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| 50¢ ASSEMBLEE ANNUELLE A
DE LA SOCIETE MATHEMATIQUE SUISSE -

@ Bienne, le 23 septembre 1961, dans le cadre de la 141¢ assemblée
annuelle de la Société Helvétique des Sciences naturelles.

Président : Professeur DT H. Jeckrin, Université de Zurich.
Vice-Président : Professeur DT B. Eckmann, EPF, Zurich.
Secrétaire : Professeur DT J. pE SieBEnTHAL, EPUL, Lausanne.

A 8h. 45, M. JeckLIN, président, ouvre la séance, dans ’auditoire
n° 25 du Technicum.

1. Communications selon liste annexée.
2. Séance administrative.

M. JeckLIN, président, excuse M. Eckmann et M. Burckhardt, a
Pétranger; il rapport sur I'activité de la SMS et notamment sur la
séance de printemps. Il signale qu’un nouveau contrat a été passé
avec Orell-Fiissli, Zurich, au sujet des Commentarii. L.es comptes du
Jubilé du cinquantenaire présentent un bénéfice qui sera judicieuse-
ment utilisé. Le Congres international 1962 aura lieu & Stockholm
du 15 au 22 aofit; adresse: International Congress of Mathematicians,
Djursholm 1, Sweden

Nouveaux membres selon liste annexée.

Le Secrétaire-caissier donne connaissance des comptes de la
Société pour 1960, et M. le Professeur DT Methée, vérificateur, indique
que ces comptes sont en ordre. L’assemblée donne décharge au
secrétaire-caissier et aux vérificateurs, sans opposition.

Elections. Sont élus pour 1962-1963:

Président : Professeur DT B. Eckmann, EPF, Zurich.
Vice-Président : Professeur DT J. DE SIEBENTHAL EPUL, Lausanne
Secrétaire-caissier : Professeur DT H. HUBER, Bale

Nouveauxr membres :

Professeur S. KoBavasui, Vancouver, Canada.

Professeur H. Thomas Sournarp, Haywerd, California, USA.
Jos. D. FELomann, Benton Harbar, Michigan, USA.
Professeur Aaron GArLuTEN, New-York, N.Y. USA.

Leonard S. Cuarrapr, New-York, N.Y., USA.

Alvin Hausner, New-York, N.Y., USA.
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V. W. Grauam, Dublin.

Gordon L. WaLker, Providence, R.I., USA.

Mile Margrit Frer, Zurich.

Mlle Monica EpEer, Zurich (& vie).

Malcolm W. OvripuaNT, Georgetown University, Washington 7, D.C.

Joseph A. Wour, Institute for Advanced Study, Princeton, N.J.
U.S.A.

A passé membre libre: A. KAurMANN, membre depuis 1935.

Décés: P. Bipar, Lonay-sur-Morges.
L. Jeckrin, Basel.

Démisston : A. Challand, membre depuis 1946.

Communitcations

Piccarp: Sur la théorie des groupes.

TANNER: La syméirie locale des ensembles et fonctions arbitraires.
KutEnz1: Betrachtungen zur nichtlinearen Programmuierung.

. KoLLER: Priifung der Normalitit einer Verteilung.

. Voss: Fldchen mit vorgegebenen Hauptkriimmungen.

Herscu: Une interprétation du principe de Rayleigh-Poincaré et
d’une méthode de Weinstein-Bazley-Aronszajn a Uaide d’hyper-
quadratiques associées.

. R. Scawarz: ALGOL, die internationale Formelsprache.

SCARPELLINI: Probleme der Azxiomatisierbarkeit in der unendlich-
wertigen Logik.

S. Piccarp: Un probléme de la théorie des ensembles.

R TR

eofan

1. Sophie Piccarp (Neuchétel): Théorie des groupes. — Systémes
irréductibles d’éléments d’un groupe. — Les groupes fondamentaux,
leurs bases et leurs éléments fondamentaux.

Soit G un groupe multiplicatif d’ordre quelconque, fini ou infini,
soit A un ensemble d’éléments de G et soit G* le sous-groupe propre
ou non de G qu’il engendre. Nous disons que 'ensemble A est irré-
ductible si, quel que soit le sous-ensemble fini a;, a,, ..., a, de 4
comprenant un nombre £ = 2 éléments, il n’existe, dans G*, aucun
sous-ensemble b, b,, ..., b; formé d’un nombre | < k d’éléments du
groupe G* et tel que I'ensemble (4 —[ay, ay, ..., a]) U[by, by, ..., b;]
soit encore générateur de G*.

Nous disons que le groupe G est fondamental §’il posséde au moins
un systeme irréductible d’éléments générateurs et nous appelons base
d’un groupe fondamental tout systéme irréductible de ses éléments
genérateurs. Tout groupe d’ordre fini, tout groupe qui posséde des
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systemes fints d’éléments générateurs, tout groupe libre, tout groupe
quast libre sont des groupes fondamentauz. Mais il existe aussi une
infinité de groupes non fondamentaux. Ainsi le groupe S (A) de
transformations des nombres entiers dont les éléments sont toutes les
substitutions (de classe paire) d’un nombre fini quelconque d’entiers
quelconques n’est pas fondamental.

Nous disons qu'un élément d’un groupe fondamental G est fonda-
mental §’il fait partie d’une base au moins de ce groupe. Tout groupe
fondamental possede aussi bien des éléments fondamentaux que des
éléments qui ne le sont pas. En particulier I’élément neutre du groupe
n’est pas fondamental. Tout groupe cyclique est fondamental. S’il
est d’ordre infini et se compose de toutes les puissances entiéres d’un
élément «, il n’a que deux éléments fondamentaux a et a1, S'il est
d’ordre fini n et se compose des éléments al, a2, ..., a”, quel que soit
I’entier m (1 = m < n) premier avec n, ’élément a™ est fondamental.
Si le groupe G est libre, tout élément hbre de G est fondamental et,
si' G est quasi libre, fout élément quasi libre de G est fondamental ot
il n’y en a pas & autres. Quel que soit I’entier n > 1 tout élément ~ 1
du groupe symétrique S, et du groupe alterné A, de degré n est
fondamental, & la seule exception des trois doubles transpositions
du groupe S, qui ne font partie d’aucune base de ce groupe.

Soit G un groupe fondamental ou non et soit G* un sous-groupe
de G. Nous disons que G* est un sous-groupe fondamental de G si G*
possede des systemes irréductibles d’éléments générateurs.

