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210 B. ECKMANN

werden. Die angedeuteten allgemeinen Resultate, die neues
Licht auf die Beziehungen zwischen Homologie und Homotopie
werfen, haben vor allem die Gestalt exakter Folgen und damit
verknüpfter Isomorphismen, welche alle die 7Z(A, B) oder von
ihnen abgeleitete Gruppen betreffen, und von diesen ist im
folgenden die Rede. Sie sind in Zusammenarbeit mit P. J. Hilton
entwickelt worden und grösstenteils an anderer Stelle ausführlich

dargestellt [1, 2, 4].

1. Die Gruppen 7T„(A, B).

Die Menge 17(4, B) besitzt eine natürliche Gruppenstruktur
bezüglich A — d.h. bei festem B als Funktor von A — falls B
ein gruppenähnlicher Raum ist (d.h. ein Raum mit einer
Multiplikation m: BxB -» B, welche bis auf Homotopie die
Gruppenaxiome erfüllt), und nur in diesem Falle. Sie besitzt eine
natürliche Gruppenstruktur bezüglich B bei festem 4, wenn 4
mit einer Comultiplikation versehen ist, d.h. mit einer Abbildung

m': A ->4 V4 mit den dualen Axiomen (vgl. [1]). Dies
ist insbesondere der Fall für B — QY, den Schleifenraum von Y,
oder für 4 IX, die Suspension von X Zwischen 11(1X, Y)
und 17 (X, ßY) besteht eine natürliche, d.h. mit allen
Abbildungen verträgliche Isomorphie, und man kann diese Gruppen
ohne Schaden identifizieren; durch Iteration erhält man die

Gruppen

I7„(A, B) II(ZnA, B) JJ(In~kA, QkB) 0 <k<n
für n 1, 2, 3, wobei es für l<k<n—1 gleichgültig ist,
welche der gruppenbildenden Strukturen man verwendet. Sie

sind covariante Funktoren von B, contravariante von 4; für
72>2 sind sie stets Abelsche Gruppen [1]. Wählt man für 4 die

Sphäre Sm _M, so ist 7Tn(4, B) — nm(B) die ra-te Hurewicz'sche
Hömotopiegruppe ; wählt man für B den Eilenberg-MacLàne-
Raüm K(G, m + ^), wo G eine Abelsche Gruppe ist, so ist
nn(A, B) Hm(A ; G) ' eine homotopisch definierte Cohomolo-

giegruppe, die für Polyeder 4 mit der üblichen (etwa der sin-

gulär'en) übereinstimmt, wie man z.B. von der Erweiterungstheorie

der Abbildungen her weiss.
t ;;
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Eine Abbildung ß :B->B'induziertHomomorphismen

ß*: nn(A,B)-> nn(A, B'), n1,2,3,...; diese lassen sich

verknüpfen durch „relative" Gruppen Pn(A, B) und eine exakte

Sequenz (Definition der Pn sowie von J und d vgl. [1, 3])

- nn(A, B) h nn(A,B')^ P„(A, ß) nn-,(Ä, B) -
wir fassen diese in evidenter Weise in ein exaktes Dreieck

1

| //*(,),/>') ^
j a\ /J
\ P*(A, ß)

l zusammen, wobei 77* bezw. T3* die direkte Summe der IJn bezw.
;! Pn ist und ß* und J als Homomorphismen vom Grade 0, d vom
\ Grade —1 aufzufassen sind. Für die relative Gruppe P*(A, ß),
j die zum Testraum A und zur Abbildung ß gehört, gilt die
;] Exzisionseigenschaft für Faserungen, wie sie im Spezialfall der
| nn wohlbekannt ist: Ist ß eine Faserabbildung (im Sinne des

;"! „covering homotopy theorem") mit Faser B0, so hängt P*(A, ß)
•I nur von 7?0 ab; das exakte Dreieck ergibt dann einen natür-

j liehen Isomorphismus vom Grade —1

j P*(A, ß) ss n*(A, B0)
f
] Die duale Betrachtung — fester Raum B und Abbildung
;j a : A -> A' — ergibt analog relative Gruppen P„(a, B) und

{ ein exaktes Dreieck
;j

j n*(A',B)"a\ aj
'] P*(a, B)
1

| sowie einen Exzisionsisomorphismus vom Grade —1 für Cofa-
!3 serungen a (d.h. Abbildungen a : A -> A' mit „homotopy
j extension property", A'/a(A)<*=A0heisstdann die Cofaser

| von a)

P*(a7 B) ^ n*(A0, B)
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Die Gruppen II*(A, B) besitzen somit die Eigenschaften:

bei festem A

(I) Exaktheit für Abbildungen ß : B B' und passende
relative Gruppen P*{A, ß),

(II) Exzision für Faserungen;

bei festem B

(I') Exaktheit für Abbildungen a : A -> A' und passende
relative Gruppen jP*(oc, B),

(IE) Exzision für Cofaserungen.

Hiezu kommt offenbar die Homotopie-Eigenschaft (III)
bezw. dass homotope Abbildungen denselben
Homomorphismus ß* bezw. a* induzieren. Die Gruppen 17* (4, B)
verdienen also weitgehend die Bezeichnung Cohomologiegruppen
mit Koeffizientenraum B oder Homotopiegruppen mit Koeffizientenraum

4, wobei eine Unterscheidung für die „absoluten"
Gruppen nicht möglich ist — sie liegt nur in der Auffassung
als Funktor von A bezw. B —, sondern erst bei den relativen
Gruppen auftritt. Die Uebereinstimmung mit der vollen Co-

homologietheorie erhält man allerdings erst durch die spezielle
Wahl von Eilenberg-MacLane-Räumen als Testräume B, vgl.
Abschnitt 3.

2. Die exakte Sequenz der relativen Gruppen.

Sind ßi und ß2 Abbildungen, ßx : B1 B\, ß2 : B2 -> B'2,
-so versteht man unter einer Abbildung <P : ß1 ß2 ein Paar

von Abbildungen cp : Bx -> B2 und cpf : B\ -> B'2 derart dass

Bx^B2
Pli iß2
B\ X B't

kommutativ ist. Eine solche Abbildung induziert Homomorphismen

#* : Pn(A, ß±) Pn(A, ß2), n 1, 2, die sich

wiederum durch passende relative Gruppen "zweiter Stufe"
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