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L'ANALYSE ET BOURBAKI 1

par Gustave Choquet

Le titre de cette étude laisse espérer et craindre à la fois

que j'ai le projet aventureux de lire les pensées de cet être

polycéphale qui se nomme Bourbaki.
En fait, c'est de l'ensemble de l'Analyse moderne que je

veux parler, mais Bourbaki a maintenant des conceptions si

clairement cristallisées, et il est tellement mêlé au développement

des Mathématiques de notre temps qu'on peut espérer,
en étudiant ses œuvres, philosophiques et mathématiques, saisir
dans un grand état de pureté l'essentiel des tendances de

l'Analyse moderne.
Une telle étude pourra ensuite nous aider à mieux concevoir

un enseignement de l'Analyse à tous les niveaux, qui soit adapté
à notre temps.

La méthode axiomatique

L'étude du développement historique des mathématiques
montre assez nettement qu'après chaque période de recherches
en extension vient une période de synthèse, où des méthodes
générales sont élaborées, et l'édifice mathématique basé plus
solidement. C'est ainsi que la synthèse de Descartes vint
couronner une longue période de recherches en apparence très
variées, et permit de reléguer dans le musée des curiosités une
multitude de procédés d'étude de courbes et fonctions particulières.

Aujourd'hui le nombre des mathématiciens est tel que ces
deux tendances peuvent coexister; toutefois l'œuvre de synthèse
des cinquante dernières années, rendue possible par la création
de la théorie des ensembles et de son langage est particulièrement

0 Conférence donnée au Séminaire organisé par la C.I.E.M. à Lausanne, le 26 juin
1961.
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remarquable; elle s'est nettement concrétisée chez Bourbaki, et
c'est là que je veux l'étudier.

Pour Bourbaki il n'y a plus désormais qu'une Mathématique
et l'outil essentiel de cette évolution vers l'unité a été la méthode

axiomatique.
Pour appliquer cette méthode à l'étude d'une théorie, le

mathématicien « dissocie les ressorts principaux des raisonnements

qui y figurent; puis, prenant chacun d'eux isolément, et
le posant en principe abstrait, il déroule les conséquences qui
lui sont propres; puis, revenant à la théorie étudiée, il en combine
de nouveau les éléments constitutifs précédemment dégagés, et
étudie comment ils réagissent les uns sur les autres » (Bourbaki).

On retrouve dans cette analyse, mais sous une forme plus
structurée, l'un des principes de base de Descartes : Diviser chaque
difficulté en autant d'éléments qu'il est nécessaire.

Les « ressorts principaux des raisonnements » constituent les

structures :

Par exemple l'ensemble R des nombres réels possède des

structures variées: Structures de groupe, de corps, d'espace
vectoriel, d'ordre, d'espace topologique.

Inversement une même structure peut se retrouver dans

plusieurs théories distinctes ; par exemple la structure de groupe
se retrouve dans l'étude de i?, des entiers modulo /?, des déplacements

de l'espace.
Pour que l'étude d'une structure puisse s'appliquer à des

théories variées, les ensembles étudiés doivent donc être très
généraux; en particulier la nature de leurs éléments constitutifs
ne doit pas intervenir; seules doivent compter les relations qui
existent entre ces éléments; celles-ci sont clairement précisées
dans les axiomes qui définissent la structure.

Par exemple, une structure d'ordre sur un ensemble

quelconque E sera une relation binaire sur E, notée -<, satisfaisant
aux axiomes suivants:

Pour tous x, y, z appartenant à£, on a:

(1) x -< x;

(2) (x < y et y < x) => (x y);

(3) (x -< y et y < z) => (x -< z).
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Certaines de ces structures ont une importance fondamentale

puisqu'on les retrouve dans toutes les théories, ce sont les

structures-mères: structures associées à une relation d'équivalence,
structures d'ordre, structures algébriques, structures topolo-
giques, etc...

Ces structures-mères sont d'ailleurs plus ou moins riches;

par exemple, une structure de groupe abélien fini et une structure
de corps sont plus riches qu'une structure de groupe quelconque.

