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HOMOTOPIE UND HOMOLOGIE

Von Beno Eckmann

In diesem Vortrag1) wird dargelegt, wie sich die Begriffe und
Sätze der Homotopie- und der Homologietheorie in einheitlicher
Form aus einem umfassenden Begriff herleiten lassen. Dieser ist
insofern geometrischer Natur, als er die Menge der Homotopie-
klassen Ü(A, B) der Abbildungen 2) des Raumes A in den

Raum B zum Ausgangspunkt und zum eigentlichen Gegenstand
der Untersuchung macht; diese Menge kann bei festem A als

Funktor von B aufgefasst werden, der zur Untersuchung von B
dient, oder, bei festem B als Funktor yon A — die beiden
Auffassungen sind dual zueinander im Sinne der Dualität, die im
Umkehren der Abbildungsrichtung besteht. Spezielle Wahl des

Testraumes A ergibt die Homotopiegruppen, spezielle Wahl
von B die Cohomologiegruppen; diese beiden Gruppen stehen
somit in einer einfachen Dualität zueinander. Die Dualität ist
zunächst nur heuristischer Natur, da kein allgemeines Prinzip
zur Verfügung steht, welches garantiert, dass mit einem Satz
auch der duale richtig ist, und dieser muss erneut bewiesen
werden. Jedoch ist zum mindesten die Formulierung des dualen
Satzes stets dann eindeutig möglich, wenn der Ausgangssatz
gänzlich mit Hilfe von Abbildungen bzw. Abbildungsklassen
formuliert war (und in einem gewissen Rahmen lässt sich auch
das ganze Beweisverfahren dualisieren, bzw. vereinheitlichen,
vergl. P. J. Huber [5]; hier soll dieser Aspekt allerdings nicht
zur Sprache kommen). Die Dualität versagt dann, wenn
spezielle Räume, Punkte, usw. verwendet werden; allgemeine
Abbildungsresultate lassen sich auch auf diese Fälle spezialisieren,

aber dass etwa die Struktur der resultierenden Gruppen
immer noch dual sein sollte, darf im allgemeinen nicht erwartet

i) Internationales Kolloquium über Differentialgeometrie und Topologie (Zürich,
Juni 1960).

i) Es handelt sich durchwegs um Räume mit Basispunkt und Abbildungen und
Homotopien, welche die Basispunkte respektieren.

L'Enseignement mathém., t. VIII, fasc. 3-4. 14



210 B. ECKMANN

werden. Die angedeuteten allgemeinen Resultate, die neues
Licht auf die Beziehungen zwischen Homologie und Homotopie
werfen, haben vor allem die Gestalt exakter Folgen und damit
verknüpfter Isomorphismen, welche alle die 7Z(A, B) oder von
ihnen abgeleitete Gruppen betreffen, und von diesen ist im
folgenden die Rede. Sie sind in Zusammenarbeit mit P. J. Hilton
entwickelt worden und grösstenteils an anderer Stelle ausführlich

dargestellt [1, 2, 4].

1. Die Gruppen 7T„(A, B).

Die Menge 17(4, B) besitzt eine natürliche Gruppenstruktur
bezüglich A — d.h. bei festem B als Funktor von A — falls B
ein gruppenähnlicher Raum ist (d.h. ein Raum mit einer
Multiplikation m: BxB -» B, welche bis auf Homotopie die
Gruppenaxiome erfüllt), und nur in diesem Falle. Sie besitzt eine
natürliche Gruppenstruktur bezüglich B bei festem 4, wenn 4
mit einer Comultiplikation versehen ist, d.h. mit einer Abbildung

m': A ->4 V4 mit den dualen Axiomen (vgl. [1]). Dies
ist insbesondere der Fall für B — QY, den Schleifenraum von Y,
oder für 4 IX, die Suspension von X Zwischen 11(1X, Y)
und 17 (X, ßY) besteht eine natürliche, d.h. mit allen
Abbildungen verträgliche Isomorphie, und man kann diese Gruppen
ohne Schaden identifizieren; durch Iteration erhält man die

