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HOMOTOPIE UND HOMOLOGIE -

Von Beno ECKMANN

In diesem Vortrag?l) wird dargelegt, wie sich die Begriffe und
Sitze der Homotopie- und der Homologietheorie in einheitlicher
Form aus einem umfassenden Begriff herleiten lassen. Dieser ist
insofern geometrischer Natur, als er die Menge der Homotopie-
klassen II(A, B) der Abbildungen 2) des Raumes A in den
Raum B zum Ausgangspunkt und zum eigentlichen Gegenstand
der Untersuchung macht; diese Menge kann bei festem A als
Funktor von B aufgefasst werden, der zur Untersuchung von B
dient, oder, bei festem B als Funktor von 4 — die beiden Auf-
fassungen sind dual zueinander im Sinne der Dualitat, die im
Umkehren der Abbildungsrichtung besteht. Spezielle Wahl des
Testraumes A ergibt die Homotopiegruppen, spezielle Wahl
von B die Cohomologiegruppen; diese beiden Gruppen stehen
somit in einer einfachen Dualitét zueinander. Die Dualitat ist
zunéchst nur heuristischer Natur, da kein allgemeines Prinzip
zur Verfiigung steht, welches garantiert, dass mit einem Satz
auch der duale richtig ist, und dieser muss erneut bewiesen
werden. Jedoch ist zum mindesten die Formulierung des dualen
Satzes stets dann eindeutig moglich, wenn der Ausgangssatz
ginzlich mit Hilfe von Abbildungen bzw. Abbildungsklassen
formuliert war (und in einem gewissen Rahmen lasst sich auch
das ganze Beweisverfahren dualisieren, bzw. vereinheitlichen,
vergl. P. J. Huber [5]; hier soll dieser Aspekt allerdings nicht
zur Sprache kommen). Die Dualitdt versagt dann, wenn spe-
zielle Raume, Punkte, usw. verwendet werden; allgemeine
Abbildungsresultate lassen sich auch auf diese Fille speziali-
sieren, aber dass etwa die Struktur der resultierenden Gruppen
immer noch dual sein sollte, darf im allgemeinen nicht erwartet

1) Internationales Kolloquium tiiber Dlﬁerentlalgeometrle und Topologle (Ziirich,
Juni 1960).

1) Es handelt sich durchwegs um Riume mit Bas1spunkt und Abbildungen und
Homotopien, welche die Basispunkte respektieren.

L’Enseignement mathém., t. VIII, fasc. 3-4. 14




210 B. ECKMANN

werden.. Die angedeuteten allgemeinen Resultate, die neues
Licht auf die Beziehungen zwischen Homologie und Homotopie
werfen, haben vor allem die Gestalt exakter Folgen und damit
verkniipfter Isomorphismen, welche alle die II(A, B) oder von
ithnen abgeleitete Gruppen betreffen, und von diesen ist im
folgenden die Rede. Sie sind in Zusammenarbeit mit P. J. Hilton
entwickelt worden und grosstenteils an anderer Stelle ausfiihr-
lich dargestellt [1, 2, 4]. ’

1. DiE GRUPPEN II,(A, B).

"Die Menge II(A, B) besitzt eine natiirliche Gruppenstruktur
beziiglich A — d.h. bei festem B als Funktor von A — falls B
ein gruppenidhnlicher Raum ist (d.h. ein Raum mit einer Mul-
tiplikation m: BX B — B, welche bis auf Homotopie die Grup-
penaxiome erfiillt), und nur in diesem Falle. Sie besitzt eine
natiirliche Gruppenstruktur beziiglich B bei festem A, wenn A
mit einer Comultiplikation versehen ist, d.h. mit einer Abbil-
dung m’': A - AV A wit den dualen Axiomen (vgl. [1]). Dies
18t 1nsbes0ndere der Fall fiir B = QY, den Schleifenraum von Y,
oder fiir A = 2 X, die Suspensmn von X. Zwischen II(ZX, Y)
und IT (X, QY) besteht eine natiirliche, d.h. mit allen Abbil-
dungen vertrdgliche Isomorphie, und man kann diese Gruppen
ohne Schaden identifizieren; duroh Iteration erh&dlt. man die
Gruppen ' ;

