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212 B. ECKMANN

Die Gruppen II*(A, B) besitzen somit die Eigenschaften:

bei festem A

(I) Exaktheit für Abbildungen ß : B B' und passende
relative Gruppen P*{A, ß),

(II) Exzision für Faserungen;

bei festem B

(I') Exaktheit für Abbildungen a : A -> A' und passende
relative Gruppen jP*(oc, B),

(IE) Exzision für Cofaserungen.

Hiezu kommt offenbar die Homotopie-Eigenschaft (III)
bezw. dass homotope Abbildungen denselben
Homomorphismus ß* bezw. a* induzieren. Die Gruppen 17* (4, B)
verdienen also weitgehend die Bezeichnung Cohomologiegruppen
mit Koeffizientenraum B oder Homotopiegruppen mit Koeffizientenraum

4, wobei eine Unterscheidung für die „absoluten"
Gruppen nicht möglich ist — sie liegt nur in der Auffassung
als Funktor von A bezw. B —, sondern erst bei den relativen
Gruppen auftritt. Die Uebereinstimmung mit der vollen Co-

homologietheorie erhält man allerdings erst durch die spezielle
Wahl von Eilenberg-MacLane-Räumen als Testräume B, vgl.
Abschnitt 3.

2. Die exakte Sequenz der relativen Gruppen.

Sind ßi und ß2 Abbildungen, ßx : B1 B\, ß2 : B2 -> B'2,
-so versteht man unter einer Abbildung <P : ß1 ß2 ein Paar

von Abbildungen cp : Bx -> B2 und cpf : B\ -> B'2 derart dass

Bx^B2
Pli iß2
B\ X B't

kommutativ ist. Eine solche Abbildung induziert Homomorphismen

#* : Pn(A, ß±) Pn(A, ß2), n 1, 2, die sich

wiederum durch passende relative Gruppen "zweiter Stufe"
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P„(A, <P) zu einer exakten Sequenz verknüpfen lassen; wie

vorher sehreiben wir auch diese als exaktes Dreieck

P*(A, ß±) - PM, i»2)

3\ // "(2-1)
P *)

Dual hiezu erhält man für die Gruppen B) und für eine

Abbildung # : ax-> a2 ein exaktes Dreieck

-P*(a2, B)-»• -P*(ax, B)

3\ (2-2)

?(*,£)
Das Verfahren lässt sich natürlich iterieren, und man gelangt
zu relativen Gruppen beliebig hoher Stufe.

Aus den beiden exakten Dreiecken erhält man durch
Spezialisierung viele bekannte Folgen der Cohomologie — und der

Homotopietheorie, so insbesondere die Triadensequenzen und
die Tripelsequenzen (vgl. [4]). Wir weisen hier nur auf die Tripel-
sequenz hin, die aus (2.1) entsteht, wenn man Bx B2 und
cp Identität wählt, also ß2 (p'ßu man erhält dann das

exakte Dreieck

P*(A, ß±) ^ P*(A, ß2)

d\ /J
in welchem und J vom Grad 0, d vom Grad —1 ist und
welches die Verknüpfung der P*(A, ß) für die Zusammensetzung
zweier Abbildungen liefert. Ebenso erhält man aus (2.2) ein zum
obigen duales Dreieck. (Die Spezialfälle, wo die betreffenden
Abbildungen Inklusionen sind, sind wohlbekannt für Cohomologie-
und Homotopiegruppen.)

Für Zusammensetzungen von mehr als zwei Abbildungen
ergeben sich hieraus leicht verschiedene Spektralreihen für die
P*(A, /?), die Cohomologiegruppen usw., die alle bekannten und
für Theorie und Anwendung wichtigen Spektralreihen als Spezialfälle

enthalten.
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