Tout groupe G d’ordre > 1 possede des sous-groupes fondamen-
taux parmi lesquels figurent les sous-groupes cycliques engendrés par
ses divers éléments d’ordre > 1. Tout sous-groupe d’ordre > 1 d’un
groupe fondamental n’est pas forcément fondamental. Ainsi le groupe
non fondamental 2l cité plus haut est un sous-groupe du groupe quasi
libre engendré par les deux transformations des nombres entiers
a=1(.,—3,—1,0,1,3,...)et b= (...,—4,—2,0,2 4, ...). L’union
et P'intersection de deux sous-groupes fondamentaux d’un groupe G
peuvent étre dépourvus de base, de sorte que ’ensemble des sous-
groupes fondamentaux d’un groupe G n’a en général pas une structure
de treillis. )

Nous disons qu’un groupe fondamental G est décomposé en pro-
duit quasi libre de ses sous-groupes fondamentaux G,, A € A, et nous

© écrivons G = II** G si, quelle que soit la base A du groupe G, -
AEA
I’ensemble 4 = U 4, constitue une base de G. Tout groupe fonda-
YEA
mental est suscept1ble d’une telle décomposition. En particulier, il

est le produit quasi libre des groupes cycliques engendrés par les
éléments de 'une quelconque de ses bases. Les facteurs G, A e A
sont appelés les facteurs quasi libres de G. Tout élément fondamental
d’un facteur quasi libre G, est aussi un élément fondamental du

\
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groupe G. Aucun élément fondamental d’un facteur quasi libre G
ne peut faire partie du groupe engendré par tous les autres facteurs
de la décomposition de G en produit quasi libre dont fait partie le

facteur G;.

Soit G un groupe fondamental, soit G = II** G, sa décomposition
AEA

en produit quasi libre de ses sous-groupes fondamentaux G, so.it ;
y, un sous-groupe fondamental quelconque de Gy, quel que soit

A€ A, et soit v le sous-groupe de G engendré par Iensemble des
éléments des groupes y,. Ce groupe y n’est pas nécessairement le

produit quasi libre des groupes v,. En effet, soit, par exemple, G le

groupe abélien engendré par les trois substitutions a = (1, 2),
a, = (3,4) (5,6,7), a; = (8,9) (10, 11, 12) (13, 14, 15, 16, 17). Ce
groupe G, d’ordre 360, est le produit quasi libre des groupes cyeli-
ques g, g», g5 engendrés par a,, a, et a;. Soit v; = g, soit v, le sous-
groupe cyclique de g, engendré par la substitution (5, 6,7) = a;
et soit v, le sous-groupe cyclique de g; engendré par la substitution
(13, 14, 15, 16, 17) = a3. Désignons par vy le sous-groupe de G,
produit de vq, v, et v5. Le groupe v est cyclique, donc & base d’ordre 1,
et par suite il n’est pas le produit quasi libre de vy, v, et vs.

Si g est un sous-groupe fondamental d’un groupe fondamental G,
il n’est pas toujours possible de décomposer G en produit quasi
libre dont g soit 'un des facteurs. En voici un exemple. Soit G le
groupe libre engendré par les deux éléments libres a; et a,, et soit
g le sous-groupe de G engendré par les deux éléments a} et a. g est
un groupe libre & base du second ordre et il est impossible de décom-
poser G en produit quasi libre dont g soit I'un des facteurs, car I'exis-
tence d’une telle décomposition impliquerait que G est & base d’ordre
= 3, ce qui n’est pas.

Soit G un groupe fondamental dont un élément fondamental «
appartient a un sous-groupe fondamental g de G. L’élément an’est alors
pas nécessairement fondamental dans g. En effet, soit par exemple,
G le groupe symétrique des substitutions des éléments 1,2, 3,4,5,6,7,8
et soit @ = (1,2) (3,5) (4,7) (6,8). a est un élément fondamental
de G qui, comme on sait, est & base du second ordre, et on obtient
une base de G en associant a a 1’élément b = (1, 3) (5, 7, 8).

Considérons le sous-groupe g d’ordre 1344 de G, engendré par
les deux élémentsa’ = (1,2,3,4,5,6,7), o' = (1,3) (4,8). On
démontre sans peine qu’aucune des sept substitutions a’iaa’~?
(t =1, 2, ..., 7) ne fait partie d'une base de g. Ce sont des éléments
non fondamentaux de g. Done, en particulier, a qui fait partie de g
n’est pas un élément fondamental de ce groupe. ‘

La réciproque est également vraie: si g est un sous-groupe fon-
damental d’un groupe fondamental G, un élément fondamental de g
n’est pas nécessairement fondamental dans G. En effet, soit, par
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“exemple, G le groupe quasi libre de transformations des nombres entiers
engendré par les deux transformations ¢ = (..., —3; —1,0,1, 3, ...),
b= (.,—4,—2,0,2 4,...), dont la premiére permute tous les nom-
bres impairs et 0 et la seconde permute tous les nombres pairs. Le
groupe cyclique d’ordre 3 engendré par le cycle (—2, 0, 2) appartient
a ce groupe. C’est un sous-groupe fondamental de G, dont le cycle
(—2, 0, 2) est un élément fondamental. Or, il ressort de la théorie
des groupes quasi libres que le eycle (—2, 0, 2) n’est pas un élément
fondamental de G. ,

Quel que soit le groupe fondamental G, quelle que soit la base A
de G et quel que soit le sous-ensemble A* de A, le groupe G* engendré
par A* est fondamental et tout élément fondamental de G* est aussi
un élément fondamental de G.

2. R.C. H. Tan~xger, Ph.D. (Londres, Angleterre). — La symétrie
locale des fonctions et ensembles arbitraires.

Un ensemble ponctuel linéaire étant donné, on peut parler de
symétrie ou dissymétrie locale au point P en se référant aux points
de I’ensemble voisins de P: au cas ou P serait point limite d’un cdté,
mais pas de 'autre, on dira que P est point de dissymétrie locale de
Iensemble, ou, pour abréger, un point dissymétrique de I’ensemble.
On sait alors que les points dissymétriques d’un ensemble linéaire
quelconque sont au plus dénombrables. Cette propriété découle essen-
tiellement du théoréme énoncé en 1882 par Georg Cantor: tout
ensemble d’intervalles sans points intérieurs communs deux a deux
est, dénombrable.

Pour un ensemble plan, on envisage tout d’abord la symétrie par
rapport & une sécante donnée. Un point P de cette sécante qui serait
point limite de I’ensemble d’un seul c6té de la sécante serait point
de dissymétrie locale par rapport & la sécante donnée. Une sécante
comprenant un tel point peut étre désignée sécante dissymétrique de
I’ensemble. Les sécantes dissymétriques paralléles a une dzrectwn fize
quelconque sont au plus dénombrables.

D’ou I’énoncé équivalent relatif & une fonction f(x) réélle quel-
conque d’une seule variable réelle:

limm f(z-k) = limm f(z— h)
hi{0 hi0

en exceptant tout au plus une infinité dénombrable de valeurs de x.
L’égalité s’entend au sens d’identité entre la pluralité de valeurs a
gauche et la pluralité de valeurs a droite. La fonction f(x) elle-méme
peut prendre une pluralité de valeurs quelconques pour chaque valeur
de z. Ses valeurs limites se définissent comme pour une fonction uni-
voque, en se reportant de préférence a la représentation de la fonction
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sur le plan, c’est-a-dire & Densemble plan arbitraire dont on s’est
occupé en premier lieu. |

Pour une fonction univoque, ce théoréme fut découvert en 1908
parW H. Young (Rend. r. Acc. Lincet, vol. XVII, série 53). Vingt ans
aprés, il le précisa en y faisant ﬁgurer outre les valeurs limites, la
valeur intrinséque de la fonction.en z. Avec le méme ordre d’excep-
tions, et en utilisant, pour une pluralité de limites unilatérales, la
notation usuelle pour une limite unilatérale unique, on a

{(z) = Hz+0) = fz—0).

