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216 B. ECKMANN

phismus h : 7cm_1(i^T) G unterworfen hat, nämlich dem durch
4> induzierten Homomorphismus von 7r w-1 der Faser von / in

der Faser von p (diese ist QK(G, m), also ist nm-1(QK
(G, m)) G)

Die Cohomologieklasse dieses Cozyklus $>¥ ist gemäss
der obigen Vorschrift gegeben durch die „untere Komponente"
von 4>, also durch cp' e Hm(B\ G) und somit von s unabhängig.
<p' ist übrigens nichts anderes als ein durch Transgression aus
einem Gohomologieelement e H m~1(F; G) der Faser gewonnenes
Element. Man beachte, dass dieser Zusammenhang zwischen
Hindernis und Transgression nicht nur für das "erste Hindernis",

sondern für eine beliebige Schnittfläche gilt. Im Fall des

ersten Hindernisses, d.h. wenn die Faser F (m-2)-zusammen-
hängend ist {n^F) 0, i < m—2), weiss man, dass eine
Fundamentalklasse $ e Hm{f\ nm-i(F)) existiert, derart dass der
induzierte Homomorphismus h von nm-i(F) in G 7im_1(FT)

die Identität ist; somit ist dann der Cozyklus <&W rj gleich
dem ersten Hinderniscozyklus selbst, und seine Cohomologieklasse

e Hm(B; n^^F)) ist einfach gleich der Komponente cp'

von unabhängig von der speziell gewählten (m—^-Schnittfläche.

Damit wird auch eine Definition des ersten Hindernisses
nahegelegt, die nicht auf der Polyeder-Eigenschaft von B beruht
und das übliche schrittweise Erweiterungsverfahren nicht
benützt: es ist gegeben durch die Komponente cp' einer Fundamentalklasse

0 e Hm(f\ 7tm-1(F)). Von dieser Hindernisklässe
cp' e Hm(B] 7rm_1(FT)) lässt sich im Falle F X(£, m—1)
direkt nachweisen, dass sie die Faserungen E -» B mit Faser
A(G, m—1) charakterisiert.

Auf den Fall höherer Hindernisse soll an anderer Stelle

eingegangen werden.

4. Ausblicke.

Die homotopische Auffassung der Cohomologie, wie sie oben
skizziert ist, lässt sich sehr weit fortführen (obwohl die explizite
Berechnung in Spezialfällen sich stets auf simpliziale oder
Zellenstrukturen stützt). In diesen Gedankenkreis gehört die
Postnikovzerlegung eines Raumes (Charakterisierung des Homo-
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topietypes durch die Homotopiegruppen und gewisse Cohomo-

logieklassen) sowie diejenige einer Abbildung, vgl. [3]; ferner
die Cohomologieoperationen, sowohl die primären wie die
höhern. Ueberdies legt die Dualität Cohomologie-Homotopie,
sei sie heuristischer oder strikter Art, analoge Bildungen für die

Homotopiegruppen nahe: Homotopiegruppen mit Koeffizienten
(vgl. [1]), Homotopiezerlegung eines einfach-zusammenhängenden

Polyeders, oder einer Abbildung, vgl. [3]; Charakterisierung
spezieller Cofaserungen durch eine Hindernisklasse, genau dual
zu dem am Schluss von Abschnitt 3 beschriebenen Vorgehen,
vgl. [2]. Weitere duale Beziehungen bestehen zwischen dem

cup-Produkt in der Cohomologie und dem Whitehead-Produkt
in der Homotopie. Auch zu numerischen Invarianten wie der
„Lusternik-Schnirelman-Categorie" eines Raumes konnten duale
Grössen definiert werden (P. J. Hilton, Berstein-Ganea), wobei
jedoch offensichtlich die naive Dualität versagt; sie kann nur
durch Zwischenschaltung geeigneter Funktoren, die von Räumen
zu algebraischen Begriffen führen (z.B. Gruppen, semisimplizia-
len Gruppen usw.) oder umgekehrt, gerettet werden. Die
Gründe hiezu liegen in allgemeinen kategorietheoretischen
Gesetzmässigkeiten, die von P. J. Hilton und dem Verfasser
ausführlich untersucht worden sind [7].
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