9-3) on déduit:
on(x) = (Ax (), B(x) = (B(x), B(x)) 20

ou & est l'opérateur de codifférentiation. Si V,, est compacte
orientable, on en déduit par intégration 8 = O et, par passage
a un revétement, il en est de méme si V,, est seulement com-
pacte. Ainsi K, (]0 (Vi) = ¥

Soit J,, le sous-groupe d’isotropie d’un point x,, clest- a-dire
le sous-groupe de I°(V,,) laissant z, fixe, h un élément de J,.
Le groupe I°(V,) étant compact, il existe un sous-groupe a
un parametre exp (1X) tel que A = exp (uX); z (t) = exp (¢X)
(0 <t < u) engendre un lacet [ en . Si r est 'élément de ¥,
correspondant a [, on a d’aprés (3-1)

exp' (u'X)’A= reexp [ —udx(xo)] -

Ainsi, si J,, est le groupe linéajre d’isotropie, J, = ¥, . Nous

- énoncerons:
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THEOREME. — Si V,, est une variélé riemannienne compacie,
19 (V,,) son plus grand groupe connexe d’isoméiries (non neéces-
sairement transitif), I, le sous-groupe d’isolropie en X,.on a

(9-4) : K.(I°(Vw) = o
et
9-5) T e ¥,

| En particulier pour tout espace homogéne riemannien com-
pact, Uholonomie est normale.

I1I. ESPACES HOMOGENES REDUCTIFS.
CAS RIEMANNIEN.

10. Notion d’eépace homogéne réductif (Nomizu].

Sur un espace homogéne V,, = G/H une structure réductive
(ou d’espace homogéne réductif) est définie par la donnée d’une
décomposition en somme directe de Ualgébre de Lie G de G

(10-1) G=H+M (Hn M = 0)

telle que le sous-espace M vérifie
(10-2) adj(H)M < M ,

adj (H) est ici la restriction a I de la représentation adjointe
de G. Tout élément A de G s’écrit d’une maniere et d’une seule
A= 2Ag + My (Ag € H; My € M). Par la projection naturelle p
de G sur V,, on peut identifier M avec I’espace vectoriel Tx,
tangent en z, = pe & V,, et ad] (H) avec le groupe linéaire d’iso-

tropie H. Les cas ou H est compact ou connexe réductif dans G
fournissent des exemples de structure réductive.

D’apres (10-2), M définit sur l'espace fibré principal G de
base V, une connexion infinitésimale invariante par G. Si
P (V,) est l'espace de repeéres défini par les reperes de V,,
déduits de I'un d’entre eux par ’action de G, le fibré P (V,,) est

isomorphe au fibré G. De la connexion invariante obtenue sur

v e e R S
=
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P(V,), on déduit une connexion linéaire invariante pour
V.= G[H. Cette connexion « est dite la connexion canonique
de la structure. | |

A tout élément A de G correspond un sous-groupe & un para-
métre noté exp[sX (A)] ou X (A) est la t.i. correspondante.
Si A € M, le transport le long de z (s) = exp [sX (M)] z, relative-
ment & » coincide avec I’action correspondante de exp [sX (M)];
z (s) est ainsi une géodésique de w rapportée & un parameétre
afline. L’espace homogene réductif V,, = G/H est complet pour
sa connexion canonique.

Sans entrer dans le détail de la théorie, je me bornerai &
indiquer des résultats liés & la considération du groupe de Kos-
tant. On voit sur (3-1) que pour A € M

AX(/I) (x0) = 0.
Le groupe de Kostant relatif & o ne provient que des éléments

de H et si H° est le groupe linéaire connexe d’isotropie en z;:

~

(10-3) K,,(G) =

Ainsi, d’apres le § 6, tout tenseur invariant par G est invariant par
transport relativement d . En particulier les tenseurs de cour-
bure et de torsion de la connexion canonique sont a dérivée:
covariante nulle. Les espaces homogénes réductifs constituent
une généralisation naturelle des espaces homogenes symétriques
d’Elie Cartan.

