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LA NOTION DE CONVEXITÉ DANS

L'ENSEIGNEMENT ÉLÉMENTAIRE.1)

par Otto Frostman

Dans l'enseignement secondaire en Suède on considère depuis
longtemps la notion de dérivée des fonctions numériques d'une
variable réelle, définie comme la limite du quotient des

différences. On se limite dans les applications à certaines classes de

fonctions élémentaires, telles que les polynômes, les fonctions
rationnelles etc., et même sur la branche mathématique on
n'enseigne pas la dérivée de la fonction exponentielle. Or, quelles

que soient les fonctions considérées, les applications peuvent se

grouper de la manière suivante:

1. Tangente et normale à une courbe.

2. Variation d'une fonction dans un intervalle, en particulier,

détermination des maxima et des minima.

3. Convexité des courbes, points d'inflexion.

4. Primitives d'une fonction donnée et calcul des aires et des

volumes.

Pour la première application il suffit de rendre sensible que
la tangente au point (a, / (a) du graphe de la fonction / est la
ligne à coefficient angulaire f (a) passant par ce point; c'est en
effet une définition. Pour les autres on aurait besoin de quelques
lemmes ; en voici un qui est démontré plus ou moins rigoureusement

:

Si /' (x) > 0 la fonction / est strictement croissante en x,
c'est-à-dire qu'il existe ô > 0 tel que f (x') < f (x) < f (x") pour
x—ô < x' < x < x" < x-\-ô. D'une manière analogue, f'(x) < 0

entraîne que / est strictement décroissant en x.

0 Conférence prononcée au Séminaire organisé par la C.I.E.M. à Lausanne le
26 juin 1961.
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De ce lemme, ou par une méthode directe, on conclut
immédiatement que /' (x0) 0 si / a un maximum ou un minimum au

point intérieur xQ. Pour la conclusion inverse on se contente de

dire que si /' (x0) 0 et si /' change de signe en x0l on a un
maximum ou un minimum selon le cas. Or ce fait n'est jamais
démontré d'une manière satisfaisante, car, je n'ai vu dans aucun
manuel de l'école secondaire une démonstration rigoureuse du
fait qu'une fonction, qui est strictement croissante en tout point
d'un intervalle ouvert, est strictement croissante au sens global
dans l'intervalle, c'est-à-dire que x± < x2 entraîne / (x2) < / (x2).

Évidemment, on ne peut pas faire, dans l'enseignement
secondaire, toutes les démonstrations qui seraient nécessaires

pour un traitement rigoureux de l'analyse ou de la géométrie. Or,
il y a un principe qu'on doit adopter dans tous les cas: Il faut
dire clairement ce qu'on ne peut pas démontrer et qu'on laisse à

l'enseignement supérieur. Surtout, on ne doit jamais faire une
démonstration fausse qui ressemble à une démonstration
correcte. L'exemple donné de la croissance d'une fonction est
de cette espèce; quelle que soit la méthode on tomberait, dans

une démonstration, aux mêmes raisonnements qui conduisent
au théorème de Heine-Borel. Or dans ce cas, on pourrait se

demander si on ne devrait pas introduire, dans l'enseignement
secondaire, le théorème des accroissements finis, en le mettant
en vue de la manière géométrique bien connue et, évidemment,
en tirant l'attention sur le fait que la démonstration n'est pas
rigoureuse. Ce théorème accepté, toute la théorie élémentaire
de l'analyse serait solidement basée, en particulier, le théorème
fondamental des fonctions primitives et l'étude des courbes et
leur convexité, qui est maintenant une affaire tout à fait
heuristique.