A ce résultat, énoncé dans le Bulletin des sciences mathématiques,
tome 52 (1928), se joignent des raffinements et extensions qui peu-
vent sauter aux yeux, aujourd’hui que la théorie des ensembles est
largement acquise. D’une part, la symétrie bilatérale dans le plan
ayant été analysée au moyen d’un filtre & trames rationnelles rectan-
gulaires, on n’a qu’a prendre des trames triangulaires pour aboutir & ce
résultat qu’en presque tout point d'un ensemble plan arbitraire, il y a,
au sens local, syméirie quasi-radiale compléte autour du point, ¢’est-
a-dire que toute direction issue de ce point y sera «tangente» &
Iensemble. Les points exceptionnels gisent sur une infinité dénom-
brable tout au plus de courbes monotones, de mesure plane nulle.
- D’autre part, on passe sans peine de deux & n dimensions. L’énoncé
précédent, par exemple, reste valable, les points exceptionnels for-
mant un ensemble de mesure nulle dans cet espace, disposé de facon
analogue sur des hypersurfaces a (n — 1) dimensions, dénombrables
tout au plus.

Les théorémes concernant les fonctions entlerement arbitraires
sont rares. I1 doit paraitre bien surprenant qu’on puisse établir & si peu
d’exceptions prés la symétrie locale pour de telles fonctions. Comme le
disait Young dans son préambule de 1928: « On croirait volontiers
qu’en dehors de toute hypothese, il ne peut étre question de recher-
cher des propriétés ».

Si surprenantes que semblent ces propriétés, les falts eux-meémes
sont plus étonnants encore. La découverte fondamentale passa presque
inapercue, non seulement en 1908, mais lorsqu’elle fut refaite, en
principe, par H. Blumberg en 1918 (Am. Math. Soc. Bull. 24), et
méme lors de la mise au point finale de Young en 1928; et cela malgré
plusieurs travaux apparentés de W. H. et G. C. Young (Quart.
J. P. A.Maths. 160, 1909;. Proc. Lon. Math. Soc. 1909 et 1916) et de
Kempisty (Fund. Math 1924) En 1930, Blumberg, enfin saisi de
la priorité des Young, reprend, élabore, aligne avec ses propres
variantes celles des Young et de Kemplsty (Fund. Math. 1930),
sans pourtant se mettre en rapport personnel avec Young, si bien que,
lorsque Blumberg reprit le théme une derniére fois en 1938 (Fund.
Math. 32), et s’engagea dans des critiques assez maladroites, Young,

L’Enseignement mathém., t. VIII, fasc. 1-2. 13
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déja agé, n’en sut toujours rien. Puis, une fois de plus, le théme
s’éclipsa.

(est dans un nouveau cadre qu’il vient de renaltre celui des
cluster sets de Seidel et des bouts premiers de Caratheodory, auxquels
avait conduit la théorie des fonctions analytiques d’une variable
complexe pendant le premier quart de notre siécle. A tour de role,
Lindelof, Iversen, I'infortuné Gross, Plessner, Seidel, se mirent & en
développer I'analyse fort complexe, ot 'on chercha 4 mettre ordre
par la classification de points frontiéres de divers degrés de simplicité.

Et voila que les propriétés de symétrie locale ressurgissent sponta-
nément, dans un domaine qui ignorait encore tout des recherches par
trop générales dans le domaine réel. Soudain, les résultats et surtout
les méthodes de Young s’avisérent non seulement appropriés, mais
bien plus efficaces que Pappareil usuel. Grace & eux, on peut, en
résumé, s’attendre & une symétrie approchée presque partout, du
moment qu’on se place dans un espace mesurable séparable, sans
plus, les exceptions se classifiant d’une facon dénombrable bien définie,
et se réduisant, au cas linéaire, & un ensemble dénombrable tout court.

Le résultat pour les « cluster sets» frontiéres C(f,P) d’'une fonction
f(z) de variable complexe, qui n’exige donc plus ’analyticité ni méme
la continuité de f(z) dans le domaine d’existence donné, et admet au
surplus pour f(x) une pluralité de valeurs en tout point, figure dans
un article tout récent de E. F. Collingwood (Proc. Nat. Ac. Sc. 49,
1960), explicité pour le cas d’une fonction univoque dans le cercle
unité; ces restrictions sans importance se rattachent aux études sur
les bouts premiers qu’il vient d’arrondir en collaboration avec Piranian
(Math. Ann. 144, 1961), en montrant par des exemples la finalité des
résultats obtenus D’autre part les remarques plus générales de
Collingwood sur I’application de la méthode de Young emboitent
clairement 1’extension aux fonctions & valeurs vectorielles pluri-
voques quelconques d’une variable vectorielle générale.

C’est 14, en fin de compte, un theme d’intérét actuel qui, mieux que
toute propriété élémentaire ou banale, range les mathématiques
a coté des sciences biologiques, physiques et autres dans le cadre
proposé & ses conférenciers par la Société helvétique des "sciences
naturelles pour sa réunion annuelle de Bienne (septembre 1961). Je
pense qu’il était donc bien de rigueur d’attirer I’attention, par cette
occasion, sur un phénomeéne toujours encore trop peu remarqué,
par lequel I'activité mathématique participe a ce trait curieux de la
perception humaine: qui du fortuit fait naitre la loi, et sait de I’arbi-
traire tirer Symétrie et forme.
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6. J oseph HerscH (Institut Battelle, Genéve): Une interprétation du
principe de Rayleigh-Poincaré et d'une méthode de Weinstein-
Aronszajn-Bazley & Uaide d’hyperquadriques associées.

1. Considérons un espace vectoriel ou fonctionnel doué d’un
produit scalaire < u, ¢ > induisant une norme < ¢, ¢ > = || ¢ ||> = 0;
et dans cet espace un opérateur linéaire self- adjoint A induisant une
forme quadratique 4 (¢, ¢) = < A¢, ¢ > (non semi- deﬁme negatlve-
ment). Le quotient de Rayleigh est défini par R4[v] = A (0, ¢) [ || ¢ |I%;
ses valeurs stationnaires sont les valeurs propres discretes de A:
At =24 =2{ =...; nous supposons qu’elles forment la partie infé-
rieure du spectre de A ; nous désignons par u,, u,, us, ... les vecteurs
propres correspondants.

2. Nous associons a la forme quadratique A I'’hyperquadrique
Qa={v|A(s,0) =1}.S14 =0, les demi-axes de Q 4 sont AL E
>);%> ... — Soit B (v, ¢) une autre forme quadratique (dans le
méme espace); il est clair que B = A4 si et seulement si QO C Q4.

Le probleme de l'évaluation des valeurs propres A peut étre
considéré ainsi: Trouver des formes quadratiques B~ = A4 et B¥ > 4

L i=1,2,3, ...

a valeurs propres connues; alors AF =)= AB
conditions équivalentes: - 5 Q4 > (Op+.