11. Connexion de Cartan d’un espace réductif. .

A partir de la connexion canonique, les connexions linéaires
invariantes de I'espace correspondent biunivoquement aux ten-
seurs invariants de type (1, 2). Il existe une connexion invariante
et une seule sans torsion telle que les géodésiques issues de =z,
et rapportées & un paramétre affine coincident avec celles de la
connexion canonique. J’appelle cette connexion la connexion de
Cartan de Pespace; celui-ci est toujours complet pour sa connexion
de Cartan.

Si A € G, 'endomorphisme 4 x( 1) (%) relatlf & la connexion de
Cartan est tel que: | )
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1
11-1) Ay (Xo) " pr = —P(E [Aaes iy + [/129#:0 (ne M) .

Considérons les endomorphismes B, de M définis par:
(11-2) Byu = [4ulu - (LeG, ue M) .

Le groupe de Kostant K, (G) relatif a la connexion de Cartan
peut éire identifié par p avec le groupe connexe K (G) d’automor-
phismes de M admeitant pour algébre de Lie I'algébre d’endomor-
phismes engendrée par les B,.

12. Espace homogéne riemannien naturellement réductif.
Soit V,, = G/H (G effectif) un espace homogeéne muni

10 d’une métrique riemannienne invariante ds?;
20 d’une structure réductive G = H + M

telles que la connexion riemannienne de la métrique coincide
avec la connexion de Cartan de la structure réductive. Pour qu’il
~ en soit ainsi, il faut et il suffit que le tenseur métrique soit inva-
riant par transport relativement & la connexion de Cartan, ¢’est-
a-dire que la forme quadratique correspondante sur M soit
invariante par le groupe K (G). Nous dirons que G/H est muni
d’une structure d’espace homogéne riemannien naturellement
réductif. Si H est compact ou connexe, pour qu’a une structure
réductive corresponde une structure d’espace homogéne rieman-
nien naturellement réductif, il suffit que K (G) soit compact.

Soit [, un lacet en x, = pe. Lia variété riemannienne V,, étant
complete, il existe sur son revétement universel une géodésique
joignant deux points arbitraires. Par suite, par projection, il
existe sur V, un lacet /, en z,, homotope & [, et qui est un arc
géodésique de la connexion de Cartan de la structure réductive;
un tel arc peut étre défini par

x() =exp[tX(D]xo, (Ae M)
avec 0 <t < u et pour ¢t = u, exp[uX (A)] € H.

Soit w une connexion linéaire invariante arbitraire et étudions
son holonomie. Si r; (resp ry) est I'élément de son groupe d’holo-
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nomie V', obtenu par tfamport le long de I; (resp. ly), on a:

ryEr, ‘Pgo .

Mais d’apres (3-1) |
r, = exp (uX) exp [udyy (xo)] € H- K, (G)

ou K, (G) est le groupe de Kostant relatif & w. Comme ¥3 < K,
(G), on voit que pour toute connexion invariante sur un tel espace

(12-'1) Y., <H-K,.(G).

13. Cas ou G est compact.

Soit V,, = G[/H un espace homogéne ou G effectif est com-
pact. Un tel espace admet certainement une structure d’espace
homogeéne riemannien naturellement réductif. En effet, soit M
I'orthocomplément de A dans G par rapport au produit scalaire
défini par une forme quadratique définie positive de G inva-
riante par G. D’aprés Pinvariance de ce produit scalaire

[l vu[hv] =0  (humveG).
En particulier si p, veM

Doty v+ 0 [vle =0 (AeGsp,ve M)

et le produit scalaire w . v de M est invariant par le groupe K (G)
correspondant a la structure réductive Q‘= H+4- M.
Considérons sur l'espace V,, = G/H & G compacte une
métrique riemannienne invariante arbitraire. L’holonomie est
normale: pour la connexion riemannienne correspondante

(13-1) P =K, (6.
D’autre part, d’apres (9-5): |
I-} < ¥, .
De (12-1) on déduit que pour toute métrique invariagte
¥, = H.K, (G), soit: |

% v ¥ ’ ~ 0
(132 W, = H- ¥, .
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