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50« assemblée annuelle
DE LA SOCIÉTÉ MATHÉMATIQUE SUISSE

à Bienne, le 23 septembre 1961, Ze cadre de la 141e assemblée
annuelle de la Société Helvétique des Sciences naturelles.

Président: Professeur Dr H. Jecklin, Université de Zurich.
Vice-Président : Professeur Dr B. Eckmann, EPF, Zurich.
Secrétaire: Professeur Dr J. de Siebenthal, EPUL, Lausanne.

A 8h. 45, M. Jecklin, président, ouvre la séance, dans l'auditoire
n° 25 du Technicum.

1. Communications selon liste annexée.
2. Séance administrative.

M. Jecklin, président, excuse M. Eckmann et M. Burckhardt, à

l'étranger; il rapport sur l'activité de la SMS et notamment sur la
séance de printemps. Il signale qu'un nouveau contrat a été passé
avec Orell-Füssli, Zurich, au sujet des Commentarii. Les comptes du
Jubilé du cinquantenaire présentent un bénéfice qui sera judicieusement

utilisé. Le Congrès international 1962 aura lieu à Stockholm
du 15 au 22 août; adresse: International Congress of Mathematicians,
Djursholm 1, Sweden.

Nouveaux membres selon liste annexée.

Le Secrétaire-caissier donne connaissance des comptes de la
Société pour 1960, et M. le Professeur Dr Methée, vérificateur, indique
que ces comptes sont en ordre. L'assemblée donne décharge au
secrétaire-caissier et aux vérificateurs, sans opposition.

Elections. Sont élus pour 1962-1963:

Président: Professeur Dr B. Eckmann, EPF, Zurich.
Vice-Président : Professeur Dr J. de Siebenthal, EPUL, Lausanne.
Secrétaire-caissier : Professeur Dr H. Hubeb, Baie.

Nouveaux membres:

Professeur S. Kobayashi, Vancouver, Canada.
Professeur H. Thomas Southard, Haywerd, California, USA.
Jos. D. Feldmann, Benton Harbar, Michigan, USA.
Professeur Aaron Galuten, New-York, N.Y., USA.
Leonard S. Charlap, New-York, N.Y., USA.
Alvin Hausner, New-York, N.Y., USA.
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V. W. Graham, Dublin.
Gordon L. Walker, Providence, R.I., USA.
Mlle Margrit Frei, Zurich.
Mlle Monica Ed er, Zurich (à vie).
Malcolm W. Oliphant, Georgetown University, Washington 7, D.C.

Joseph A. Wolf, Institute for Advanced Study, Princeton, N.J.
U.S.A.

A passé membre libre: A. Kaufmann, membre depuis 1935.

Décès: P. Bidal, Lonay-sur-Morges.
L. Jecklin, Basel.

Démission: A. Challand, membre depuis 1946.

Communications

S. Piccard : Sur la théorie des groupes.
C. Tanner: La symétrie locale des ensembles et fonctions arbitraires.
P. Küenzi: Betrachtungen zur nichtlinearen Programmierung.
D. Koller: Prüfung der Normalität einer Verteilung.
K. Voss: Flächen mit vorgegebenen Hauptkrümmungen.
J. Hersch: Une interprétation du principe de Rayleigh-Poincaré et

F une méthode de Weinstein-Bazley-Aronszafn à F aide d'hyper-
quadratiques associées.

H. R. Schwarz: ALGOL, die internationale Formelsprache.
B. Scarpellini : Probleme der Axiomatisierbarkeit in der unendlich-

wertigen Logik.
S. Piccard: Un problème de la théorie des ensembles.

1. Sophie Piccard (Neuchâtel): Théorie des groupes. — Systèmes
irréductibles d'éléments d'un groupe. — Les groupes fondamentaux,
leurs bases et leurs éléments fondamentaux.

Soit G un groupe multiplicatif d'ordre quelconque, fini ou infini,
soit A un ensemble d'éléments de G et soit G* le sous-groupe propre
ou non de G qu'il engendre. Nous disons que l'ensemble A est
irréductible si, quel que soit le sous-ensemble fini al7 a2, ak de A
comprenant un nombre k^2 éléments, il n'existe, dans G*, aucun
sous-ensemble b2, •••, h formé d'un nombre l < k d'éléments du
groupe £* et tel que l'ensemble (A — [al7 a2, ak]) U [b1<s b2, b{\
soit encore générateur de U*.

Nous disons que le groupe G est fondamental s'il possède au moins
un système irréductible d'éléments générateurs et nous appelons base
d'un groupe fondamental tout système irréductible de ses éléments
générateurs. Tout groupe d'ordre fini, tout groupe qui possède des
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systèmes finis d'éléments générateurs, tout groupe libre, tout groupe
quasi libre sont des groupes fondamentaux. Mais il existe aussi une
infinité de groupes non fondamentaux. Ainsi le groupe S (2t) de
transformations des nombres entiers dont les éléments sont toutes les
substitutions (de classe paire) d'un nombre fini quelconque d'entiers
quelconques n'est pas fondamental.

Nous disons qu'un élément d'un groupe fondamental G est
fondamental s'il fait partie d'une base au moins de ce groupe. Tout groupe
fondamental possède aussi bien des éléments fondamentaux que des
éléments qui ne le sont pas. En particulier l'élément neutre du groupe
n'est pas fondamental. Tout groupe cyclique est fondamental. S'il
est d'ordre infini et se compose de toutes les puissances entières d'un
élément a, il n'a que deux éléments fondamentaux a et a~1. S'il est
d'ordre fini n et se compose des éléments a1, a2, an, quel que soit
l'entier m (1 ^ m < n) premier avec n, l'élément am est fondamental.
Si le groupe G est libre, tout élément libre de G est fondamental et,
si G est quasi libre, tout élément quasi libre de G est fondamental et
il n'y en a pas d'autres. Quel que soit l'entier n > 1 tout élément ^ 1

du groupe symétrique Sn et du groupe alterné An de degré n est
fondamental, à la seule exception des trois doubles transpositions
du groupe N4 qui ne font partie d'aucune base de ce groupe.

Soit G un groupe fondamental ou non et soit <9* un sous-groupe
de G. Nous disons que G* est un sous-groupe fondamental de G si (9*

possède des systèmes irréductibles d'éléments générateurs.
Tout groupe G d'ordre > 1 possède des sous-groupes fondamentaux

parmi lesquels figurent les sous-groupes cycliques engendrés par
ses divers éléments d'ordre > l.Tout sous-groupe d'ordre > 1 d'un
groupe fondamental n'est pas forcément fondamental. Ainsi le groupe
non fondamental 21 cité plus haut est un sous-groupe du groupe quasi
libre engendré par les deux transformations des nombres entiers
a (...,—3, —1, 0, 1, 3,...) et b (...,—4,—2, 0,2,4, L'union
et l'intersection de deux sous-groupes fondamentaux d'un groupe G

peuvent être dépourvus de base, de sorte que l'ensemble des sous-

groupes fondamentaux d'un groupe G n'a en général pas une structure
de treillis.