3. Interprétation du principe de Rayleigh. — Choisissons arbi-
trairement un vecteur w; nous définissons la forme quadratique B+
par B* (w, w) = A (w, w) et B* (¢, ¢) = 400 pour tout ¢ | w (donc
aussi pour tout ¢ non parallele a w).

B* =A, ce que montre aussi Qp+C Q4: Qp+ est une hyperqua-
drique degeneree sur un diameétre de Q 4 ,tous ses axes sont nuls sauf un

seul (de direction w). 7\113 = R4 [w], 7\123+ — 7\13’ = ... = + oo. L’iné-

" A .
galité 24 = 28" = R”[w] est essentiellement le principe de Rayleigh.

4. Interprétation du principe de Poincaré. — Plus généralement,
choisissons arbitrairement un sous-espace linéaire L, & n dimensions,

BT (0, v) = (maxer, RA[t]). ||0|]2 si ¢ € Ln
B (0, ¢0) = + o si¢ | L.
B = A, (Qp+C Qyu; en eﬁet Op+ est dégénérée sur un disque d n di-
mensions, contenu dans Q4 et dans L.

M= = = N maxeen, B A = W= = .
L’inégalité A2 = 22" = = maxrer, R4 [f] est essentiellement le principe

de Poincaré. Si a1 > 0, 1/\/ AL est le rayon du plus grand disque
d n dimensions contenu dans Q 4-

Nous définissons
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5. Premier pas de la méthode de Weinstein- -Aronszajn-Bazley. —
Admettons que 'opérateur A se laisse décomposer en A = A° 4 A’

avec A’ =0, les valeurs propres A] =2A; = A3 = ... de A° étant
connues, ainsi que les vecteurs propres correspondants u‘i, Uy U3y -
Nous définissons un opérateur auxiliaire B~ par B~ = A° + C~

choix particuliérement simple de C~ correspond au premier pas de
Bazley: C~upy=c"u,, C u; = 0 pour tout i #n. B et C~ ont les mémes
vecteurs propres que A%, B~ales valeurs propres A{, A3, ..., Ap_1, ApF¢ ™,
m+ 15 Ant 2, --- (pas nécessairement ici par ordre de grandeur) La condi-
tion B~ = A signifie C7 = A’, soit Qc— > Q4'; Qc- est degeneree sa
frontiére est une paire d’ hyperplans de demi-distance 1/ Jeo on
choisit de preference Qc- bitangente & Q4'; un Smele razsonnement

géoméirique montre qu’alors ¢~ = || u, ||} < A’"tu,, u; >; d’ou no-
tamment A=Ay = min {A) + (||ug|[2/< A4~ 1u,,,u >); Aox1}, €n
plein accord avec Bazley. (Cette borne inférieure 2%~ est meilleure
que Ay.) '

6. Ces considérations géométriques se laissent généraliser et sug- -
gerent quelques assouplissements de la méthode. — On voit également

qu’'un probléme auziliaire fournissant une borne optimale pour
fournit souvent une borne triviale pour les autres valeurs propres, par

exemple: A} = 7\§—=...= M= — 0, N = Ap1=-. =hpyps et de

. B+ B+ Bt Bt :
méme: Xy = Ny = ... =N, , Njpq = 7\,,+2_ = + o (Poincaré,
cf. §4): B~ et B* sont alors construzts en vue d’evaluer par défaut le

seul AL,
Ces idées ont d’abord été exprimées dans une note de I'Institut
Battelle, polyeopiée en avril 1961. ,,

7. H. R. SCHWARZ Zurleh ALGOL dw Lnternatwnale Formelsprache

Nachdem die modernen elektromsehen Reehenanlagen mit ihren
hohen Rechengeschwindigkeiten eine grosse Verbreitung und An-
wendung gefunden hatten, da merkte man allméhlich, dass die Vor-
bereitung eines. Problems bis zu dem Moment, wo. die. Maschine
imstande ist es mit ‘Hilfe eines Programms zu losen, mit grossem
Arbeitsaufwand verbunden ist. Das héngt einmal damit. zusammen,
dass die sogenannte Maschinensprache sehr stark von der gewdhn-
lichen mathematischen -Formulierung abweicht. Anderseits unter-
scheiden sich auch dié Maschinensprachen bei den verschiedenen
Rechenautomaten im allgememen sehr stark, was die Uebertragung
eines Programms von einer Maschine auf eine andere. Jewellen zu
einem schwierigen Unternehmen macht. .
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Aus dieser Situation heraus versuchte man nun, eine algorith-
mische Schreibweise oder Sprache zu definieren, welche folgende
Punkte erfiillen soll:

a) sie soll leicht zu lesen sein;

b) sie soll international angenommen werden; e

¢) sie soll sich gut fiir wissenschaftliche Berechnungen eignen;

d) sie soll gut verwendbar sein, um Rechenprozesse im Detail zu
beschreiben.

Fiir die klassische mathematische Schreibweise treffen wohl die
ersten beiden Punkte zu, die letzten beiden hingegen nicht. Fir
spezifische Maschinensprachen dagegen ist gerade das umgekehrte der
Fall. So entstand als Mittelding zwischen den beiden Extrema die
internationale Formelsprache ALGOL.

Wie jede andere Sprache besteht auch die Formelsprache ALGOL
aus einzelnen Satzen bzw. Anweisungen, welche natiirlich einer be-
stimmten Grammatik oder Syntax zu gehorchen haben. Diese sind
im Artikel « Report on the Algorithmic Language ALGOL 60 » z.B.
in der Zeitschrift Numerische Mathematik 2 (1960), 106-137, fest-
gehalten.

Anhand von einigen fundamentalen Elementen soll nun eine kleine
Idee von der ALGOL-Sprache vermittelt werden. Ein ALGOL-
Programm, welches eine numerische Methode beschreibt, setzt sich
unter anderem aus Anweisungen von der folgenden Art zusammen:

= 2XpXg; Y= pXp—gXy;
welche besagen, dass die Variabeln z und y auf der linken Seite des
Ergibt-Zeichens := die Werte erhalten sollen, welche sich nach der
Auswertung der arithmetischen Ausdriicke auf der rechten Seite
- ergeben. Diese Art von Anweisungen ersetzen somit die in der ge-
wohnlichen mathematischen Schreibweise geldufigen Bestimmungs-
formeln fir Zwischen- und Endresultate.

Mit Hilfe dieser Sorte von Anweisungen ldsst sich natiirlich ein
Rechenprozess nur in den allereinfachsten Féllen beschreiben, dann
némlich, wenn ein Satz von Formeln lediglich in einer bestimmten
Reihenfolge genau einmal angewendet werden soll. Oft wird es aber
notig sein, bestimmte Anweisungen mehrmals fiir vorgeschriebene
Werte einer Laufvariabeln zu wiederholen. Zu diesem Zweck gibt es
in ALGOL die sogenannten Schleifenanweisungen. Ich gebe dazu
ein Belsp1el

: = 0;
for k= 1 step 1 until » do % := % + a[k]xb[k];
Hier wird zunéchst die Variable 2 Null gesetzt. Sodann soll fiir den

Schleifenindex %, beginnend mit dem Wert 1 und dann in Schritten
von 1 bis und mit dem Wert n die nachfolgende Anweisung ausge-




198 . SOCIETE MATHEMATIQUE SUISSE

fiihrt werden. Darin kommen die einfach indizierten Variabeln ¢ und b
vor, welche je Vektoren darstellen. Die Schleifenanweisung besagt,
dass zum Wert /& das Produkt der k-ten Komponente der Vektoren a
~und b addiert werde. Der Endwert von % wird damit offenbar gleich
dem skalaren Produkt der Vektoren.a und b.

