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224 - R. E. LANGER

the factors B(y) and I'(y) also in an alternative form. This is
done as follows: | |
Let K designate the familiar matrix

00 - - - - b,
1 0 - - - = b,
ko= | 210 T T e 6.3
0 - - — -1 -b
The eigen-values of this are the roots z;, 1 = 1, 2, ..., p of

the equation B(x) = 0. If we designate by &; an eigen-vector
corresponding to z; we have.

K =xté, h=1,2, ..., q,
and accordingly |
‘ I'K)¢ =I'(x)é; .

Thus I'(z;) is an eigenvalue of the matrix I'(K), and, since the
product of the eigenvalues is the determinant of the matrix,
we have

| T(K) | = IIT'(x) .

. i=1 .
Observing that no factor on the right is zero, and giving to I'(K)
its explicit form, we conclude with the result

IquC,-(Z) K"/ (z)| #0 (3.4
j=0

4, Two DIFFERENCIAL OPERATORS OF THE ORDERS P AND ¢.

Let the functions f;(z, A) and y;(z, A) be taken to be poly-
nomials of the degree (r — 1) in 1/4, thus

ﬂj(z’ '1) = i: ﬂj,;\,v(Z) ’ ﬁj,o(z) .E b}(z): J = 19 2: eees Dy

o v=0 ;

" 4.1
y'(z, }’) — Z YI,V(Z) . ( )

e )’i,o(z) =c(z); i=12,..,4
v=0 l ' . k]
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As has been indicated, the terms of the zeroth degree are to be
the coefficients which appear in the formulas (2. 7). The re-
maining terms, g, , (z) and v; , (), with v = 1, shall be analytic |
over the z-region, but beyond that shall be left, for the moment, |
unspecified. By I and m we shall designate the differential |
operators «

p
1 =Y M, (z,)D?, By =1,
Jj=0

4. 2)

It
o

q
m= > A v, (z, ) DT, v,

i=0

The immediate objective will be to show that the unspecified

terms in the formulas (4. 1) can be so chosen as to give the diffe-

rential form I(m(u)) coefficients which differ from those of the

form (2. 2) only by terms that are of at least the r™ degree in 1/A.
The k-fold differentiation of m(y) yields the formula

a ko Kk :
ka(y) - Z Z /IE<S>DS')’iDq_l+k_sy ,
i=0 s=0

k
in which the symbol (
S

of ° in the binomial expansion of (1-+2z)*. On using i+s in
place of 7 as the variable of summation, and observing that the
terms which appear to have been gratuitously included are ones
to which the value zero are to be assigned, we find that the
formula may be written .

> denotes, as customarily, the coefficient

atk p k .
Dk m(y) — 2 Z il—s( >Ds,yi_qu+k-1y,
i=0 s=0 S
k=20,1,2, ..., p. 4. 3)
From this it follows that

E 2 BoF . fpe.d .
I(m () = .ZO _Zo 2 /1“‘"5( )ﬁ,-sti-sD""“‘y-
j=0i=0 s=

0 S

This formula is again improved by using i4; in place of i as the
variable of summation. It becomes, then
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I(m®) = Y, 2 ¥,(z, ) D"y, (4. 4)
i=0
with |

Y.(z,1) =

Z, (p S—J> ﬁjDs'}’i—j—s . (4.5

The functions ¥ '(z A), inasmuch as they are combinations of
those given in (4. 1), are polynom1als in 1/2. We may therefore
write them in the form

IIM@:

— o Vi, u(2) ¥y, (2, )
gji (Za ;L) - #;0 ).” - _ﬂ,r .

(4. 6)
A comparison of the terms in like powers of 1/1 in the rela-
tions (4. 5) and (4. 6) yields formulas for the functions ¥; , (z).
Those for which u = 0 are particularly easy to obtain. On
setting s = 0in (4. 5), and replacing f; and v;_; by their leading

terms b; and c¢;_;, we find that

lpi,o(z) = Z bj (2) Ci—j(Z) .
j=0

Recourse to the relation (2. 8) thus shows that
'J/i,O(z) =pi,0(z)9 S 1: 29 ..oy R (4' 7)

At least to the extent of the leading terms of their coefficients,
the forms (2. 2) and (4. 4) are, therefore, the same.

5. A DETERMINATION OF UNSPECIFIED COEFFICIENTS.

We propose now to deduce a formula for the general coeffi-
cient ¥; ,(2) in (4. 6) by selecting the multiplier of the appro-
priate power of 1/A4 from the formula (4.5). To begin with,
it follows from the relations (4. 1) that

2r—2 p

ﬂDS’Yle—Z Z)' ﬁ]szlesukv

p=0 k=0
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