Nous disons qu'un groupe fondamental G est décomposé en produit

quasi libre de ses sous-groupes fondamentaux G\, X g A, et nous
écrivons G n** G si, quelle que soit la base A du groupe (9À,

l'ensemble A U Ax constitue une base de G. Tout groupe fonda-
yeA

mental est susceptible d'une telle décomposition. En particulier, il
est le produit quasi libre des groupes cycliques engendrés par les
éléments de l'une quelconque de ses bases. Les facteurs G\, X e A
sont appelés les facteurs quasi libres de G. Tout élément fondamental
d'un facteur quasi libre G\ est aussi un élément fondamental du
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groupe G. Aucun élément fondamental d'un facteur quasi libre Gx

ne peut faire partie du groupe engendré par tous les autres facteurs
de la décomposition de G en produit quasi libre dont fait partie le

facteur Gx.
Soit G un groupe fondamental, soit G II** Gx sa décomposition

AeA

en produit quasi libre de ses sous-groupes fondamentaux Gx, soit

yx un sous-groupe fondamental quelconque de Gx, quel que soit

Àe A, et soit y le sous-groupe de G engendré par l'ensemble des

éléments des groupes y Ce groupe y n'est pas nécessairement le

produit quasi libre des groupes yx. En effet, soit, par exemple, G le

groupe abélien engendré par les trois substitutions a (1, 2),

a2 (3, 4) (5, 6, 7), a3 - (8, 9) (10, 11, 12) (13, 14, 15, 16, 17). Ce

groupe G, d'ordre 360, est le produit quasi libre des groupes cycliques

gl7 g2, g3 engendrés par av a2 et a3. Soit yx g1? soit y2 le sous-

groupe cyclique de g2 engendré par la substitution (5, 6, 7) a\
et soit y3 le sous-groupe cyclique de g3 engendré par la substitution
(13, 14, 15, 16, 17) a\. Désignons par y le sous-groupe de G,

produit de yr, y2 et y3. Le groupe y est cyclique, donc à base d'ordre 1,

et par suite il n'est pas le produit quasi libre de yl7 y2 et y3.
Si g est un sous-groupe fondamental d'un groupe fondamental G,

il n'est pas toujours possible de décomposer G en produit quasi
libre dont g soit l'un des facteurs. En voici un exemple. Soit G le

groupe libre engendré par les deux éléments libres a1 et a2, et soit
g le sous-groupe de G engendré par les deux éléments a\ et a\. g est

un groupe libre à base du second ordre et il est impossible de décomposer

G en produit quasi libre dont g soit l'un des facteurs, car l'existence

d'une telle décomposition impliquerait que G est à base d'ordre
3, ce qui n'est pas.
Soit G un groupe fondamental dont un élément fondamental a

appartient à un sous-groupe fondamental g de G. L'élément a n'est alors
pas nécessairement fondamental dans g. En effet, soit par exemple,
G le groupe symétrique des substitutions des éléments 1, 2,3,4, 5, 6, 7,8
et soit a 1,2) (3, 5) (4, 7) (6, 8). a est un élément fondamental
de G qui, comme on sait, est à base du second ordre, et on obtient
une base de G en associant à a l'élément b (1,3) (5, 7, 8).

Considérons le sous-groupe g d'ordre 1344 de G, engendré par
les deux éléments a' (1, 2, 3, 4, 5, 6, 7), b' (1, 3) (4, 8). On
démontre sans peine qu'aucune des sept substitutions
(i 1, 2, 7) ne fait partie d'une base de g. Ce sont des éléments
non fondamentaux de g. Donc, en particulier, a qui fait partie de g
n'est pas un élément fondamental de ce groupe.

La réciproque est également vraie: si g est un sous-groupe
fondamental d'un groupe fondamental G, un élément fondamental de g
n'est pas nécessairement fondamental dans G. En effet, soit, par
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exemple, G le groupe quasi libre de transformations des nombres entiers
engendré par les deux transformations a ^3, —1, 0, 1, 3,
b —4, —2, 0, 2, 4, dont la première permute tous les nombres

impairs et 0 et la seconde permute tous les nombres pairs. Le
groupe cyclique d'ordre 3 engendré par le cycle (—2, 0, 2) appartient
à ce groupe. C'est un sous-groupe fondamental de G, dont le cycle
(—2, 0, 2) est un élément fondamental. Or, il ressort de la théorie
des groupes quasi libres que le cycle (—2, 0, 2) n'est pas un élément
fondamental de G.

Quel que soit le groupe fondamental G, quelle que soit la base A
de G et quel que soit le sous-ensemble A* de A, le groupe G* engendré
par A* est fondamental et tout élément fondamental de G* est aussi
un élément fondamental de G.

2. R. C. H. Tanner, Ph.D. (Londres, Angleterre). — La symétrie
locale des fonctions et ensembles arbitraires.

Un ensemble ponctuel linéaire étant donné, on peut parler de

symétrie ou dissymétrie locale au point P en se référant aux points
de l'ensemble voisins de P: au cas où P serait point limite d'un côté,
mais pas de l'autre, on dira que P est point de dissymétrie locale de
l'ensemble, ou, pour abréger, un point dissymétrique de l'ensemble.
On sait alors que les points dissymétriques d'un ensemble linéaire
quelconque sont au plus dénombrables. Cette propriété découle
essentiellement du théorème énoncé en 1882 par Georg Cantor : tout
ensemble d'intervalles sans points intérieurs communs deux à deux
est dénombrable.

Pour un ensemble plan, on envisage tout d'abord la symétrie par
rapport à une sécante donnée. Un point P de cette sécante qui serait
point limite de l'ensemble d'un seul côté de la sécante serait point
de dissymétrie locale par rapport à la sécante donnée. Une sécante
comprenant un tel point peut être désignée sécante dissymétrique de
l'ensemble. Les sécantes dissymétriques parallèles à une direction fixe
quelconque sont au plus dénombrables.

D'où l'énoncé équivalent relatif à une fonction f(x) réêlle
quelconque d'une seule variable réelle:

limm f(x-\-h) limm f(x — h)
h^0 0

en exceptant tout au plus une infinité dénombrable de valeurs de x.
L'égalité s'entend au sens d'identité entre la pluralité de valeurs à

gauche et la pluralité de valeurs à droite. La fonction f(x) elle-même

peut prendre une pluralité de valeurs quelconques pour chaque valeur
de x. Ses valeurs limites se définissent comme pour une fonction uni-
voque, en se reportant de préférence à la représentation de la fonction
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sur le plan, c'est-à-dire â l'ensemble plan arbitraire dont on s'est

occupé en premier lieu.
Pour une fonction univoque, ce théorème fut découvert en 1908

par W. H. Young (Rend. r. Acc. Lincei, vol. XVII, série 5a). Vingt ans

après, il le précisa en y faisant figurer, outre les valeurs limites, la
valeur intrinsèque de la fonction en x. Avec le même ordre d'exceptions,

et en utilisant, pour une pluralité de limites unilatérales, la
notation usuelle pour une limite unilatérale unique, on a

f(x) c f(x+0) «= f(x — 0).