Gruppen

I7„(A, B) II(ZnA, B) JJ(In~kA, QkB) 0 <k<n
für n 1, 2, 3, wobei es für l<k<n—1 gleichgültig ist,
welche der gruppenbildenden Strukturen man verwendet. Sie

sind covariante Funktoren von B, contravariante von 4; für
72>2 sind sie stets Abelsche Gruppen [1]. Wählt man für 4 die

Sphäre Sm _M, so ist 7Tn(4, B) — nm(B) die ra-te Hurewicz'sche
Hömotopiegruppe ; wählt man für B den Eilenberg-MacLàne-
Raüm K(G, m + ^), wo G eine Abelsche Gruppe ist, so ist
nn(A, B) Hm(A ; G) ' eine homotopisch definierte Cohomolo-

giegruppe, die für Polyeder 4 mit der üblichen (etwa der sin-

gulär'en) übereinstimmt, wie man z.B. von der Erweiterungstheorie

der Abbildungen her weiss.
t ;;

il J- '
• Mil > •••

'

•
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Eine Abbildung ß :B->B'induziertHomomorphismen

ß*: nn(A,B)-> nn(A, B'), n1,2,3,...; diese lassen sich

verknüpfen durch „relative" Gruppen Pn(A, B) und eine exakte

Sequenz (Definition der Pn sowie von J und d vgl. [1, 3])

- nn(A, B) h nn(A,B')^ P„(A, ß) nn-,(Ä, B) -
wir fassen diese in evidenter Weise in ein exaktes Dreieck

1

| //*(,),/>') ^
j a\ /J
\ P*(A, ß)

l zusammen, wobei 77* bezw. T3* die direkte Summe der IJn bezw.
;! Pn ist und ß* und J als Homomorphismen vom Grade 0, d vom
\ Grade —1 aufzufassen sind. Für die relative Gruppe P*(A, ß),
j die zum Testraum A und zur Abbildung ß gehört, gilt die
;] Exzisionseigenschaft für Faserungen, wie sie im Spezialfall der
| nn wohlbekannt ist: Ist ß eine Faserabbildung (im Sinne des

;"! „covering homotopy theorem") mit Faser B0, so hängt P*(A, ß)
•I nur von 7?0 ab; das exakte Dreieck ergibt dann einen natür-

j liehen Isomorphismus vom Grade —1

j P*(A, ß) ss n*(A, B0)
f
] Die duale Betrachtung — fester Raum B und Abbildung
;j a : A -> A' — ergibt analog relative Gruppen P„(a, B) und

{ ein exaktes Dreieck
;j

j n*(A',B)"a\ aj
'] P*(a, B)
1

| sowie einen Exzisionsisomorphismus vom Grade —1 für Cofa-
!3 serungen a (d.h. Abbildungen a : A -> A' mit „homotopy
j extension property", A'/a(A)<*=A0heisstdann die Cofaser

| von a)

P*(a7 B) ^ n*(A0, B)
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Die Gruppen II*(A, B) besitzen somit die Eigenschaften:

bei festem A

(I) Exaktheit für Abbildungen ß : B B' und passende
relative Gruppen P*{A, ß),

(II) Exzision für Faserungen;

bei festem B

(I') Exaktheit für Abbildungen a : A -> A' und passende
relative Gruppen jP*(oc, B),

(IE) Exzision für Cofaserungen.

Hiezu kommt offenbar die Homotopie-Eigenschaft (III)
bezw. dass homotope Abbildungen denselben
Homomorphismus ß* bezw. a* induzieren. Die Gruppen 17* (4, B)
verdienen also weitgehend die Bezeichnung Cohomologiegruppen
mit Koeffizientenraum B oder Homotopiegruppen mit Koeffizientenraum

4, wobei eine Unterscheidung für die „absoluten"
Gruppen nicht möglich ist — sie liegt nur in der Auffassung
als Funktor von A bezw. B —, sondern erst bei den relativen
Gruppen auftritt. Die Uebereinstimmung mit der vollen Co-

homologietheorie erhält man allerdings erst durch die spezielle
Wahl von Eilenberg-MacLane-Räumen als Testräume B, vgl.
Abschnitt 3.