Zur Beschreibung der Schleifenanweisung werden einige fett
gedruckte Worte verwendet, deren Bedeutung ohne weiteres ersicht-
lich ist. Diese sind Grundelemente der Formelsprache wie etwa die
arithmetischen Operationszeichen und haben wie jene eine ganz
bestimmte Bedeutung.

In numerischen Berechnungen kommt man oft in die Situation,
dass man bestimmte Formeln und Anweisungen nur dann auszu-
fiihren hat, falls eine Bedingung erfillt ist. Man denke nur an den
Fall, wo eine Iteration abgebrochen werden soll, sobald die Resultate
eine vorgeschriebene Genauigkeit erreicht haben. Dazu gibt es in
ALGOL die bedingten Anweisungen. Ein einfaches Beispiel moge
das erldutern:

if z = 0 then z := 0;

Das Beispiel hat den Effekt, dass die Anweisung z := 0 dann und
nur dann ausgefithrt wird, falls der Wert von z grosser oder gleich
Null ist, andernfalls wird sie iibersprungen. Somit bleibt der Wert
von z ungedndert, falls er negativ ist, andernfalls wird er durch Null
ersetzt. Die bedingte Anweisung ist also gleichbedeutend mit der
Aussage z := Minimum (0, z).

In diesem Zusammenhang mochte ich erwéhnen, dass neben der
gewOhnlichen Arithmetik auch die Bool’sche Algebra in ALGOL auf-
genommen ist, was wiederum viele Moglichkeiten erdffnet.

In den bisherigen Beispielen war jeweilen nur eine einzige An-
welsung von einer Bedingung respektive von einer Schleifenanweisung
abhingig. Doch muss auch die Moglichkeit bestehen, eine Gruppe
von mehreren Anweisungen zusammenzufassen, um sie gleich-
zeitig z.B. von einer Bedingung abhéngig zu machen. Dies geschieht
mit den sogenannten Anweisungsklammern begin und end, welche
dhnlich wie 6ffnende resp. schliessende Klammern in arithmetischen
Ausdriicken wirken. Sollen z.B. in einem numerischen Verfahren
sowohl das innere Produkt von zwei Vektoren ¢ und b wie auch ihre
Normen berechnet werden, so kann dies mit folgendem Programm-
stiick geschehen:

u:i= ¢ := w:= 0;

for £ := 1 step 1 until » do

begin u := u + a[k]? 2;
p 1= ¢ 4+ a[k]Xxblk];
w 1= w

+ b[k] 1 2;
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Nun will ich noch auf zwei wichtige Elemente hinweisen. Es kann
nimlich jede Anweisung mit einer Marke in Form einer ganzen Zahl
oder eines Namens versehen werden, wobei die Marke von der An-
weisung durch einen Doppelpunkt getrennt wird. Also z.B.

alpha: z:=p; y:=¢q; ustl

Eine solche Markierung ist dann notwendig, falls im Verlauf der
Rechnung mit einer bestimmten Anweisung fortgefahren werden
soll. Dazu dient die Sprunganweisung. Soll also an einer Stelle mit
der Anweisung markiert mit alpha forgefahren werden, dann heisst
es im Formelprogramm

go to alpha ;

Mit diesen paar Elementen von ALGOL ist es schon mdglich, recht
komplizierte numerische Verfahren zu beschreiben. Daneben gibt es
noch weitere Arten von Anweisungen und dazu vor allem noch die
Deklarationen oder Erklarungen, welche iiber die auftretenden Varia-
beln Aussagen machen und damit ein Formelprogramm erst vervoll-
standigen.

Wie anhand von einigen einfachen Elementen darzulegen versucht
wurde, ist ALGOL sehr leicht verstéandlich und daher auch rasch zu
erlernen. So dient die internationale Formelsprache dazu, numerische
Rechenprozesse in einer einheitlichen Form darzustellen. Damit ist
ALGOL ein wichtiges und notwendiges Mittel geworden, um dem
Erfahrungsaustausch zwischen den verschiedenen Forschungszentren
zu dienen, und davon wird schon reger Gebrauch gemacht.

Um nun ein solches ALGOL-Programm auf einer Maschine durch-
zurechnen, wire es an und fiir sich notig, dass sich jemand hinsetzt
und ein zugehoriges Maschinenprogramm erstellt. Diese Arbeit ist
jedoch im allgemeinen langweilig und zudem entstehen dabei wieder
Fehler. Deshalb ist man dazu iibergegangen auch diese Arbeit der
Maschine zu ibertragen, wozu natiirlich ein Uebersetzungsprogramm
notig ist. So wurden an mehreren Instituten Europas und Amerikas
wie auch an der ETH solche Uebersetzer erstellt, so dass nun diese
Institute in der Lage sind, sich gegenseitig praktisch rechenbereite
Programme auszutauschen, obwohl die verwendeten elektronischen
Rechenmaschinen ganz verschieden sind. Dies ist immerhin ein
weiterer recht schoner Aspekt fiir die Formelsprache und es ist zu
hoften, dass sich bald einmal die angewandten Mathematiker zum
Wohle ihrer Wissenschaft und Tétigkeit auf internationaler Ebene
mit Hilfe von ALGOL verstiandigen werden.
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BEISPIELE ZUR INTERNATIONALEN FormerspracHE ALGOL

1. Berechnung gon ln( ) mit Hilfe des arithmetisch-geometrischen
Muitels.

=(@12+1) /@2x2); g:= (z12—1)/(2xa);
; for k := 1 step 1 until 20 do
: begin p := sqrt (0.5X(1+p)); ¢ := q/p;
- if (abs(p — 1) <4y — 5) then  go to 6 ;
end % ; , -
go to nonoonvergence

Inx := 3Xq /(24 p); |
2. Berechnung des Wertes f und der Ableitung f1 eines Polynoms vom

Grad n: f(x) = Y. kla* nack Horner.

k=0

0: f:=fl := 0;
1: for £ := n step — 1 until O do
2: begin fl := fixzx+f; f:= f><x—|—c[lc] end ;

3. M atrzzenprodukt zweter quadratischer Mairizen A und B.
C:= AXB:

ODU‘H-\OJL\DH-O

Cip = Z aiij,-h
=

fiir L = 1,2, ...,n

e I

:for : := 1 step 1 until » do
- for £ := 1 step 1 until » do
begin c[i, k] := 0;
for j := 1 step 1 until » do
c[i, k] := c[t, k] + alt, j1 X b[j, k] ;

BN W -~ O

end % .

9. Sophle Prccarp (Neuchétel). — Un probléme de la théorie des
ensembles. — Sur la décomposition en constituantes des ensembles
analytiques (de Suslin) et des complémentaires analytiques.