A ce résultat, énoncé dans le Bulletin des sciences mathématiques,
tome 52 (1928), se joignent des raffinements et extensions qui
peuvent sauter aux yeux, aujourd'hui que la théorie des ensembles est

largement acquise. D'une part, la symétrie bilatérale dans le plan
ayant été analysée au moyen d'un filtre à trames rationnelles
rectangulaires, on n'a qu'à prendre des trames triangulaires pour aboutir à ce
résultat qu'en presque tout point d'un ensemble plan arbitraire, il y a,
au sens local, symétrie quasi-radiale complète autour du point, c'est-
à-dire que toute direction issue de ce point y sera « tangente » à
l'ensemble. Les points exceptionnels gisent sur une infinité dénom-
brable tout au plus de courbes monotones, de mesure plane nulle.

D'autre part, on passe sans peine de deux à n dimensions. L'énoncé
précédent, par exemple, reste valable, les points exceptionnels
formant un ensemble de mesure nulle dans cet espace, disposé de façon
analogue sur des hypersurfaces à (n-—1) dimensions, dénombrables
tout au plus.

Les théorèmes concernant les fonctions entièrement arbitraires
sont rares. Il doit paraître bien surprenant qu'on puisse établir à si peu
d'exceptions près la symétrie locale pour de telles fonctions. Gomme le
disait Young dans son préambule de 1928: « On croirait volontiers
qu'en dehors de toute hypothèse, il ne peut être question de rechercher

des propriétés ».

Si surprenantes que semblent ces propriétés, les faits eux-mêmes
sont plus étonnants encore. La découverte fondamentale passa presque
inaperçue, non seulement en 1908, mais lorsqu'elle fut refaite, en
principe, par H. Blumberg en 1918 (Am. Math. Soc. Bull. 24), et
même lors de la mise au point finale de Young en 1928; et cela malgré
plusieurs travaux apparentés de W. H, et G.G. Young (Quart.
J. P. A.Maths. 160, 1909; Proc. Lon. Math• Soc., 1909 et 1916) et de
Kempisty (Fund. Math. 1924). En 1930, Blumberg, enfin saisi de
la priorité des Young, reprend, élabore, aligne avec ses propres
variantes celles des Young et de Kempisty (Fund. Math. 1930),
sans pourtant se mettre en rapport personnel avec Young, si bien que,
lorsque Blumberg reprit le thème une dernière fois en 1938 (Fund.
Math. 32), et s'engagea dans des critiques assez maladroites, Young,

L'Enseignement mathém., t. VIII, fasc. 1-2. 13
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déjà âgé, n'en sut toujours rien. Puis, une fois de plus, le thème
s'éclipsa.

C'est dans un nouveau cadre qu'il vient de renaître, celui des
cluster sets de Seidel et des bouts premiers de Carathéodory, auxquels
avait conduit la théorie des fonctions analytiques d'une variable
complexe pendant le premier quart de notre siècle. A tour de rôle,
Lindelöf, Iversen, l'infortuné Gross, Plessner, Seidel, se mirent à en
développer l'analyse fort complexe, où l'on chercha à mettre ordre
par la classification de points frontières de divers degrés de simplicité.

Et voilà que les propriétés de symétrie locale ressurgissent
spontanément, dans un domaine qui ignorait encore tout des recherches par
trop générales dans le domaine réel. Soudain, les résultats et surtout
les méthodes de Young s'avisèrent non seulement appropriés, mais
bien plus efficaces que l'appareil usuel. Grâce à eux, on peut, en
résumé, s'attendre à une symétrie approchée presque partout, du
moment qu'on se place dans un espace mesurable séparable, sans
plus, les exceptions se classifiant d'une façon dénombrable bien définie,
et se réduisant, au cas linéaire, à un ensemble dénombrable tout court.

Le résultat pour les « cluster sets » frontières C(f,P) d'une fonction
f(z) de variable complexe, qui n'exige donc plus l'analyticité ni même
la continuité de f(x) dans le domaine d'existence donné, et admet au
surplus pour f(x) une pluralité de valeurs en tout point, figure dans
un article tout récent de E. F. Gollingwood (Proc. Nat. Ac. Sc. 49,
1960), explicité pour le cas d'une fonction univoque dans le cercle

unité; ces restrictions sans importance se rattachent aux études sur
les bouts premiers qu'il vient d'arrondir en collaboration avec Piranian
(Math. Ann. 144, 1961), en montrant par des exemples la finalité des
résultats obtenus. D'autre part, les remarques plus générales de

Collingwood sur l'application de la méthode de Yöung emboîtent
clairement l'extension aux fonctions à valeurs vectorielles pluri-
voques quelconques d'une variable vectorielle générale.

C'est là, en fin de compte, un thème d'intérêt actuel qui, mieux que
toute propriété élémentaire ou banale, range les mathématiques
à côté des sciences biologiques, physiques et autres dans le cadre
proposé à ses conférenciers par la Société helvétique des 'sciences
naturelles pour sa réunion annuelle de Bienne (septembre 1961). Je

pense qu'il était donc bien de rigueur d'attirer l'attention, par cette
occasion, sur un phénomène toujours encore trop peu remarqué,
par lequel l'activité mathématique participe à ce trait curieux de la
perception humaine: qui du fortuit fait naître la loi, et sait de l'arbitraire

tirer Symétrie et forme.
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6. Joseph Hersch (Institut Battelle, Genève): Une interprétation du

principe de Rayleigh-Poincaré et d'une méthode de Weinstein-
Aronszajn-Bazley à l'aide dhyperquadriques associées.

1. Considérons un espace vectoriel ou fonctionnel doué d'un
produit scalaire < u, v > induisant une norme < v, ç > || v ||2 ^ 0;
et dans cet espace un opérateur linéaire self-adjoint A induisant une
forme quadratique A (v, v) < Aç, v > (non semi-définie négativement).

Le quotient de Rayleigh est défini par RA [v] A (y, ç) / 11 ç 112;

ses valeurs stationnaires sont les valeurs propres discrètes de A :

\A ^\2 —^3 — •••; nous supposons qu'elles forment la partie
inférieure du spectre de A\ nous désignons par uv u%, uz, les vecteurs
propres correspondants.

2. Nous associons à la forme quadratique A l'hyperquadrique
Qa { ç | A (c, ç) ^ 1 }. Si A ^0. les demi-axes de Qa sont X[* ^ X2*
^XJ^ ^ — Soit B (v, ç) une autre forme quadratique (dans le
même espace) ; il est clair que B ^ A si et seulement si Qb CI QA.

Le problème de l'évaluation des valeurs propres \A peut être
considéré ainsi: Trouver des formes quadratiques#- ^ A et B+ ^ A
à valeurs propres connues; alors Xf ^X^^Xf i 1,2,3,...,
conditions équivalentes: Qb-ZD QaZD Qb+.

