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214 - . B. ECKMANN

3. CoromoLoGIE, HINDERNIS, TRANSGRESSION.

‘Wir betrachten hier nicht einen einzelnen Testraum B, son-
dern eine Folge von Réumen (Polyedern) B,, n =20, 1, 2, ...
und Homotopiedquivalenzen o, : B, - QB,.;. Die Gruppen
In(A,B,:,) = 4, Q"B+, = II(A, B,,) sind dann von n>0
unabhéngig, vermoge bestimmter Isomorphismen; wir be-
zeichnen sie mit A™(A). Dasselbe gilt fiir die relativen Gruppen
P,i(a, B,+,), fir eine Abbildung o : 4 —» A’, die mit 2™(«)
bezeichnet werden.
~Diese Gruppen A™(A), h™(«), bezw. ihre direkten Summen
h*(A) und h*(a) erfiillen dann die Eigenschaften

(I") Exaktheit, d.h. man hat ein exaktes Dreieck

R(AY) S hr(A)
AN
1*(a)

wobei J (gewohnlich mit & bezeichnet) den Grad - 1 hat, und
0 den Grad 0, dies wegen der Definition der 4 ,(a) = P(«, B,,).

(IT1’) Exzision, d.h. man hat fiir Cofaserungen « mit der
Cofaser A, einen Exzisionsisomorphismus vom Grade 0

h*(0) = h*(4,).

(III") Homotopie.

Von den Cohomologie-Axiomen von Eilenberg-Steenrod fehlt
also nur das Dimenstonsaxiom h™(S,) = 0 fir m # k; es ist
dann erfiillt, wenn alle B, Eilenberg-MacLane-Polyeder K(G, n)
'sind, wobei G eine beliebige Abelsche Gruppe ist (fir alle n
dieselbe, da 7,(B,) = n,(2B,+;) = T,+(By+y) ist), und in
diesem Fall ist der Homotopietypus von B ,,, somit die Struktur
von h™(A) und A™(«) durch die Gruppe G und die Zahl m be-
stimmt. Wir schreiben fiir diese Gruppen, die eine volle Cohomo-
logietheorie 1) bilden, H™(4; G) bezw. H™(a; G). Auf die

1) Es handelt sich natiirlich um die ,reduzierte“ Cohomologie fiir Raume mit
Basispunkt; daraus lasst sich in bekannter Weise die ,nicht reduzierte“ fiir Riume
ohne Basispunkt herleiten.
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verallgemeinerten Cohomologietheorien ohne Dimensionsaxiom
gehen wir hier nicht ein. ‘

Diese homotopisch definierten Gruppen H ™ stimmen (nach
dem Eindeutigkeitssatz von Eilenberg-Steenrod) fiir ein end-
liches Polyeder mit den iiblichen tiberein. Fiir kompakte R&ume
— und unter gewissen Einschréankungen auch fiir parakom-
pakte — sind es die Cechschen Cohomologiegruppen, vgl.
P. J. Huber [6]. Fiir beliebige (endliche oder unendliche) Poly-
eder A lasst sich mit Hilfe der Tripelsequenz (vgl. Abschnitt 2)
leicht in direkter und elementarer Weise zeigen, dass sie mit den
gewohnlichen simplizialen Cohomologiegruppen zusammenfallen;
dabei ergibt sich folgende Beschreibung der simplizialen Co-
zyklen von A: Es bezeichne A* das k-dimensionale Skelett
von A, j, die Inklusion A™ ' —» A; die Cozyklengruppe Z™
ist isomorph Py(j,., K(G, m)), d.h. ein Cozyklus ist eine Abbil-
dungsklasse & = (¢, ¢')

A™ 1 5 ER(G, m)
b .
Jmd = 1P

A 5 KG, m
wo EK(G, m) den Wegeraum und p seine natiirliche Projektion
bedeutet. Die Cohomologieklasse von @ ist das durch ¢’ ge-
gebene Element von II(4, K(G, m)) = H™(A4; G).

Eine einfache Anwendung hievon: Es sei f: E - B eine
Faserabbildung mit der Faser F, und s: B™ ! - E eine
Schnittfliche iber dem (m—1)-Skelett von B (also fs =j,).
Ferner sei & :f — p eine Abbildung von f in die Faserung
p : EK(G, m) - K(G, m), d.h. ein Element der relativen Gruppe
Py(f, K(G, m)) = H™(f; G). Im Diagramm

B"' 5 E 5 EK(G, m)

] '3 @

Jnd = L = lp
B » B - K(G, m)

ist @¥ ein simplizialer m-Cozyklus von B. Man verifiziert leicht,
dass er folgende Bedeutung hat: es ist der zur Schnittfliche s
gehdrige Hinderniscozyklus n (mit Koeffizienten in 7, _ 1(F)), in
welchem man die Werte noch einem Koeffizienten-Homomor-
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phismus 4 : n,,-,(F) —» G unterworfen hat, ndmlich dem durch
@ induzierten Homomorphismus von =#,_; der Faser von f in
T .-, der Faser von p (diese ist QK(G, m), also ist = ,_,(QK
(G, m)) = G). |

Die Cohomologieklasse dieses Cozyklus @¥ = h,(n) ist geméss
der obigen Vorschrift gegeben durch die ,untere Komponente
von &, also durch ¢’ € H™(B; G) und somit von s unabhdngig.
@' ist iibrigens nichts anderes als ein durch 7Transgression aus
einem Cohomologieelement € H ™ !(F; G) der Faser gewonnenes
Element. Man beachte, dass dieser Zusammenhang zwischen
Hindernis und Transgression nicht nur fiir das “erste Hinder-
nis“, sondern fiir eine beliebige Schnittfliche gilt. Im Fall des
ersten Hindernisses, d.h. wenn die Faser F (m-2)-zusammen-
héngend ist (7;(F) = 0, 1 < m —2), weiss man, dass eine Fun-
damentalklasse ® € H™(f; n,,_1(F)) existiert, derart dass der
induzierte Homomorphismus 2 von 7n,_;(#) in G = = ,_{(F)
die Identitat ist; somit ist dann der Cozyklus ®¥ = 5 gleich
dem ersten Hinderniscozyklus selbst, und seine Cohomologie-
klasse € H™(B; n,_(F)) ist einfach gleich der Komponente ¢’
von @, unabhéngig von der speziell gewédhlten (m—1)-Schnitt-
flache.

Damit wird auch eine Definition des ersten Hindernisses
nahegelegt, die nicht auf der Polyeder-Eigenschaft von B beruht
und das ibliche schrittweise Erweiterungsverfahren nicht be-
niitzt: es ist gegeben durch die Komponente ¢’ einer Fundamen-
talklasse @ e H™f; n,-1(F)). Von dieser Hindernisklasse
o' e H™B; n,_,(F)) lasst sich im Falle F = K(G, m—1)
direkt nachweisen, dass sie die Faserungen £ — B mit Faser
K(G, m—1) charakterisiert. )

Auf den Fall hoherer Hindernisse soll an anderer Stelle ein-
gegangen werden.

4. AUSBLICKE.

Die homotopische Auffassung der Cohomologie, wie sie oben
skizziert ist, l4sst sich sehr weit fortfithren (obwohl die explizite
Berechnung in Spezialfdllen sich stets auf simpliziale oder
Zellenstrukturen stiitzt). In diesen Gedankenkreis gehort die
Postnikovzerlegung eines Raumes (Charakterisierung des Homo-
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