Soit £ un ensemble linéaire, analythue au sens de Lebesgue et
'Lusin, appelé aussi ensemble de Suslin 1. Supposons le plan euclidien

1 Rappelons que E est I’ensemble des valeurs d’une fonction multivalente réelle
d’une variable réelle f (t) définie pour 0 =1t =1 et discontinue en une infinité dénom-
brable de points. , '

Voir, par exemple N. Lusin: Lecons sur les ensembles analytiques et leurs applica-
tions, Paris, Gauthier-Villars, 1930. ° '
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rapporté 4 un systéme d’axes rectangulaires Ozy et soit Ox le support
de E. Désignons par & le complémentaire de FE par rapport a Oz,
appelé complémentaire analytique.

I1 existe, comme on sait, d’'une part un ensemble plan C, formé
d’une infinité dénombrable de segments rectilignes paralleles & Oz
et tels que I'ensemble E est criblé par C. Cela veut dire que la per-
pendiculaire en tout point (z, o) & Oz coupe C en un ensemble de
point Py qui n’est pas bien ordonné suivant la grandeur des ordonnées
de ses points si (z, 0) € E, alors. que Py est bien ordonné suivant le
méme critére, si (z, 0) € &. L’ensemble C est dit un crible élémentaire
de 'ensemble E.

D’autre part, on sait qu’il existe un ensemble dénombrable D
de segments de Oz qui forme un systéme déterminant dont I’ensemble
E est le noyau. Soient sy .m; (k, 2, Ry, ... = 1, 2, ...) les segments
de D. Le noyau N (D) de D est par définition 1’ensemble

N(D) = Sny O Sminz O .. L

nl’nz’..-

Pour un méme ensemble analytique qui n’est pas mesurable B,
il existe une infinité indénombrable de cribles plans qui le criblent
et il existe également une infinité indénombrable de systéemes déter-
minants distincts dont il est le noyau. |

On sait que tout crible plan C décompose aussi bien & que L
en constituantes mesurables B, disjointes deux a deux, et qu’une
infinité indénombrable de ces constituantes sont non vides si E
n’est pas mesurable B. Quel que soit le nombre ordinal « << Q la
constituante &, de rang « de & définie a partir d’'un crible C est
Pensemble des points de & auxquels correspond un ensemble P,
bien ordonné d’aprés la grandeur des ordonnées de ses points, du
type d’ordre «, alors que la constituante E, de rang « de £ est formée
de tous les points de £ auxquels correspond un ensemble Py qui est
la réunion de deux sous-ensembles disjoints PL et P2, dont le premier
est bien ordonné suivant la grandeur des ordonnées de ses points,
du type d’ordre o, alors que le second n’est pas bien ordonné suivant
le méme critere, ne posséde pas d’élément dont I’ordonnée soit
minimum et que 'ordonnée de tout point de P2 est supérieure a celle

de tout point de Py. On sait aussi que & et E peuvent étre décomposés
en constituantes a partir de tout systéme déterminant D dont E est
le noyau, comme I'a montré M. W. Sierpinski 2. On pose, pour tout
systeme de nombres naturels %, n,, ..., n,, 321,,,,% = Sn,.m, D° = D.
Soit, & présent « un nombre ordinal quelconque << ) et supposons

1 Voir W. SIERPINSKI: Sur une propriété des ensembles (A), Fundamenta Mathe-
maticae, t. VIII, 1926, pp. 362-369.

2) W. SierpINsSKI: Sur les constituantes des ensembles analytiques, Fundamenta
Mathematicae, t. X XI, 1933, pp. 29-34.
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que nous ayons déj 4 défini le Systéme déterminant D%, dérivé d’ordre &,
de D, formé des ensembles Sn1 o,y pour tout nombre ordinal
£ << a. Si « est de premiére espéce: & = «”+ 1, posons

. 00
o .a¥ ¥ a*

nyng..np, — Snyng..mpy — S N v s

J nyng...nL g, Mg 1
ng4q1=1

Si a est de seconde espéce, posons

x — S
nng..mp, — 0 Sn1n2 RA

S<a

S

et soit, dans les deux cas, D* le systéme déterminant formé des
ensembles (mesurables B) s, .., OUK, 0y, 1y ..., np=1,2, ... D* est
le systéme déterminant de E, dérivé d’ordre «, de D.

Pour tout nombre ordinal o << €2, posons

0

a (1 o« a a+1

§* = Ul Sny I* = Y (Snlng...nk — Snyng...np)
n= nl,ng,...,nk

On a, comme I’a démontré M. Sierpinski, £ = n §*= v (§*—T%)
a<Q) a<Q)

et les ensembles & et £ sont décomposés, & partir du systéme déter-

minant D et de ses dérivés successifs en constituantes mesurables B

.. . ; D
disjointes deux a deux comme suit: & = U &2, E u E. o
a<Q a<Q

1) &5 = CSo (c’est le complemen’oalre de §° par rapport a la droite-
support de FE).
2) €2 = N 8% — 82, quel que soit le nombre ordinal o (1 = o << Q).

é<a
3) E2 = (§* —T% — v E?, quel que soit le nombre ordinal & < Q.
. . E<a

La décomposition en constituantes d’un ensemble analytique et
de son complémentaire n’est pas unique, elle varie d’un crible a
I'autre et d’un systéme déterminant & I'autre et les décompositions
en constituantes de tels ensembles faites a partir d’un crible et a
partir d’un systéme déterminant donné sont, en général, distinctes,

Proposition 1. — A tout crible plan C élémentaire on peut faire
correspondre un systéme déterminant D dont le noyau coincide avec
Iensemble analytique linéaire criblé au moyen de C et tel que E
aussi bien que le complémentaire analytique & de E par rapport a la
droite-support de E sont décomposés en les mémes constituantes
par le crible C et par le systéme déterminant D.

Démonstration. — Soit C le crible élémentaire du plan référé a
un systéme d’axes rectangulaires Ory dont 'axe Ox est le support
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de 'ensemble analytique E criblé par C. Par définition, C est la
réunion d’une infinité dénombrable de segments paralleles & Ou.
Formons, avec tous ces segments, pris dans un ordre quelconque,
une suite simple o,, o,, ... en faisant correspondre un nombre naturel
unique & chacun de ces segments. Soit n, un nombre naturel quel-
conque == 1.

Partons du segment an,, soit dn, la droite paralléle & Oz qui en
est le support, soit y = y», 'équation de cette droite et soit Cp, la
partie du crible C formée de tous les points de C d’ordonnée inférieure
a yn,. L’ensemble Cu, se compose d’un ensemble fini ou dénombrable
de segments de C. Si le nombre de ces segments est fini, égal a m, pre-
nons-les dans un ordre quelconque et affectons-les de doubles indices,
dont le premier invariable est n,, et le second varie de 1 & m et désignons
par Gm,q, Onys, ---, Omym Ce€s m segments. .Posons ensuite on: = &
quel que soit 'entier ¢t = m 4 1.

Et si Pensemble Cy, est formé d’une infinité de segments, comme
leur ensemble est dénombrable, on peut en former une suite simple,
en les prenant dans un ordre quelconque. Désignons les termes
successifs de cette suite par les symboles on,q, Ony, ...