3. Interprétation du principe de Rayleigh. — Choisissons
arbitrairement un vecteur w\ nous définissons la forme quadratique B +

par B+ {w, w) A (w, w) et B+ (e, ç) -f oo pour tout ç ± w (donc
aussi pour tout v non parallèle à w).

B+ ^4, ce que montre aussi Qb+^D QA: Qb+ est une hyperqua-
drique dégénérée sur un diamètre de ,tous ses axes sont nuls sauf un
seul (de direction w). X?+ — RA [w], X*+ Xf+ + oo. L'inégalité

X i R [w] est essentiellement le principe de Rayleigh.

4. Interprétation du principe de Poincaré. — Plus généralement,
choisissons arbitrairement un sous-espace linéaire Ln à n dimensions,

Nous définissons { ^f9 ~ (max'eLn ^ M) • |H|2 si c e Ln.
\R+ (ç, Ç) + oo si v A_Ln.

B+ — A Qb+CZ Qa; en effet, Qb+ est dégénérée sur un disque à n
dimensions, contenu dans et dans L„.

xf" xf" =K+=maxt6i„i?J<[i];X®+1 X®+2 +00.
L'inégalité X^ ^ X® maxteLn RA [£] est essentiellement le principe
de Poincaré. Si ^0, l/^/Xjf est le rayon du plus grand disque
à n dimensions contenu dans Q^.
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5. Premier pas de la méthode de Weinstein-Aronszafn-Bazley. —
Admettons que l'opérateur A se laisse décomposer en A A0 + A'
avec A' ^ 0, les valeurs propres X® ^X2 ^ X3 ^ de A0 étant
connues, ainsi que les vecteurs propres correspondants u\, u°2 ,u°3,

Nous définissons un opérateur auxiliaire B~ par B~ A0 + C~ ; un
choix particulièrement simple de C~ correspond au premier pas de

Bazley: C~u°n—c~ u^, C~u° — 0 pour tout i^n.B~et C~ ont les mêmes
vecteurs propres que A0, B~ules valeurs propres X®, X2, .,X°_ u X°-fc~,
X£+1, X°+2, (pas nécessairement ici par ordre de grandeur). La condition

B~ ^ A signifie C~ ^ A', soit Qc- 3 ÇaS Qc- est dégénérée, sa

frontière est une paire d'hyperplans de demi-distance 1 /Ve"? °h
choisit de préférence Qc- bitangente à Qa'\ un simple raisonnement
géométrique montre qu'alors c~ || u°n ||2/ < A'~1u°ni u°n >; d'où

notamment min {X° + (\\u°n\\21 <A'~1u°n,u°n >); X°+1}, en

plein accord avec Bazley. (Cette borne inférieure est meilleure

que XJJ.)

6. Ces considérations géométriques se laissent généraliser et
suggèrent quelques assouplissements de la méthode. — On voit également
qu'un problème auxiliaire fournissant une borne optimale pour \n,
fournit souvent une borne triviale pour les autres valeurs propres, par
exemple: Xf X2 X?_i= — 00, Xj X*+1 =X*+p; et de

-,B+ «\ J3+ ->B+ -vß+ 1 m •

meme: X1 X2 X„ Xn+1 Xn+2 + 00 (Pomcare,
cf. § 4): B ~ et B+ sont alors construits en vue d'évaluer par défaut le

seul X;f.
Ces idées ont d'abord été exprimées dans une note de l'Institut

B attelle, polycopiée en avril 1961.

7. H. R. Schwarz, Zürich. ALGOL, die internationale Formelsprache.

Nachdem die modernen elektronischen Rechenanlagen mit ihren
Lohen Rechengeschwindigkeiten eine grosse Verbreitung und
Anwendung gefunden hatten, da merkte man allmählich, dass die
Vorbereitung eines, Problems bis zu dem Moment, wo die Maschine
imstande ist es mit Hilfe eines Programms zu lösen, mit grossem
Arbeitsaufwand verbunden ist. Das hängt einmal damit zusammen,
dass die sogenannte Maschinensprache sehr stark von der gewöhnlichen

mathematischen Formulierung abweicht. Anderseits
unterscheiden sich auch die Maschinensprachen hei den verschiedenen
Rechenautomaten im allgemeinen sehr stark, was die Uebertragung
eines Programms von einer Maschihe auf eine ändere jeweilen zu
einem schwierigen Unternehmen macht.
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Aus dieser Situation heraus versuchte man nun, eine algorithmische

Schreibweise oder Sprache zu definieren, welche folgende
Punkte erfüllen soll:

a) sie soll leicht zu lesen sein;
b) sie soll international angenommen werden;
c) sie soll sich gut für wissenschaftliche Berechnungen eignen;
d) sie soll gut verwendbar sein, um Rechenprozesse im Detail zu

beschreiben.

Für die klassische mathematische Schreibweise treffen wohl die
ersten beiden Punkte zu, die letzten beiden hingegen nicht. Für
spezifische Maschinensprachen dagegen ist gerade das umgekehrte der
Fall. So entstand als Mittelding zwischen den beiden Extrema die
internationale Formelsprache ALGOL.

Wie jede andere Sprache besteht auch die Formelsprache ALGOL
aus einzelnen Sätzen bzw. Anweisungen, welche natürlich einer
bestimmten Grammatik oder Syntax zu gehorchen haben. Diese sind
im Artikel « Report on the Algorithmic Language ALGOL 60 » z.B.
in der Zeitschrift Numerische Mathematik 2 (1960), 106-137,
festgehalten.

Anhand von einigen fundamentalen Elementen soll nun eine kleine
Idee von der ALGOL-Sprache vermittelt werden. Ein ALGOL-
Programm, welches eine numerische Methode beschreibt, setzt sich
unter anderem aus Anweisungen von der folgenden Art zusammen:

x : 2xpxq; y : pxp — qXq;
welche besagen, dass die Variabein x und y auf der linken Seite des
Ergibt-Zeichens : die Werte erhalten sollen, welche sich nach der
Auswertung der arithmetischen Ausdrücke auf der rechten Seite
ergeben. Diese Art von Anweisungen ersetzen somit die in der
gewöhnlichen mathematischen Schreibweise geläufigen Bestimmungsformeln

für Zwischen- und Endresultate.
Mit Hilfe dieser Sorte von Anweisungen lässt sich natürlich ein

Rechenprozess nur in den allereinfachsten Fällen beschreiben, dann
nämlich, wenn ein Satz von Formeln lediglich in einer bestimmten
Reihenfolge genau einmal angewendet werden soll. Oft wird es aber
nötig sein, bestimmte Anweisungen mehrmals für vorgeschriebene
Werte einer Laufvariabein zu wiederholen. Zu diesem Zweck gibt es
in ALGOL die sogenannten Schleifenanweisungen. Ich gebe dazu
ein Beispiel:

h: 0;
for k := 1 step 1 until n do h := h + a{k]xb[h\\

Hier wird zunächst die Variable h Null gesetzt. Sodann soll für den
Schleifenindex k, beginnend mit dem Wert 1 und dann in Schritten
von 1 bis und. mit dem Wert n die nachfolgende Anweisung ausge-
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führt werden. Darin kommen die einfach indizierten Variabein a und b

vor, welche je Vektoren darstellen. Die Schleifenanweisung besagt,
dass zum Wert h das Produkt der Ä-ten Komponente der Vektoren a
und b addiert werde. Der Endwert von h wird damit offenbar gleich
dem skalaren Produkt der Vektoren a und b.