(A, B) = II("A, B) _ (A, @*B), 0<h<n |

fir n =1, 2, 3, ..., wobei es fir 1<k<n—1 gleichgiiltig ist,
Welche der gruppenbﬂdenden Strukturen man verwendet. Sie
sind’ covariante Funktoren von B, contravariante von A; fiir
n>2 sind Sle stets Abelsche Gruppen [1]. Wahlt man fir A die
Sphare AR S0 ist IT,(A, B) = 7,(B) die m-te Hurewicz’sche
HOmotoplegruppe wihlt man fir B den Eilenberg-MacLane-
Raum K(G, m + n), wo G eine Abelsche Gruppe ist, so ist

II(A, B) = H™(A; G) ¢ine homotopisch definierte Cohomolo-
giegruppe, die fiir Polyeder A mit der {iblichen (etwa der sin-
guliren) uberemstlmmt Wle ‘man z. B VOIl der. Erwelterungs-
theorie der Abbildungen her weiss.
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Eine Abbildung p: B — B’ induziert Homomorphismen
By: II(A, By » II(A, B"), n=1,2,3,..; diese lassen sich
verkniipfen durch ,relative“ Gruppen P,(4, B) und eine exakle
Sequenz (Definition der P, sowie von J und 0 vgl. [1, 3])

o 4, B) 5 1,4, By 5 PA, B) > MT,-(4,B) > ...;

wir fassen diese in evidenter Weise in ein exaktes Dreieck

M.(A,B) > 1A, B
f)\\ //J

. zusammen, wobel IT, bezw. P, die direkte Summe der II, bezw.
P, ist und B4 und J als Homomorphismen vom Grade 0, 0 vom
Grade —1 aufzufassen sind. Fiir die relative Gruppe P.(4, B),
die zum Testraum A und zur Abbildung S gehort, gilt die
Ezxzisionseigenschaft fiir Faserungen, wie sie im Spezialfall der
7, wohlbekannt ist: Ist S eine Faserabbildung (im Sinne des
,,covering homotopy theorem®) mit Faser B, so hingt Py(A4, B)
nur von B, ab; das exakte Dreieck ergibt dann einen natiir-
lichen Isomorphismus vom Grade —1

NI AL T Tt TR e PN T

Die duale Betrachtung — fester Raum B und Abbildung

a: A —> A" — ergibt analog relative Gruppen P,(«, B) und
ein exaktes Dreieck |

I (4’,B) 5 M4, B)

o, S

P*(“) B)

sowie einen Exzisionsisomorphismus vom Grade —1 fiir Cofa-
serungen o (d.h. Abbildungen o : A — A’ mit _homotopy
extension property”, A’/a(A) = A, heisst dann die Cofaser
von o) :
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Die Gruppen II,(A, B) besitzen somit die Eigenschaften:
bei festem A4 |

(I) Exaktheit fiir Abbildungen B : B — B’ und passende
relative Gruppen P.(4, B),

(1I) Exzision fiir Faserungen;

bei festem B

(I') Exaktheit fiir Abbildungen o« : A - A’ und passende
relative Gruppen P.(«, B),

(I1") Exzision fiir Cofaserungen.

- Hiezu kommt offenbar die Homotopie-Eigenschaft (II1)
bezw. (IIl’), dass homotope Abbildungen denselben Homo-
morphismus B, bezw. o* induzieren. Die Gruppen II.(A, B)
verdienen also weitgehend die Bezeichnung Cohomologiegruppen
mit Koeffizientenraum B oder Homotopiegruppen mit Koeffizien-
tenraum A, wobei eine Unterscheidung fir die ,absoluten®
Gruppen nicht moglich ist — sie liegt nur in der Auffassung
als Funktor von A bezw. B —, sondern erst bei den relativen
Gruppen auftritt. Die Uebereinstimmung mit der vollen Co-
homologietheorie erhdlt man allerdings erst durch die spezielle
Wahl von Eilenberg-MacLane-Riumen als Testriume B, vgl.
Abschnitt 3.