Procédons ainsi pour toute valeur de I'entier n, = 1, 2, ....

Soit, a présent, £ un nombre entier quelconque et supposons que
nous ayons déja défini les ensembles onn,.m pour tout systeme
de k nombres naturels n,, n,, ..., 7k, certains de ces ensembles pouvant
étre vides et tous les autres étant des segments du crible C. Consi-
dérons un systéme fini quelconque n,, n,, ..., nx de nombres naturels.
SiGnyny..njy = &, POSONS Onyny..mpnips, = &, quel que soit nx+1 =1,2,....
Et, si 6nng..my 7= &, 801t dnyn,..m, la droite parallele a Ox qui est le
support de ce segment et sOit ¥ = Yun,.m L'équation de cette
droite. Soit Chp,n,. ., I'ensemble des points du crible C d’ordonnée
inférieure & Yun,.m,. S1 cet ensemble n’est pas vide, il est la
réunion d’un ensemble dénombrable de segments de C, segments
dont on peut former une suite simple et que 'on peut désigner par
Gnyng...npl’ Onyng..mp2 5- - .- O la suite en question ne comprend qu’un
nombre fini m =0 de segments de C, nous poserons Guny.. .y, ., = &,
quel que soit nk+1 = m+41, m+2, .... Cela étant quel que soit le
nombre entier £ > 1 et, pour un % donné, quel que soit le systéme
de nombres naturels ny, n,, ..., n,, on fait ainsi correspondre a tout
systeme fini de nombres naturels n,, n,, ..., n, un segment déter-
miné du crible C ou un ensemble vide. Cette correspondance n’est
pas biunivoque.

Quel que soit le systeme fini de nombres naturels n,, n,, ..., n,
appelons Sun,.m la projection orthogonale sur Oz (canm,..m)x, de
Iensemble ouny..m, €t 80it D = [Sun,. m] le systéme déterminant

formé des ensembles sqine ...n;,. Montrons que ce systéme déterminant D
satisfait a la proposition 1.
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Montrons d’abord que le noyau NN (D) de ce systéme est 1’en-
semble E. Soit z un élément quelconque de N (D). Il existe donc
une suite dénombrable de nombres naturels n,, n,, ..., telle que
X E Sny O\ Sngng O ...

De la définition du systéeme déterminant D il résulte qu’il existe
une suite dénombrable de segments du crible C: oa,, onn,..., ..., tels
que Smyng.ny = (Onyng..mp)x quel que soit &k = 1, 2, ... et que, y =
Ynyny..m, €bant I'équation de la droite support du segment oun,..n,
on & Yn, > Ynym, > .... Donc x € E. Cela étant quel que soit I’élément
x de N (D), on a I'inclusion N(D) C E.

Soit & présent x un point quelconque de E. Alors la perpendicu-
laire en ce point & Ox coupe C en un ensemble de points Py qui n’est
pas bien ordonné d’apres la grandeur des ordonnées de ses points et
il existe au moins une suite dénombrable de segments du crible C,
a ordonnées décroissantes et dont chacun a un point commun avec Ps.

. 11 existe done, d’apres ce qui précede, une suite de nombres naturels

ny, Ny, ..., telle que la dite suite de segments se confond avec on,
Onyngy «-- ‘

Et comme S$uny.n;, = (Onyny..mp)x quel quesoit £ =1, 2, ..., on a
TESn, O Snn, O ... b, par conséquent z € N(D). Cela étant quel que
soit x € E on a aussi I'inclusion £ C N (D) et, par suite, £ = N(D).

Montrons maintenant que les ensembles & et £ sont décomposés
par le crible C et le systéeme déterminant D en les mémes consti-
tuantes. Pour faciliter la décomposition de & et E en constituantes
a partir du crible C, considérons, pour tout nombre ordinal o << €,
le crible C dérivé d’ordre o de C 1.

Quel que soit le systéme fini de nombres naturels ny, n,, ..., 1y,
considérons I’ensemble oan,.m que nous avons défini plus haut

et qui est soit un segment du crible C soit un ensemble vide. Posons
G,(,)ln2...nk = Gnyny..m, €t s0it CO le crible plan, réunion des ensembles
621"2---”10' On a Co = (. Soit, & présent, « un nombre ordinal quel-

conque > 0 et << € et supposons que nous ayons déja défini, pour

tout nombre ordinal £ < «, les ensembles crf:l,, . By CORCHTE =1,
2, ...,ainsi que le crible C* dérivé d’ordre £ de C et qu1 est ld réunion

de ‘qous ces ensembles. Si o est de premiére espece: a = a*+ 1
et si Gy m = @, POSONS Gy, = @. Eb sion, . # @,soit
d la parallele a Oz support du segment oam,..m, du crible C,
soit (cf:,,‘z_,_,,k,,k ,,Ja la projection orthogonale sur d de I'ensemble
¥

Gnymy..pniy g qUEL que 80Ib Pgyy = 1, 2,...; posons

o

a i L a*
Gnlng...nk — Gnlnz...nk a v L (Gnlnz...nknkJrl) d .
By y=

1 La notion de crible dérivé a été introduite par N. LusIn.
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Et, si o est de seconde espéce, posons

a __ S
Onyng..np, — Y Onyng...mp; *
é(<a

Dans les deux cas, le crible C, dérivé d’ordre « de C, est la réunion des
ensembles oy . n, OU K, 1y, ..y nyp =1, 2,

Quel que soit le nombre ordinal a < Q appelons Cy la projection
orthogonale sur Oz du crible C* et s0it (g}, ,,...n;)x 12 projection ortho-

gonale sur Oz de I'ensemble 6, ,, ., quel que soit le nombre ordinal
o << £ et quel que soit le systeme fini de nombres naturels n,, n,
ey Mo

Il résulte sans peine de la définition des constituantes d’un
ensemble analytique et d’un complémentaire analytique ainsi que de
la définition des cribles dérivés que
1Y) &, = C C, (&, est le complémentaire de C; par rapport a Ozx);
2") &y = N C5 — C* quel que soit le nombre ordinal « = 1 et < Q;

é<a

3V E, =C:— U (6%, ). — (™1 ) )— U E:, quel que

nyny...nk hyng...nk
nyNg,... N $<a

soit « (0 = o << Q).

Il s’agit de décomposition en constituantes de & et £ & partir du
crible C, alors que les formules 1) 2) et 3)définissent les constituantes
de ces deux ensembles a partir du systéme déterminant D.

Comme C% 5 C* pour tout couple de nombres ordinaux « et {3,
tels que o << B < Q si o est un nombre ordinal de premiére espéce:
«=o*+ 1, ona n C, = C*" et, par suite & = C** — (2.

E<a
On a les formules
I) Snny.m, = (O . m)x quel que soit le nombre ordinal « << Q et quel
que soit le nombre fini de nombres naturels ny, n,, ..., n;; et
- |
II) %= U s = u Snony..my = Cx, quel que soit le nombre ordi-
n=1 ning...nj :
nal o << Q.