Zur Beschreibung der Schleifenanweisung werden einige fett
gedruckte Worte verwendet, deren Bedeutung ohne weiteres ersichtlich

ist. Diese sind Grundelemente der Formelsprache wie etwa die
arithmetischen Operationszeichen und haben wie jene eine ganz
bestimmte Bedeutung.

In numerischen Berechnungen kommt man oft in die Situation,
dass man bestimmte Formeln und Anweisungen nur dann
auszuführen hat, falls eine Bedingung erfüllt ist. Man denke nur an den
Fall, wo eine Iteration abgebrochen werden soll, sobald die Resultate
eine vorgeschriebene Genauigkeit erreicht haben. Dazu gibt es in
ALGOL die bedingten Anweisungen. Ein einfaches Beispiel möge
das erläutern:

if z ^ 0 then z := 0;

Das Beispiel hat den Effekt, dass die Anweisung z := 0 dann und
nur dann ausgeführt wird, falls der Wert von z grösser oder gleich
Null ist, andernfalls wird sie übersprungen. Somit bleibt der Wert
von z ungeändert, falls er negativ ist, andernfalls wird er durch Null
ersetzt. Die bedingte Anweisung ist also gleichbedeutend mit der
Aussage z := Minimum (0, z).

In diesem Zusammenhang möchte ich erwähnen, dass neben der
gewöhnlichen Arithmetik auch die Bool'sche Algebra in ALGOL
aufgenommen ist, was wiederum viele Möglichkeiten eröffnet.

In den bisherigen Beispielen war jeweilen nur eine einzige
Anweisung von einer Bedingung respektive von einer Schleifenanweisung
abhängig. Doch muss auch die Möglichkeit bestehen, eine Gruppe
von mehreren Anweisungen zusammenzufassen, um sie gleichzeitig

z.B. von einer Bedingung abhängig zu machen. Dies geschieht
mit den sogenannten Anweisungsklammern begin und end, welche
ähnlich wie öffnende resp. schliessende Klammern in arithmetischen
Ausdrücken wirken. Sollen z.B. in einem numerischen Verfahren
sowohl das innere Produkt von zwei Vektoren a und b wie auch ihre
Normen berechnet werden, so kann dies mit folgendem Programmstück

geschehen:

u : ç : w : 0;
for k : 1 step 1 until n do

begin u := u + a[k] t 2 ;

ç : v -f a[k] X b[k] ;

w := w + b[k]î 2;
end ;
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Nun will ich noch auf zwei wichtige Elemente hinweisen. Es kann

nämlich jede Anweisung mit einer Marke in Form einer ganzen Zahl

oder eines Namens versehen werden, wobei die Marke von der

Anweisung durch einen Doppelpunkt getrennt wird. Also z.B.

alpha: x := p ; y := q ; u.s.f.

Eine solche Markierung ist dann notwendig, falls im Verlauf der

Rechnung mit einer bestimmten Anweisung fortgefahren werden
soll. Dazu dient die Sprunganweisung. Soll also an einer Stelle mit
der Anweisung markiert mit alpha forgefahren werden, dann heisst

es im Formelprogramm

go to alpha ;

Mit diesen paar Elementen von ALGOL ist es schon möglich, recht
komplizierte numerische Verfahren zu beschreiben. Daneben gibt es

noch weitere Arten von Anweisungen und dazu vor allem noch die
Deklarationen oder Erklärungen, welche über die auftretenden Variabein

Aussagen machen und damit ein Formelprogramm erst
vervollständigen.

Wie anhand von einigen einfachen Elementen darzulegen versucht
wurde, ist ALGOL sehr leicht verständlich und daher auch rasch zu
erlernen. So dient die internationale Formelsprache dazu, numerische
Rechenprozesse in einer einheitlichen Form darzustellen. Damit ist
ALGOL ein wichtiges und notwendiges Mittel geworden, um dem
Erfahrungsaustausch zwischen den verschiedenen Forschungszentren
zu dienen, und davon wird schon reger Gebrauch gemacht.

Um nun ein solches ALGOL-Programm auf einer Maschine
durchzurechnen, wäre es an und für sich nötig, dass sich jemand hinsetzt
und ein zugehöriges Maschinenprogramm erstellt. Diese Arbeit ist
jedoch im allgemeinen langweilig und zudem entstehen dabei wieder
Fehler. Deshalb ist man dazu übergegangen auch diese Arbeit der
Maschine zu übertragen, wozu natürlich ein Uebersetzungsprogramm
nötig ist. So wurden an mehreren Instituten Europas und Amerikas
wie auch an der ETH solche Uebersetzer erstellt, so dass nun diese
Institute in der Lage sind, sich gegenseitig praktisch rechenbereite
Programme auszutauschen, obwohl die verwendeten elektronischen
Rechenmaschinen ganz verschieden sind. Dies ist immerhin ein
weiterer recht schöner Aspekt für die Formelsprache und es ist zu
hoffen, dass sich bald einmal die angewandten Mathematiker zum
Wohle ihrer Wissenschaft und Tätigkeit auf internationaler Ebene
mit Hilfe von ALGOL verständigen werden.



200 SOCIÉTÉ MATHÉMATIQUE SUISSE

Beispiele zur internationalen Formelsprache ALGOL

1. Berechnung von ln(x) mit Hilfe des arithmetisch-geometrischen
Mittels.

0: p : (# î 2 + 1) f(2xx) ; q := (x î 2 — 1) / (2xx);
1: for k := 1 step 1 until 20 do
2: begin p := sqrt (0.5x(l+p)) ; q := qfp ;

3: if (abs(p — 1) <10 — 5) then go to 6 ;
4: end k ;

5: go to nonconvergence ;

6: lnx := 3xq / (2 + p) ;

2. Berechnung des Wertes f und der Ableitung fl eines Polynoms vom
n

Grad n: f(x) — £ c[k]xk nach Horner.
k o

0: / := fi := 0;
1 : for k : n Step — 1 until 0 do
2: begin /I :»=s fl xx + / ; / : fxx + c[&] end ;

3. Matrizenprodukt zweier quadratischer Matrizen A und B.
C AxB:

n

Cik ^ X! ^
i=i

£ür f i 15 2, n
turU -1,2,

0: for i :.= 1 step 1 until n do
1: for k := 1 step 1 until n do
2: begin c[i, k] : 0 ;

3 : for / : 1 step 1 until n do
4: c[i, k] : c[i, A] + a[i, /'] x &[/, k] ;

end A

9. Sophie Piccard (Neuchâtel). — Un problème de la théorie des

ensembles. — Sur la décomposition en constituantes des ensembles

analytiques (de Suslin) et des complémentaires analytiques.