2. Die exakte Sequenz der relativen Gruppen.

Sind ßi und ß2 Abbildungen, ßx : B1 B\, ß2 : B2 -> B'2,
-so versteht man unter einer Abbildung <P : ß1 ß2 ein Paar

von Abbildungen cp : Bx -> B2 und cpf : B\ -> B'2 derart dass

Bx^B2
Pli iß2
B\ X B't

kommutativ ist. Eine solche Abbildung induziert Homomorphismen

#* : Pn(A, ß±) Pn(A, ß2), n 1, 2, die sich

wiederum durch passende relative Gruppen "zweiter Stufe"
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P„(A, <P) zu einer exakten Sequenz verknüpfen lassen; wie

vorher sehreiben wir auch diese als exaktes Dreieck

P*(A, ß±) - PM, i»2)

3\ // "(2-1)
P *)

Dual hiezu erhält man für die Gruppen B) und für eine

Abbildung # : ax-> a2 ein exaktes Dreieck

-P*(a2, B)-»• -P*(ax, B)

3\ (2-2)

?(*,£)
Das Verfahren lässt sich natürlich iterieren, und man gelangt
zu relativen Gruppen beliebig hoher Stufe.

Aus den beiden exakten Dreiecken erhält man durch
Spezialisierung viele bekannte Folgen der Cohomologie — und der

Homotopietheorie, so insbesondere die Triadensequenzen und
die Tripelsequenzen (vgl. [4]). Wir weisen hier nur auf die Tripel-
sequenz hin, die aus (2.1) entsteht, wenn man Bx B2 und
cp Identität wählt, also ß2 (p'ßu man erhält dann das

exakte Dreieck

P*(A, ß±) ^ P*(A, ß2)

d\ /J
in welchem und J vom Grad 0, d vom Grad —1 ist und
welches die Verknüpfung der P*(A, ß) für die Zusammensetzung
zweier Abbildungen liefert. Ebenso erhält man aus (2.2) ein zum
obigen duales Dreieck. (Die Spezialfälle, wo die betreffenden
Abbildungen Inklusionen sind, sind wohlbekannt für Cohomologie-
und Homotopiegruppen.)

Für Zusammensetzungen von mehr als zwei Abbildungen
ergeben sich hieraus leicht verschiedene Spektralreihen für die
P*(A, /?), die Cohomologiegruppen usw., die alle bekannten und
für Theorie und Anwendung wichtigen Spektralreihen als Spezialfälle

enthalten.
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3. COHOMOLOGIE, HINDERNIS, TRANSGRESSION.

Wir betrachten hier nicht einen einzelnen Testraum 5,
sondern eine Folge von Räumen (Polyedern) Bn, ft 0, 1,-2,
und Homotopieäquivalenzen con : Bn -> QBn+1. Die Gruppen
I7„(A, Bm+n) Ü(A, QnBm+n) £ Ü(A, i?m) sind dann von ft>0
unabhängig, vermöge bestimmter Isomorphismen; wir
bezeichnen sie mit hm(A). Dasselbe gilt für die relativen Gruppen
Pn+1(a, Bw+„), für eine Abbildung a : A -» A', die mit hm(oc)

bezeichnet werden.
Diese Gruppen hm(A), ^m(a), bezw. ihre direkten Summen

ft*(A) und A*(a) erfüllen dann die Eigenschaften

(P) Exaktheit, d.h. man hat ein exaktes Dreieck

h*(A') ^ h*(A)

d\ /j
h*{ a)

wobei / (gewöhnlich mit <5 bezeichnet) den Grad +1 hat, und
dden Grad 0, dies wegen der Definition der hm(oc)

(II') Exzision, d.h. man hat für Cofaserungen a mit der
Cofaser A0 einen Exzisionsisomorphismus vom Grade 0

Ä*(a) h*(A0)

(III') Homotopie.