2. DIE EXAKTE SEQUENZ DER RELATIVEN GRUPPEN.

Sind f; und B, Abbildungen, B, : B, - B'y, B, : By, - B’,,
so versteht man unter einer Abbildung & : f; — B, ein Paar
von Abbildungen ¢ : B, - B, und ¢’ : B’; - B’, derart dass

@

Bi — B2
Bil ) l Bs
B, > B,
kommutativ ist. Eine solche Abbildung & induziert Homomor-

phismen @&, : P, (4, B,) - P4, p,), n=1,2,.., die sich
wiederum durch passende relative Gruppen “zweiter Stufe
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P (A, #) zu einer exakten Sequenz verkniipfen lassen; wie
vorher schreiben wir auch diese als exaktes Dreieck

Pu(4, Br) = Py(4, By)
™\ ST - (2.1)

Dual hiezu erhalt man fiir die Gruppen P.(«, B) und fiir eine
Abbildung & : a; — o, ein exaktes Dreieck

Py(ay, B) g Py(ay, B)
AN ST (2.2)
P(o, B)

Das Verfahren lasst sich natiirlich iterieren, und man gelangt
zu relativen Gruppen beliebig hoher Stufe.

~ Aus den beiden exakten Dreiecken erhilt man durch Spe-
zialisierung viele bekannte Folgen der Cohomologie — und der
Homotopietheorie, so insbesondere die 7Triadensequenzen und
die Tripelsequenzen (vgl. [4]). Wir weisen hier nur auf die Tripel-
sequenz hin, die aus (2.1) entsteht, wenn man B; = B, und
¢ = Identitdat wihlt, also B, = ¢@’f;; man erh&dlt  dann das
exakte Dreieck

Pu(4, B) 3 Py(A, By
6\\ //J
P*(Aa(p,)

in welchem &, und J vom Grad 0, d§ vom Grad —1 ist und
welches die Verkniipfung der Py(A4, p) fir die Zusammensetzung
zweter Abbildungen liefert. Ebenso erhélt man aus (2.2) ein zum
obigen duales Dreieck. (Die Spezialfélle, wo die betreffenden Ab-
bildungen Inklusionen sind, sind wohlbekannt fiir Cohomologie-
und Homotopiegruppen.)

Fir Zusammensetzungen von mehr als zwei Abbildungen
ergeben sich hieraus leicht verschiedene Spekiralreihen fir die
P,(4, B), die Cohomologiegruppen usw., die alle bekannten und
fiir Theorie und Anwendung wichtigen Spektralreihen als Spezial-
fdlle enthalten.
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3. CoromoLoGIE, HINDERNIS, TRANSGRESSION.

‘Wir betrachten hier nicht einen einzelnen Testraum B, son-
dern eine Folge von Réumen (Polyedern) B,, n =20, 1, 2, ...
und Homotopiedquivalenzen o, : B, - QB,.;. Die Gruppen
In(A,B,:,) = 4, Q"B+, = II(A, B,,) sind dann von n>0
unabhéngig, vermoge bestimmter Isomorphismen; wir be-
zeichnen sie mit A™(A). Dasselbe gilt fiir die relativen Gruppen
P,i(a, B,+,), fir eine Abbildung o : 4 —» A’, die mit 2™(«)
bezeichnet werden.
~Diese Gruppen A™(A), h™(«), bezw. ihre direkten Summen
h*(A) und h*(a) erfiillen dann die Eigenschaften

(I") Exaktheit, d.h. man hat ein exaktes Dreieck

R(AY) S hr(A)
AN
1*(a)

wobei J (gewohnlich mit & bezeichnet) den Grad - 1 hat, und
0 den Grad 0, dies wegen der Definition der 4 ,(a) = P(«, B,,).