Soit E un ensemble linéaire, analytique au sens de Lebesgue et
Lusin, appelé aussi ensemble de Suslin1. Supposons le plan euclidien

i Rappelons que E est l'ensemble des valeurs d'une fonction multivalente réelle
d'une variable réelle f (t) définie pour 0 ^ t ^ 1 et discontinue en une infinité dénom-
brable de points.

"Voir, par exemple, N. Lusin: Leçons sur les ensembles analytiques et leurs applications,

Paris, Gauthier-Villars, 1930.
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rapporté à un système d'axes rectangulaires Oxy et soit Ox le support
de E. Désignons par S le complémentaire de E par rapport à Ox,

appelé complémentaire analytique.
Il existe, comme on sait, d'une part un ensemble plan C, formé

d'une infinité dénombrable de segments rectilignes parallèles à Ox

et tels que l'ensemble E est criblé par C. Cela veut dire que la
perpendiculaire en tout point (x, o) à Ox coupe C en un ensemble de

point Px qui n'est pas bien ordonné suivant la grandeur des ordonnées
de ses points si (x, o) g E, alors que Px est bien ordonné suivant le
même critère, si (x, o) g S. L'ensemble C est dit un crible élémentaire
de l'ensemble E.

D'autre part, on sait qu'il existe un ensemble dénombrable D
de segments de Ox qui forme un système déterminant dont l'ensemble
E est le noyau. Soient snin2...nk (&, nn 1, 2, les segments
de D. Le noyau N(D) de D est par définition l'ensemble

N(D)s„nw n *.

Pour un même ensemble analytique qui n'est pas mesurable B,
il existe une infinité indénombrable de cribles plans qui le criblent
et il existe également une infinité indénombrable de systèmes
déterminants distincts dont il est le noyau.

On sait que tout crible plan C décompose aussi bien S que h
en constituantes mesurables B, disjointes deux à deux, et qu'une
infinité indénombrable de ces constituantes sont non vides si E
n'est pas mesurable B. Quel que soit le nombre ordinal oc < Cl la
constituante Sa de rang a de S définie à partir d'un crible C est
l'ensemble des points de S auxquels correspond un ensemble Px
bien ordonné d'après la grandeur des ordonnées de ses points, du
type d'ordre oc, alors que la constituante Ea de rang oc de E est formée
de tous les points de E auxquels correspond un ensemble Px qui est
la réunion de deux sous-ensembles disjoints Px et P2X, dont le premier
est bien ordonné suivant la grandeur des ordonnées de ses points,
du type d'ordre oc, alors que le second n'est pas bien ordonné suivant
le même critère, ne possède pas d'élément dont l'ordonnée soit
minimum et que l'ordonnée de tout point de P\ est supérieure à celle
de tout point de P\. On sait aussi que S et E peuvent être décomposés
en constituantes à partir de tout système déterminant D dont E est
le noyau, comme l'a montré M. W. Sierpinski 2. On pose, pour tout
système de nombres naturels k, nx, nk, s°ni,„»k sni...n^ D.
Soit, à présent oc un nombre ordinal quelconque < O et supposons

i Voir W. Sierpinski: Sur une propriété des ensembles (A), Fundamenta Mathe-
maticae, t. VIII, 1926, pp. 362-369.

2) W. Sierpinski: Sur les constituantes des ensembles analytiques, Fundamenta
Mathematicae, t. XXI, 1933, pp. 29-34.
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que nous ayons déjà défini le système déterminant D*, dérivé d'ordre £,
de D, formé des ensembles s%inpour tout nombre ordinal
Ç < oc. Si a est de première espèce: a oc"+ 1, posons

00
a a* a* a*

sn1n2...nje Sn1n2...nji Sn1n2...njt n U Sn1n2...ri]in]t+1
"k +1 1

Si a est de seconde espèce, posons

o* — n o*»

et soit, dans les deux cas, Z)a le système déterminant formé des
ensembles (mesurables B) sanin2_Wfc, où &, %, n2 1, 2, Da est
le système déterminant de E, dérivé d'ordre a, de D.

Pour tout nombre ordinal oc < û, posons

00

sa ~ u Ça T* — u (ça <?a + 1 ïu w -1
> àn1n2...nym

n 1 nL,n2,...,nk

On a, comme l'a démontré M. Sierpinski, E — n Sa — u (Sa—Ta)
a<^ a<a

et les ensembles $ et E sont décomposés, à partir du système
déterminant D et de ses dérivés successifs en constituantes mesurables B
disjointes deux à deux comme suit: ê — u E u E% °ù

oc<Q <x<Q

1) S'q CS° (c'est le complémentaire de S0 par rapport à la droite-
support de E).

2) $a n ^ —$"•> quel que soit le nombre ordinal oc (1 ^ oc < O).
S«*

3) E% (S* — Ta) — u Equel que soit le nombre ordinal a < O.
£<a

La décomposition en constituantes d'un ensemble analytique et
de son complémentaire n'est pas unique, elle varie d'un crible à
l'autre et d'un système déterminant à l'autre et les décompositions
en constituantes de tels ensembles faites à partir d'un crible et à

partir d'un système déterminant donné sont, en général, distinctes.

Proposition 1. —-A tout crible plan C élémentaire on peut faire
correspondre un système déterminant D dont le noyau coïncide avec
l'ensemble analytique linéaire criblé au moyen de C et tel que E
aussi bien que le complémentaire analytique ê de E par rapport à la
droite-support de E sont décomposés en les mêmes constituantes
par le crible C et par le système déterminant D.

Démonstration. — Soit C le crible élémentaire du plan référé à

un système d'axes rectangulaires Oxy dont l'axe Ox est le support
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de l'ensemble analytique E criblé par C. Par définition, C est la
réunion d'une infinité dénombrable de segments parallèles à Ox.

Formons, avec tous ces segments, pris dans un ordre quelconque,
une suite simple c^, <r2, en faisant correspondre un nombre naturel
unique à chacun de ces segments. Soit un nombre naturel
quelconque ^ 1.

Partons du segment crni, soit dni la droite parallèle à Ox qui en
est le support, soit y — yni l'équation de cette droite et soit Cni la
partie du crible C formée de tous les points de C d'ordonnée inférieure
à yni. L'ensemble CUl se compose d'un ensemble fini ou dénombrable
de segments de C. Si le nombre de ces segments est fini, égal à m,
prenons-les dans un ordre quelconque et affectons-les de doubles indices,
dont le premier invariable est %, et le second varie de 1 à m et désignons

par O/jji, cr„l2, anim ces m segments. .Posons ensuite 07Ht 0
quel que soit l'entier t m 1.