Von den Cohomologie-Axiomen von Eilenberg-Steenrod fehlt
also nur das Dimensionsaxiom hm(Sk) 0 für m ^ k\ es ist
dann erfüllt, wenn alle Bn Eilenbérg-MacLane-Polyeder K(G, n)
sind, wobei G eine beliebige Abelsche Gruppe ist (für alle n
dieselbe, da 7tn(Bn) ^ nn(QBn+1) nn+1(Bn+1) ist), und in
diesem Fall ist der Homotopietypus von B m, somit die Struktur
von hm(A) und hm(oc) durch die Gruppe G und die Zahl m
bestimmt. Wir schreiben für diese Gruppen, die eine volle Cohomo-

logietheoriex) bilden, Hm(A; G) bezw. Hm(a; G). Auf die

i) Es handelt sich natürlich um die „reduzierte" Cohomologie für Räume mit
Basispunkt; daraus lässt sich in bekannter Weise die „nicht reduzierte" für Räume
ohne Basispunkt herleiten.
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verallgemeinerten Cohomologietheorien ohne Dimensionsaxiom
gehen wir hier nicht ein.

Diese homotopisch definierten Gruppen Hm stimmen (nach
dem Eindeutigkeitssatz von Eilenberg-Steenrod) für ein
endliches Polyeder mit den üblichen überein. Für kompakte Räume

— und unter gewissen Einschränkungen auch für parakompakte

— sind es die Cechschen Cohomologiegruppen, vgl.
P. J. Huber [6]. Für beliebige (endliche oder unendliche) Polyeder

A lässt sich mit Hilfe der Tripelsequenz (vgl. Abschnitt 2)
leicht in direkter und elementarer Weise zeigen, dass sie mit den

gewöhnlichen simplizialen Cohomologiegruppen zusammenfallen;
dabei ergibt sich folgende Beschreibung der simplizialen Co-

zyklen von A : Es bezeichne Ak das /c-dimensionale Skelett
von i, jm die Inklusion Am_1 -» A; die Cozyklengruppe Zm
ist isomorph P^j m, K(G, m)), d.h. ein Cozyklus ist eine
Abbildungsklasse 0 {<P,<P')

A7"-1
0

3m l i P

A X K(G, m)

wo EK(G, m) den Wegeraum und p seine natürliche Projektion
bedeutet. Die Cohomologieklasse von $ ist das durch cp'

gegebene Element von I7(A, K(G, m)) Hm(A ; G).
Eine einfache Anwendung hievon: Es sei / : E B eine

Faserabbildung mit der Faser F, und s : Rm_1 -> E eine
Schnittfläche über dem (m—1)-Skelett von B (also fs =jm).
Ferner sei <P : f -> p eine Abbildung von / in die Faserung
p : EK(G, m) -» K(G, m), d.h. ein Element der relativen Gruppe
Pi(fj K(G, m)) Hm(f; G). Im Diagramm

fi""1 -A E ^
V 0

J ml =>i=> p
B—» B—> K(G, m)

1 (p ' '

ist <P'F ein simplizialer m-Cozyklus von B. Man verifiziert leicht,
dass er folgende Bedeutung hat: es ist der zur Schnittfläche s
gehörige Hinderniscozyklus i? (mit Koeffizienten in 7im_1(i?)), in
welchem man die Werte noch einem Koeffizienten-H omomor-
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phismus h : 7cm_1(i^T) G unterworfen hat, nämlich dem durch
4> induzierten Homomorphismus von 7r w-1 der Faser von / in

der Faser von p (diese ist QK(G, m), also ist nm-1(QK
(G, m)) G)