(IT1’) Exzision, d.h. man hat fiir Cofaserungen « mit der
Cofaser A, einen Exzisionsisomorphismus vom Grade 0

h*(0) = h*(4,).

(III") Homotopie.

Von den Cohomologie-Axiomen von Eilenberg-Steenrod fehlt
also nur das Dimenstonsaxiom h™(S,) = 0 fir m # k; es ist
dann erfiillt, wenn alle B, Eilenberg-MacLane-Polyeder K(G, n)
'sind, wobei G eine beliebige Abelsche Gruppe ist (fir alle n
dieselbe, da 7,(B,) = n,(2B,+;) = T,+(By+y) ist), und in
diesem Fall ist der Homotopietypus von B ,,, somit die Struktur
von h™(A) und A™(«) durch die Gruppe G und die Zahl m be-
stimmt. Wir schreiben fiir diese Gruppen, die eine volle Cohomo-
logietheorie 1) bilden, H™(4; G) bezw. H™(a; G). Auf die

1) Es handelt sich natiirlich um die ,reduzierte“ Cohomologie fiir Raume mit
Basispunkt; daraus lasst sich in bekannter Weise die ,nicht reduzierte“ fiir Riume
ohne Basispunkt herleiten.
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verallgemeinerten Cohomologietheorien ohne Dimensionsaxiom
gehen wir hier nicht ein. ‘

Diese homotopisch definierten Gruppen H ™ stimmen (nach
dem Eindeutigkeitssatz von Eilenberg-Steenrod) fiir ein end-
liches Polyeder mit den iiblichen tiberein. Fiir kompakte R&ume
— und unter gewissen Einschréankungen auch fiir parakom-
pakte — sind es die Cechschen Cohomologiegruppen, vgl.
P. J. Huber [6]. Fiir beliebige (endliche oder unendliche) Poly-
eder A lasst sich mit Hilfe der Tripelsequenz (vgl. Abschnitt 2)
leicht in direkter und elementarer Weise zeigen, dass sie mit den
gewohnlichen simplizialen Cohomologiegruppen zusammenfallen;
dabei ergibt sich folgende Beschreibung der simplizialen Co-
zyklen von A: Es bezeichne A* das k-dimensionale Skelett
von A, j, die Inklusion A™ ' —» A; die Cozyklengruppe Z™
ist isomorph Py(j,., K(G, m)), d.h. ein Cozyklus ist eine Abbil-
dungsklasse & = (¢, ¢')

A™ 1 5 ER(G, m)
b .
Jmd = 1P

A 5 KG, m
wo EK(G, m) den Wegeraum und p seine natiirliche Projektion
bedeutet. Die Cohomologieklasse von @ ist das durch ¢’ ge-
gebene Element von II(4, K(G, m)) = H™(A4; G).

Eine einfache Anwendung hievon: Es sei f: E - B eine
Faserabbildung mit der Faser F, und s: B™ ! - E eine
Schnittfliche iber dem (m—1)-Skelett von B (also fs =j,).
Ferner sei & :f — p eine Abbildung von f in die Faserung
p : EK(G, m) - K(G, m), d.h. ein Element der relativen Gruppe
Py(f, K(G, m)) = H™(f; G). Im Diagramm

B"' 5 E 5 EK(G, m)

] '3 @

Jnd = L = lp
B » B - K(G, m)

ist @¥ ein simplizialer m-Cozyklus von B. Man verifiziert leicht,
dass er folgende Bedeutung hat: es ist der zur Schnittfliche s
gehdrige Hinderniscozyklus n (mit Koeffizienten in 7, _ 1(F)), in
welchem man die Werte noch einem Koeffizienten-Homomor-
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phismus 4 : n,,-,(F) —» G unterworfen hat, ndmlich dem durch
@ induzierten Homomorphismus von =#,_; der Faser von f in
T .-, der Faser von p (diese ist QK(G, m), also ist = ,_,(QK
(G, m)) = G). |