Et si l'ensemble Cn± est formé d'une infinité de segments, comme
leur ensemble est dénombrable, on peut en former une suite simple,
en les prenant dans un ordre quelconque. Désignons les termes
successifs de cette suite par les symboles cr„l2,

Procédons ainsi pour toute valeur de l'entier n1= 1, 2,

Soit, à présent, k un nombre entier quelconque et supposons que
nous ayons déjà défini les ensembles anin2...nk pour tout système
de k nombres naturels nl7 ft2, m, certains de ces ensembles pouvant
être vides et tous les autres étant des segments du crible C.
Considérons un système fini quelconque nx, nu de nombres naturels.
Si Gnin2...nk — 0, posons 07,^2...nyik+1 " 0, quel que soit 7Z/t+1 1, 2,....
Et, si c7nin2..Mk 0 7 s°it dnin2...nk la droite parallèle à Ox qui est le
support de ce segment et soit y ynin2...nk l'équation de cette
droite. Soit Cnin2...nk l'ensemble des points du crible C d'ordonnée
inférieure à ynin2...nk- Si cet ensemble n'est pas vide, il est la
réunion d'un ensemble dénombrable de segments de C, segments
dont on peut former une suite simple et que l'on peut désigner par
(ynin2...nkV • • •. Si la suite en question ne comprend qu'un
nombre fini m ^ 0 de segments de C, nous poserons an~ & 7

quel que soit nu+i m-\~ 1, m+2, Cela étant quel que soit le
nombre entier /c > 1 et, pour un k donné, quel que soit le système
de nombres naturels nlf n2, nk, on fait ainsi correspondre à tout
système fini de nombres naturels nlr n%, nk un segment déterminé

du crible C ou un ensemble vide. Cette correspondance n'est
pas biunivoque.

Quel que soit le système fini de nombres naturels nx, ra2, nk
appelons snin2...nk la projection orthogonale sur Ox (aBl«2...«fc)^, de
l'ensemble crni«2...nfc et soit D — [5«in2...nfe] le système déterminant
formé des ensembles sni„2 ...nk• Montrons que ce système déterminant D
satisfait à la proposition 1.
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Montrons d'abord que le noyau N(D) de ce système est
l'ensemble E. Soit x un élément quelconque de N(D). Il existe donc
une suite dénombrable de nombres naturels ral7 n27 telle que
X G Sni O Sn1n2 ^ •••

De la définition du système déterminant D il résulte qu'il existe
une suite dénombrable de segments du crible C: aBl, tels
que snin2..,nk (cjnin2...nk)x quel que soit k 1, 2, et que, y ;

ynin2...nk étant l'équation de la droite support du segment anin2...nki
on a y„t > yMln2 > Donc x g E. Gela étant quel que soit l'élément
x de iV(Z)), on a l'inclusion N(D) CI E.

Soit à présent x un point quelconque de E. Alors la perpendiculaire

en ce point à Ox coupe C en un ensemble de points Px qui n'est
pas bien ordonné d'après la grandeur des ordonnées de ses points et
il existe au moins une suite dénombrable de segments du crible C,
à ordonnées décroissantes et dont chacun a un point commun avec Px.
Il existe donc, d'après ce qui précède, une suite de nombres naturels
ni, ti2, telle que la dite suite de segments se confond avec 07,A,

Et comme snin2...nk (<tnin2...nk)x quel que soit k 1, 2, on a

xesn± n snin2 n et, par conséquent x g N(D). Gela étant quel que
soit x e E on a aussi l'inclusion É CI N (D) et, par suite, E N(D).

Montrons maintenant que les ensembles ê et E sont décomposés
par le crible C et le système déterminant D en les mêmes
constituantes. Pour faciliter la décomposition de ê et E en constituantes
à partir du crible G, considérons, pour tout nombre ordinal oc < Cl,
le crible C dérivé d'ordre a de C1.

Quel que soit le système fini de nombres naturels %, n2, nk,
considérons l'ensemble Gn1n1...nk que nous avons défini plus haut
et qui est soit un segment du crible C soit un ensemble vide. Posons

Ontn2...nk ~ Gn^.Mk et s0^ C° crible plan, réunion des ensembles

a^„2 nk' On a C° C. Soit, à présent, oc un nombre ordinal
quelconque > 0 et < Q et supposons que nous ayons déjà défini, pour
tout nombre ordinal Ç < oc, les ensembles nki k, n2, 1,

2, ainsi que le crible G^ dérivé d'ordre E, de C et qui est là réunion
de tous ces ensembles. Si oc est de première espèce: oc oc*+ 1

et si 0, posons ^...nh0 • Et si a£„2...njt # 0, soit
d la parallèle à Ox support du segment Gnin2...nk du crible G,

soit )<* la projection orthogonale sur d de l'ensemble

On*in2...nknk+1, quel que soit nk+1 1, 2,...; posons

00
CC t / et* \

cj/i1«2.'..wA: ~ Gn1n2...nk n U vJn1n2...nwk + t' d

»k+1 1

î La notion de crible dérivé a été introduite par N. Lusin.
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Et, si a est de seconde espèce, posons
a ~

cr/i1n2...nfe ' 1 °n1n2...nk '
£<a

Dans les deux cas, le crible C, dérivé d'ordre a de C, est la réunion des

ensembles où /c, 7^, 7ifc 1, 2,

Quel que soit le nombre ordinal oc < O, appelons C* la projection
orthogonale sur Ox du crible Ca et soit (^lW2...„fc)x projection
orthogonale sur Ox de l'ensemble à*

„2 quel que soit le nombre ordinal
a < Ü et quel que soit le système fini de nombres naturels nl7 n2

nk.
Il résulte sans peine de la définition des constituantes d'un

ensemble analytique et d'un complémentaire analytique ainsi que de
la définition des cribles dérivés que
1') S0 C C0 (#0 est le complémentaire de Cl par rapport à Ox)\
2') ê* n C\ — Ca quel que soit le nombre ordinal oc ^ 1 et < Q;

3') Ea C% — u (Kini...nk)x- quel que
n1,n2,...,nk Ç<a

soit oc (0 ^ oc < Q).
Il s'agit de décomposition en constituantes de ê et E à partir du

crible C, alors que les formules 1) 2) et 3)définissent les constituantes
de ces deux ensembles à partir du système déterminant D.

Comme Cax 3 Cßx pour tout couple de nombres ordinaux oc et ß,
tels que oc < ß < Ü, si oc est un nombre ordinal de première espèce :

oc a*+ 1, on a n C% ~ C** et, par suite <fa C%* — C%
£«x

On a les formules

5n1/i2...nfc =* (oh1n2...nk)x quel que soit le nombre ordinal oc < û et quel
que soit le nombre fini de nombres naturels nl7 n2, nk7 et

00

II) Sa u si u $nin2...nk Cax, quel que soit le nombre ordi-
n= 1 n1n2...nfc

nal oc < O.