Je veux m'arrêter à la notion de convexité. En général dans
l'enseignement secondaire, une courbe sera dite convexe
(supérieurement concave) si elle est située au-dessus de la tangente en
tout point de l'intervalle considéré. On énonce ensuite que ce fait
est équivalent à ce que la fonction correspondante /, supposée
dérivable, a une dérivée croissante ou encore que f" est non-
négatif. Rien n'est prouvé mais on fait' souvent allusion à des
faits connus de telle façon que l'élève inévitablement croit que
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la chose est achevée. Cette méthode n'est donc pas bonne en
principe déjà et, en outre, c'est dommage car on a ici une partie
de l'analyse dont on peut tirer des résultats intéressants et
enrichissants-par des méthodes à la fois rigoureuses et tout à

fait élémentaires. D'abord, il faut définir une fonction convexe
indépendamment de la notion de dérivée, et il me semble que
la définition géométrique au moyen de la corde serait la plus
simple. On démontre ensuite, par des arguments géométriques
mais parfaitement rigoureux, que

1. Une fonction / est convexe si et seulement si, pour tout
point (a, f (a) sur le graphe de /, la pente de la sécante

f(x) -f(a)
5 X ^ Cl

x—a

est croissante avec x.

On en conclut immédiatement qu'une fonction convexe et
finie a une dérivée finie à droite et une dérivée finie à gauche en

tout point intérieur et qu'elle est continue. En supposant encore

que la fonction ait une dérivée unique, on obtient ensuite sans
difficulté que cette dérivée est une fonction croissante, et
maintenant comme critères:

2. Une fonction / dérivable est convexe si et seulement si le

graphe de / est situé au-dessus de ses tangentes.

3. Une fonction / continue est convexe si et seulement si,

pour tout couple de points %, x2, on a

/ y^~2 (/Oi) +/(*2)) •

Je crois qu'on obtient la démonstration la plus simple du
dernier critère important par subdivision successive d'un intervalle

donné. Toutes ces propriétés, dont aucune n'exige le

théorème des accroissements finis, sont bien connues, et je
renvoie pour plus de détails à la présentation excellente donnée

par Bourbaki dans lé Livre IV, chap. I, Fonctions d'une
variable réelle (Théorie élémentaire).
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Si l'on sait d'avance qu'une fonction est une ou deux fois

dérivable, on peut énoncer des critères de convexité commodes.

Il faut remarquer cependant que ces critères exigent, pour leur
démonstration, le théorème des accroissements finis. Ainsi, par
exemple, si f est croissant / est convexe en vertu de 2.,' car la

fonction
(p(x) /(*) -f(à) -f(a) (x-a)

a le minimum zéro pour x — a.

L'introduction des fonctions convexes sans faire appel à la
dérivée mais seulement à des propriétés géométriques très
simples a encore l'avantage qu'on peut employer la convexité

pour prouver l'existence des dérivées, comme on le sait déjà de

la théorie générale. L'exemple classique est la fonction exponentielle

a*, définie d'abord pour des exposants rationnels et
prolongée par continuité. Elle est convexe et elle a la dérivée

f (a) ax, où

f(a) lim (a* — l)/x lim (a"* —1)/( — x)
x-> + 0 x-+ + 0

Les limites existent en vertu de la convexité, et on conclut
ensuite facilement qu'on peut choisir a de telle façon que f (a) 1.

Remarquons enfin qu'il y a d'autres méthodes pour introduire

la fonction exponentielle, méthodes qui s'appuient aussi
plus ou moins sur la convexité. Ainsi, de l'identité algébrique

xn — v"
xn~1 +xn~2 y + +yn~l

x-y
n étant un entier positif, on obtient d'abord que la fonction xn

est convexe pour x > 0 et qu'elle a la dérivée nxn~1. Alors, le
graphe est situé au-dessus de la tangente, ce qui, pour x 1,
entraîne l'inégalité

f ^l+n«-l) =n£-(n-l),
valable au moins pour £ > 0. Pour £ a/à, où a et à sont des
nombres positifs, cette inégalité s'écrit

an ^ (na — (n — 1) b) à"-1.

L'Enseignement mathém., t. VIII, fasc. 1-2, 11
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En posant enfin a — l-\-x/n, b l+x/ (n — i), x >—(n — 1),
on obtient

va en croissant pour tout x réel. On démontre ensuite que la
limite est finie pour tout x et que la fonction limite satisfait à

toutes les propriétés de la fonction exponentielle. La déduction
de la dérivée est aussi facile. Cette méthode peut paraître
artificielle, mais elle a l'avantage de rattacher l'introduction de la
fonction exponentielle à ce qu'on appelle intérêt instantané.

ce qui montre que la suite des fonctions

(l+x/nf

Institut Mittag-Leffder
Djursholm, Suède.
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