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ON THE CONSTRUCTION OF RELATED EQUATIONS 223

The relations (2. 5), (2. 6) and (2. 7) imply that p-+g¢ = n.
We shall suppose the notation to be so ass1gned as to yield
p =< q. It follows then also that

k N
2 bi(2)e-i(2) = pio(z), k=01, 2, ., n, (2.8)
=0

it being understood that the value 0 is to be assigned to any
symbol b,(z) or ¢,_;(z) which, by virtue of its subscript, is not
present in the formulas (2. 7). |

A change of dependent variable can be applied to the equation
(1. 1) to give it a form for which the coefficient b,(z) is identically
zero. Considerable simplifications of the formulas result there-
from. We shall not resort to that normalization, however,
refraining from it in order to keep the roles of the factors B(y)
and I'(y) interchangeable.

3. THE RESULTANT.

It is a hypothesis that the two polynomials (2. 7) are relatively
prime over the z-region. If we denote their resultant by A(z),
we have accordingly

A(z) #0, (3.1)
with
L obyby— — — — 5,0 — — — = — = 0
01 byby— — - —b,0 - - — — = 0
0 — — — — — — — 01 b-—-=-~5
A4 = 1 p
& =1y By m = e 60— -0 (3.2)
01e¢g--- - - - - - - ¢ 0 -0
0 - -~ -01ege--- -~ Cy

" 'We shall find use for the relation (3. ‘2) However for future
use we find it convenient to formulate the relative prlmary of
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the factors B(y) and I'(y) also in an alternative form. This is
done as follows: | |
Let K designate the familiar matrix

00 - - - - b,
1 0 - - - = b,
ko= | 210 T T e 6.3
0 - - — -1 -b
The eigen-values of this are the roots z;, 1 = 1, 2, ..., p of

the equation B(x) = 0. If we designate by &; an eigen-vector
corresponding to z; we have.

K =xté, h=1,2, ..., q,
and accordingly |
‘ I'K)¢ =I'(x)é; .

Thus I'(z;) is an eigenvalue of the matrix I'(K), and, since the
product of the eigenvalues is the determinant of the matrix,
we have

| T(K) | = IIT'(x) .

. i=1 .
Observing that no factor on the right is zero, and giving to I'(K)
its explicit form, we conclude with the result

IquC,-(Z) K"/ (z)| #0 (3.4
j=0

4, Two DIFFERENCIAL OPERATORS OF THE ORDERS P AND ¢.

Let the functions f;(z, A) and y;(z, A) be taken to be poly-
nomials of the degree (r — 1) in 1/4, thus

ﬂj(z’ '1) = i: ﬂj,;\,v(Z) ’ ﬁj,o(z) .E b}(z): J = 19 2: eees Dy

o v=0 ;

" 4.1
y'(z, }’) — Z YI,V(Z) . ( )

e )’i,o(z) =c(z); i=12,..,4
v=0 l ' . k]
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