Démontrons d'abord la formule I). On a, par définition, snin2...nk
(crnin2...nk)x- Soit à présent oc un nombre ordinal > 0 et < Û

quelconque et supposons que nous ayons déjà prouvé que, quel que soit
le nombre ordinal £ < a, on a 4^.^(4^...^)x- Démontrons que

a / a V
sn1n2...nk \(Jn1n2...nk) x'

Si a est de première, espèce: a oc*+ 1, on a, par définition,
00

a a* a*
nin2—nk Sn1n2...nk ^ ^ Sn1n2...nknk i.1 i

i=l
a a* y a* \

crn1n2...n/c ^ a«1n2...ink ^ ^ vyn1n2...nknk + 1)d
«fc+i=l
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donc aussi

*
°°

(®n1n2...ni) x ^n{n2...n^ x ^ ^ ((7n1n2.../ifenfc4-1)x *

"/e 4-1 1

La propriété à démontrer étant supposée vraie pour tout nombre
ordinal £ < a, on a

/oc* \ a*
\(Jn1n2...ny x sn1n2...nk

et
/ a* \ a*
'Œ1i«2-W + 1^ Sn1n2...nknk + 1

quel que soit itk+1 1, 2, d'où il résulte que

Sn1n2...nk (Gn1n2...nj)x '

Et, si a est de seconde espèce, on a par définition

et

C« f~\ J
°n1n2...nk ' 1 °n1n2...nk

<3 <a

ân a„ M MIn1n2...nk

Donc aussi
<3 <<*

(^"ln2...nk)x ^ (^n1n2...nki x •

Et comme la propriété à démontrer est supposée vraie pour tout
l< oc, on a {<yiin,..,„k)x quel que soit < oc, donc aussi

<»2...nfe KU...»*)*, c.q.f.d.
Etablissons maintenant la formule II).
Quel que soit le nombre ordinal a < û et les nombres naturels

Zc, nk, on a l'inclusion

*) u s"a c u <n2...nfc
«=1 n1tt2...nk

puisque tous les si figurent parmi les s*itl2 nk. D'autre part, de la
définition du système D il résulte qu'à tout système fini de nombre
naturels n%, nk, tels que snin2...nk ^ correspond un nombre
naturel n, tel que sni„2...nk sn. Mais alors sl±n2 njc si quel que soit
a < Q d'après les définitions précédentes. On en déduit l'inclusion

**) u sn=> u Sx„in^„k
n= 1 n1,n2,...,nk

et des deux inclusions*) et**) découle l'égalité
00

Û <-U
n= 1 n1,n2,...,nk
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On en déduit immédiatement, d'après I) que S* Cax quel que soit le

nombre ordinal oc < Q. La formule II) est donc établie.
Or les relations I) et II) ainsi que les formules 1), 2), 3), 1'), 2')

et 3') définissent les constituantes des ensembles S et E entraînent
l'identité des décompositions en ces constituantes de chacun des

ensembles ê et E au moyen du crible C et du système déterminant D.
La proposition 1 est donc démontré 1.

Proposition 2. — Tout ensemble analytique E peut être décomposé,

en même temps que son complémentaire S, en constituantes
mesurables B disjointes deux à deux de telle façon que toutes les

constituantes dont le rang est un nombre ordinal de seconde espèce
soient vides.

Démonstration. — Voici la démonstration de la proposition 2 dans
le cas où l'ensemble analytique E est linéaire et S est son
complémentaire par rapport à la droite support de E. Comme l'a prouvé
M. W. Sierpinski 2 E peut être criblé au moyen d'un crible plan
fermé C, tel que l'ordonnée de tout point de C est comprise entre 0 et 1.

Prenons un tel crible fermé C et décomposons E et S en constituantes
au moyen de ce crible. Soient E u Ea et ê u é>a ces décom-

a<Q a<Q
positions.

Supposons le plan du crible référé à un système d'axes rectangulaires

Oxy dont l'arc Ox est le support des deux ensembles 1E et S.
Soit, pour tout nombre réel a, Pa l'intersection de la droite x a
avec C. Quel que soit le nombre ordinal oc > Q, la constituante
de ê est, par définition, l'ensemble des points (a, 0) de S en lesquels
l'ensemble Pa est bien ordonné suivant la grandeur des ordonnées
de ses-points,-et a pour type d'ordre oc. Or Pa, en Tant qu'intersection
de deux ensembles fermés, est un ensemble fermé. Si son type d'ordre a
était un nombre ordinal de seconde espèce, Pa serait infini et il
n'existerait pas dans Pa de point d'ordonnée maximum. Mais Pa
étant borné (il fait partie du segment d'origine (a, 0) et d'extrémité
(a, 1) infini, bien ordonné suivant la grandeur des ordonnées de
ses points, il existe nécessairement un point (a, y) de la droite x a
dont l'ordonnée est supérieure à celles de tous les points de Pa, qui
ne fait pas partie de cet ensemble puisque l'ensemble bien ordonné
Pa n'a pas de dernier élément, mais qui est un point d'accumulation
de Pa. Donc Pa n'est pas fermé, ce qui est contradictoire. Il s'ensuit
que toute constituante, êa de où oc est un nombre ordinal de seconde
espèce, est vide.

1 La proposition 1 est encore vraie et la démonstration précédente subsiste si
le crible plan C est formé d'une infinité dénombrable d'ensembles mesurables B linéaires
quelconques dont les supports sont des droites parallèles à Ox.

2 W. Sierpinski : Les ensembles analytiques comme criblés au moyen des ensembles
fermés, Fundamenta Mathematicae, t. XVII, 1931, pp. 77-91.
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Soit encore oc un nombre ordinal de seconde espèce, > Q,
quelconque. Envisageons la constituante Ea de E. Par définition, c'est
l'ensemble des points (a, 0) de E, tels que Pa P£iu PI, où
PI n P2a — 0, PI est bien ordonné, du type d'ordre a, suivant la
grandeur des ordonnées de ses points, P2a n'est pas bien ordonné
suivant le même critère, ne possède pas de point d'ordonnée minimum
et que l'ordonnée de chacun de ses points est supérieure à celle de

chaque point de PPuisque P\ n'est pas bien ordonné suivant la
grandeur des ordonnées de ses pointSj cet ensemble est nécessairement

infini. Si le point (a,- 0) fait partie de E, comme oc est de seconde
espèce, l'ensemble P\ est infini. Et comme il est bien ordonné suivant
la grandeur des ordonnées de ses points et borné, il doit exister un
point (a, y) de la droite x — a dont l'ordonnée y est supérieure à celle
de tout point de P\ et qui est un point d'accumulation de ce dernier
ensemble, alors que P\ est l'intersection de l'ensemble Pa avec la
demi-droite x a issue du point (a, y) et dirigée dans le sens des y
négatifs. Donc le point (a, y) ne fait pas partie de l'ensemble P2a et,
par suite, Pa n'est pas fermé, ce qui est contradictoire. Par conséquent

Ea 0.
Cela étant quel que soit le nombre ordinal oc < iQ de seconde

espèce, la proposition 2 est démontrée.
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