Die Cohomologieklasse dieses Cozyklus $>¥ ist gemäss
der obigen Vorschrift gegeben durch die „untere Komponente"
von 4>, also durch cp' e Hm(B\ G) und somit von s unabhängig.
<p' ist übrigens nichts anderes als ein durch Transgression aus
einem Gohomologieelement e H m~1(F; G) der Faser gewonnenes
Element. Man beachte, dass dieser Zusammenhang zwischen
Hindernis und Transgression nicht nur für das "erste Hindernis",

sondern für eine beliebige Schnittfläche gilt. Im Fall des

ersten Hindernisses, d.h. wenn die Faser F (m-2)-zusammen-
hängend ist {n^F) 0, i < m—2), weiss man, dass eine
Fundamentalklasse $ e Hm{f\ nm-i(F)) existiert, derart dass der
induzierte Homomorphismus h von nm-i(F) in G 7im_1(FT)

die Identität ist; somit ist dann der Cozyklus <&W rj gleich
dem ersten Hinderniscozyklus selbst, und seine Cohomologieklasse

e Hm(B; n^^F)) ist einfach gleich der Komponente cp'

von unabhängig von der speziell gewählten (m—^-Schnittfläche.

Damit wird auch eine Definition des ersten Hindernisses
nahegelegt, die nicht auf der Polyeder-Eigenschaft von B beruht
und das übliche schrittweise Erweiterungsverfahren nicht
benützt: es ist gegeben durch die Komponente cp' einer Fundamentalklasse

0 e Hm(f\ 7tm-1(F)). Von dieser Hindernisklässe
cp' e Hm(B] 7rm_1(FT)) lässt sich im Falle F X(£, m—1)
direkt nachweisen, dass sie die Faserungen E -» B mit Faser
A(G, m—1) charakterisiert.

Auf den Fall höherer Hindernisse soll an anderer Stelle

eingegangen werden.

4. Ausblicke.

Die homotopische Auffassung der Cohomologie, wie sie oben
skizziert ist, lässt sich sehr weit fortführen (obwohl die explizite
Berechnung in Spezialfällen sich stets auf simpliziale oder
Zellenstrukturen stützt). In diesen Gedankenkreis gehört die
Postnikovzerlegung eines Raumes (Charakterisierung des Homo-
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topietypes durch die Homotopiegruppen und gewisse Cohomo-

logieklassen) sowie diejenige einer Abbildung, vgl. [3]; ferner
die Cohomologieoperationen, sowohl die primären wie die
höhern. Ueberdies legt die Dualität Cohomologie-Homotopie,
sei sie heuristischer oder strikter Art, analoge Bildungen für die

Homotopiegruppen nahe: Homotopiegruppen mit Koeffizienten
(vgl. [1]), Homotopiezerlegung eines einfach-zusammenhängenden

Polyeders, oder einer Abbildung, vgl. [3]; Charakterisierung
spezieller Cofaserungen durch eine Hindernisklasse, genau dual
zu dem am Schluss von Abschnitt 3 beschriebenen Vorgehen,
vgl. [2]. Weitere duale Beziehungen bestehen zwischen dem

cup-Produkt in der Cohomologie und dem Whitehead-Produkt
in der Homotopie. Auch zu numerischen Invarianten wie der
„Lusternik-Schnirelman-Categorie" eines Raumes konnten duale
Grössen definiert werden (P. J. Hilton, Berstein-Ganea), wobei
jedoch offensichtlich die naive Dualität versagt; sie kann nur
durch Zwischenschaltung geeigneter Funktoren, die von Räumen
zu algebraischen Begriffen führen (z.B. Gruppen, semisimplizia-
len Gruppen usw.) oder umgekehrt, gerettet werden. Die
Gründe hiezu liegen in allgemeinen kategorietheoretischen
Gesetzmässigkeiten, die von P. J. Hilton und dem Verfasser
ausführlich untersucht worden sind [7].
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