Die Cohomologieklasse dieses Cozyklus @¥ = h,(n) ist geméss
der obigen Vorschrift gegeben durch die ,untere Komponente
von &, also durch ¢’ € H™(B; G) und somit von s unabhdngig.
@' ist iibrigens nichts anderes als ein durch 7Transgression aus
einem Cohomologieelement € H ™ !(F; G) der Faser gewonnenes
Element. Man beachte, dass dieser Zusammenhang zwischen
Hindernis und Transgression nicht nur fiir das “erste Hinder-
nis“, sondern fiir eine beliebige Schnittfliche gilt. Im Fall des
ersten Hindernisses, d.h. wenn die Faser F (m-2)-zusammen-
héngend ist (7;(F) = 0, 1 < m —2), weiss man, dass eine Fun-
damentalklasse ® € H™(f; n,,_1(F)) existiert, derart dass der
induzierte Homomorphismus 2 von 7n,_;(#) in G = = ,_{(F)
die Identitat ist; somit ist dann der Cozyklus ®¥ = 5 gleich
dem ersten Hinderniscozyklus selbst, und seine Cohomologie-
klasse € H™(B; n,_(F)) ist einfach gleich der Komponente ¢’
von @, unabhéngig von der speziell gewédhlten (m—1)-Schnitt-
flache.

Damit wird auch eine Definition des ersten Hindernisses
nahegelegt, die nicht auf der Polyeder-Eigenschaft von B beruht
und das ibliche schrittweise Erweiterungsverfahren nicht be-
niitzt: es ist gegeben durch die Komponente ¢’ einer Fundamen-
talklasse @ e H™f; n,-1(F)). Von dieser Hindernisklasse
o' e H™B; n,_,(F)) lasst sich im Falle F = K(G, m—1)
direkt nachweisen, dass sie die Faserungen £ — B mit Faser
K(G, m—1) charakterisiert. )

Auf den Fall hoherer Hindernisse soll an anderer Stelle ein-
gegangen werden.

4. AUSBLICKE.

Die homotopische Auffassung der Cohomologie, wie sie oben
skizziert ist, l4sst sich sehr weit fortfithren (obwohl die explizite
Berechnung in Spezialfdllen sich stets auf simpliziale oder
Zellenstrukturen stiitzt). In diesen Gedankenkreis gehort die
Postnikovzerlegung eines Raumes (Charakterisierung des Homo-
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topietypes durch die Homotopiegruppen und gewisse Cohomo-
logieklassen) sowie diejenige einer Abbildung, vgl. [3]; ferner
die Cohomologieoperationen, sowohl die priméren wie die
hohern. Ueberdies legt die Dualitdt Cohomologie-Homotopie, i
sei sie heuristischer oder strikter Art, analoge Bildungen fiir die
Homotopiegruppen nahe: Homotopiegruppen mit Koeflizienten
(vgl. [1]), Homotopiezerlegung eines einfach-zusammenhéngen-
den Polyeders, oder einer Abbildung, vgl. [3]; Charakterisierung
spezieller Cofaserungen durch eine Hindernisklasse, genau dual
zu dem am Schluss von Abschnitt 3 beschriebenen Vorgehen,
vgl. [2]. Weitere duale Beziehungen bestehen zwischen dem
cup-Produkt in der Cohomologie und dem Whitehead-Produkt
in der Homotopie. Auch zu numerischen Invarianten wie der
,,Juusternik-Schnirelman-Categorie” eines Raumes konnten duale
Grossen definiert werden (P. J. Hilton, Berstein-Ganea), wobei
jedoch offensichtlich die naive Dualitdt versagt; sie kann nur
durch Zwischenschaltung geeigneter Funktoren, die von Raumen
zu algebraischen Begriffen fiithren (z.B. Gruppen, semisimplizia-
len Gruppen usw.) oder umgekehrt, gerettet werden. Die
Griinde hiezu liegen in allgemeinen kategorietheoretischen Ge-
setzmissigkeiten, die von P. J. Hilton und dem Verfasser
ausfiithrlich untersucht worden sind [7].
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