Démontrons d’abord la formule I). On a, par définition, Su,n,. », =
= (Gnyng...n;)x- SOit & présent « un nombre ordmal > 0 et < Q quel-
conque et supposons que nous ayons déja prouvé que, quel que soit

% s . . é N I é r
13 nombre oradlnal £ <a«,o0na Snyny..mpy = (On,ny..m;) x- Démontrons que
Sn1n2..:nk - (O-nlng...nk)x' 7 »
Si o est de premiére espéce: o« = a*-+ 1, on a, par définition,
L @
a I . ’ a*
Snan.,.nk - Snlng...nk N v Snlng...nknk_,_l ?
My g=1 | '
0]
a ¥ ¥
Gnln‘l...nk — Gnlng..'.nk M Yo ~(Gn1n2,..nknk+1)d
s "k+1= 1
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donc aussi ,

o0
o¥ . ¥ ) ¥ ’
(Gn1n2,.,nk)x — (Gnl'n2...nk)x N v (Gn1n2...nknk+1)x
ng =1
La propriété a demontrer étant supposee vraie pour tout nombre
ordinal & < o, on a

(Gn1n2 nk)x — Snlne...nk
et
o¥ oa*
(0"1"2---"k"k+1)x = Snyny..mgny 4 4
quel que soit ng+1 = 1, 2, ... d’ou il résulte que
@ a
Snyng..mp = (Gnlnz...nk)x

Et, si « est de seconde espéce, on a par définition

« _ S
Sn1n2...nk = N Sn1n2...nk
) é<a
et ,
x _ 4
Onyng...np 5 Onyng...np *
é(<a
Donc aussi
a 4
(Gnlng_.,nk)x = N (anan...nk)x
' {<a

Et comme la propriété a démontrer est supposée vraie pour tout

£ <a on a sﬁm = (o-,,l,,2 m)x quel que soit 5 < o, donc aussi
a

Snyng...np, = (O-nln2 nk)xa ¢.q. f.d.
Etablissons maintenant la formule II).
Quel que soit le nombre ordinal « << € et les nombres naturels
k, ny, ... ng, on a I'inclusion :
(e o]
) uos; e v '3§1n2..
n=1 niny...ng

nj

puisque tous les s; figurent parmi les s, , . D’autre par, de la
définition du systéme D 1l résulte qu’a tout systéme fini de nombre
naturels n,, R, ..., ny, tels que sun,.m 7 @, correspond un nombre -
naturel n, tel que sun,..m, = s». Mais alors s; ., ,, = s, quel que soit
o << L) d’apres les définitions précédentes. On en déduit I'inclusion

[e o]
k% x
) s, 2 v Sn1n2.‘.nk
n=1 ny,ng,... Nk

et des deux inclusions*) et**) découle I’égalité
’ 0
: a
J g, = W §
n=1 ny,ng,...,nf

a
nyng...ng *
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On en déduit immédiatement, d’aprés I) que S* = C3 quel que soit le
nombre ordinal a < Q. La formule IT) est donc établie.
| Or les relations I) et II) ainsi que les formules 1), 2), 3), 17), 27)
et 3') définissent les constituantes des ensembles & et E entrainent
'identité des décompositions en ces constituantes de chacun des
ensembles & et E au moyen du crible C et du systéeme déterminant D.
La proposition 1 est donc démontré L.

Proposition 2. — Tout ensemble analytique £ peut étre décom-
posé, en méme temps que son complémentaire &, en constituantes
mesurables B disjointes deux a deux de telle facon que toutes les
constituantes dont le rang est un nombre ordinal de seconde espéce
solent vides.

Démonstration. — Voici la démonstration de la proposition 2 dans
le cas ou 'ensemble analytique E est linéaire et & est son complé-
mentaire par rapport a la droite support de E. Comme ’a prouvé
M. W. Sierpinski 2 E peut étre criblé au moyen d’un crible plan
fermé C, tel que I’ordonnée de tout point de C est comprise entre O et 1.
Prenons un tel crible fermé C et décomposons E et & en constituantes

au moyen de ce crible. Soient £ = U E.et & = U & ces décom-
a<f a<

positions.

Supposons le plan du crible référé & un systéme d’axes rectangu-
laires Oxy dont I'arc Ox est le support des deux ensembles £ et &.
Soit, pour tout nombre réel a, P, I'intersection de la droite z = a
avec C. Quel que soit le nombre ordinal « > Q, la constituante &,
de & est, par définition, I’ensemble des points (a, 0) de & en lesquels
Iensemble P, est bien ordonné suivant la grandeur des ordonnées
de ses_points,.et a pour type d’ordre «. Or P,, en.tant qu’intersection
de deux ensembles fermés, est un ensemble fermé. Si son type d’ordre o
était un nombre ordinal de seconde espéce, P, serait infini et il
n’existerait pas dans P, de point d’ordonnée maximum. Mais P,
étant borné (il fait partie du segment d’origine (a, 0) et d’extrémité
(a, 1)), infini, bien ordonné suivant la grandeur des ordonnées de
ses points, il existe nécessairement un point (a, y) de la droite x = «a
dont I'ordonnée est supérieure & celles de tous les points de P, qui
ne fait pas partie de cet ensemble puisque ’ensemble bien ordonné
P, n’a pas de dernier élément, mais qui est un point d’accumulation
de P,. Donc P, n’est pas fermé, ce qui est contradictoire. Il s’ensuit
que toute constituante, &, de &, ol « est un nombre ordinal de seconde
espece, est vide.

1 La proposition 1 est encore vraie et la démonstration précédente subsiste si
le crible plan C est formé d’une infinité dénombrable d’ensembles mesurables B linéaires
quelconques dont les supports sont des droites paralléles 4 Ox.

2 W.SIERPINSKI: Les ensembles analytiques comme criblés au moyen des ensembles
fermes, Fundamenta Mathematicae, t. XVII, 1931, pp. 77-91.
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Soit encore o un nombre ordinal de seconde espéce, > ), quel-
‘conque. Envisageons la constituante E, de E. Par définition, c’est
I’ensemble des points (a, 0) de E, tels que P, = P.iu P2, ou
P. N P. =g, P, est bien ordonné, du type d’ordre «, suivant la
grandeur des ordonnées de ses points, P2 n’est pas bien ordonné
suivant le méme critére, ne posséde pas de point d’ordonnée minimum
et que I'ordonnée de chacun de sés points est supérieure a celle de
chaque point de P.. Puisque P2 n’est pas bien ordonné suivant la
grandeur des ordonnées de ses points, cet ensemble est nécessaire-
ment infini. Si le point (a, 0) fait partie de E, comme « est de seconde
espece, ’ensemble P} est infini. Et comme il est bien ordonné suivant
la grandeur des ordonnées de ses points et borné, il doit exister un
point (a, y) de la droite x = a dont 'ordonnée y est supérieure & celle
de tout point de P; et qui est un point d’accumulation de ce dernier
ensemble, alors que P! est lintersection de I’ensemble P, avec. la
demi-droite z = a issue du point (a, y) et dirigée dans le sens des y
négatifs. Donc le point (a, y) ne fait pas partie de 'ensemble P? et,
par suite, P, n’est pas fermé, ce qui est contradictoire. Par consé-
quent E, =g.

Cela étant quel que soit le nombre ordinal o << Q de seconde
espece, la proposition 2 est démontrée.
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