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212 B. ECKMANN

Die Gruppen II,(A, B) besitzen somit die Eigenschaften:
bei festem A4 |

(I) Exaktheit fiir Abbildungen B : B — B’ und passende
relative Gruppen P.(4, B),

(1I) Exzision fiir Faserungen;

bei festem B

(I') Exaktheit fiir Abbildungen o« : A - A’ und passende
relative Gruppen P.(«, B),

(I1") Exzision fiir Cofaserungen.

- Hiezu kommt offenbar die Homotopie-Eigenschaft (II1)
bezw. (IIl’), dass homotope Abbildungen denselben Homo-
morphismus B, bezw. o* induzieren. Die Gruppen II.(A, B)
verdienen also weitgehend die Bezeichnung Cohomologiegruppen
mit Koeffizientenraum B oder Homotopiegruppen mit Koeffizien-
tenraum A, wobei eine Unterscheidung fir die ,absoluten®
Gruppen nicht moglich ist — sie liegt nur in der Auffassung
als Funktor von A bezw. B —, sondern erst bei den relativen
Gruppen auftritt. Die Uebereinstimmung mit der vollen Co-
homologietheorie erhdlt man allerdings erst durch die spezielle
Wahl von Eilenberg-MacLane-Riumen als Testriume B, vgl.
Abschnitt 3.

2. DIE EXAKTE SEQUENZ DER RELATIVEN GRUPPEN.

Sind f; und B, Abbildungen, B, : B, - B'y, B, : By, - B’,,
so versteht man unter einer Abbildung & : f; — B, ein Paar
von Abbildungen ¢ : B, - B, und ¢’ : B’; - B’, derart dass

@

Bi — B2
Bil ) l Bs
B, > B,
kommutativ ist. Eine solche Abbildung & induziert Homomor-

phismen @&, : P, (4, B,) - P4, p,), n=1,2,.., die sich
wiederum durch passende relative Gruppen “zweiter Stufe
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HOMOTOPIE UND HOMOLOGIE 213

P (A, #) zu einer exakten Sequenz verkniipfen lassen; wie
vorher schreiben wir auch diese als exaktes Dreieck

Pu(4, Br) = Py(4, By)
™\ ST - (2.1)

Dual hiezu erhalt man fiir die Gruppen P.(«, B) und fiir eine
Abbildung & : a; — o, ein exaktes Dreieck

Py(ay, B) g Py(ay, B)
AN ST (2.2)
P(o, B)

Das Verfahren lasst sich natiirlich iterieren, und man gelangt
zu relativen Gruppen beliebig hoher Stufe.

~ Aus den beiden exakten Dreiecken erhilt man durch Spe-
zialisierung viele bekannte Folgen der Cohomologie — und der
Homotopietheorie, so insbesondere die 7Triadensequenzen und
die Tripelsequenzen (vgl. [4]). Wir weisen hier nur auf die Tripel-
sequenz hin, die aus (2.1) entsteht, wenn man B; = B, und
¢ = Identitdat wihlt, also B, = ¢@’f;; man erh&dlt  dann das
exakte Dreieck

Pu(4, B) 3 Py(A, By
6\\ //J
P*(Aa(p,)

in welchem &, und J vom Grad 0, d§ vom Grad —1 ist und
welches die Verkniipfung der Py(A4, p) fir die Zusammensetzung
zweter Abbildungen liefert. Ebenso erhélt man aus (2.2) ein zum
obigen duales Dreieck. (Die Spezialfélle, wo die betreffenden Ab-
bildungen Inklusionen sind, sind wohlbekannt fiir Cohomologie-
und Homotopiegruppen.)

Fir Zusammensetzungen von mehr als zwei Abbildungen
ergeben sich hieraus leicht verschiedene Spekiralreihen fir die
P,(4, B), die Cohomologiegruppen usw., die alle bekannten und
fiir Theorie und Anwendung wichtigen Spektralreihen als Spezial-
fdlle enthalten.
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