D'autres structures, déjà plus complexes, font intervenir
plusieurs structures-mères, liées entre elles par des conditions de

compatibilité, ce sont les structures multiples. Par exemple, un
groupe topologique est muni à la fois d'une structure de groupe
et d'une structure topologique, compatibles en ce sens que les

opérations (x, y) -> x. y et x -> x~l sont continues.

L'algèbre topologique, la topologie algébrique, étudient des

structures multiples; la géométrie différentielle, l'algèbre
différentielle étudient des structures plus riches encore.

Enfin, au sommet de l'édifice, apparaissent les structures-
carrefour, qui font intervenir de très nombreuses structures.
La théorie du potentiel est un excellent exemple d'une telle
structure. La multiplicité des structures-mères qui
interviennent dans de telles théories explique l'intérêt que leur
portent des mathématiciens très variés ; chacun des progrès
réalisés dans l'étude des structures constituantes se répercute
sur la théorie. C'est ainsi que les progrès de la théorie du potentiel
correspondent à des progrès de théories variées, intégrale de

Lebesgue, espaces topologiques, espaces vectoriels topologiques,
mesures de Radon, groupes abéliens localement compacts,
distributions, etc...

De telles structures sont le véritable domaine de l'analyste;
aussi définirons-nous VAnalyse comme l'ensemble des structures-
carrefours. Ces dernières n'ayant pas été définies de façon rigide,
les domaines-frontière sont nombreux; notre définition n'établit
qu'une hiérarchie. Une théorie A relève plus de l'Analyse qu'une
théorie B si les structures étudiées dans A sont plus riches que
celles étudiées dans B.

L'Analyse apparaît donc comme un monde dont la
complexité rappelle celle de la Vie. Alors que l'Algèbre est un monde
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minéral dont les beautés sont des cristaux aux formes pures,
l'Analyse est peuplée d'êtres aux contours parfois imprécis,
algues marines, hydres ou éponges; c'est une jungle exubérante
qu'on peut explorer de multiples façons et où chacun peut imprimer

au domaine qu'il défriche le cachet de sa personnalité.

Caractères de la méthode axiomatique

1. Le développement récent des mathématiques et celui de

l'industrie présentent des analogies intéressantes:
La méthode axiomatique est une taylorisation ; les structures-

mères sont nos machines-outils.
La méthode axiomatique apporte une économie de pensée et

de notations', les énoncés importants qu'on utilise partout sous
des formes variées sont démontrés une fois pour toutes, dans un
système d'axiomes assez général pour englober tous les cas

utiles; on choisit avec soin dans ce cadre une terminologie et
des notations qui puissent être utilisées dans les divers cas
particuliers, en donnant la préférence aux mots suggestifs, qui
évoquent des résonnances, éveillent l'intuition.

Ce soin dans le choix de la terminologie va de pair avec un
souci de clarté dans la rédaction ; les mathématiciens modernes
ont un style précis et dépouillé; ils se plaisent à dégager le squelette

de leurs exposés en les découpant en définitions, lemmes,
théorèmes, corollaires, remarques et mises en garde (S!).

2. Les premiers systèmes axiomatiques étaient univalents

(axiomatique de la géométrie élémentaire d'Euclide-Hilbert,
définition des entiers naturels par Péano) ; par contre, les structures

fondamentales sont multivalentes, c'est-à-dire, que les

axiomes qui les définissent s'appliquent à de vastes classes

d'ensembles structurés non isomorphes.
Cette multivalence garantit leur adaptation à des situations

très variées; aussi est-il parfois difficile de dire si un énoncé est
de l'Algèbre, de la Géométrie ou de l'Analyse:

Ainsi la géométrie élémentaire de l'espace n'est autre que
l'algèbre linéaire sur un espace vectoriel à trois dimensions
muni d'un produit scalaire; et l'étude des formes quadratiques
sur cet espace équivaut à l'étude des coniques du plan.
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De même, étudier l'espace de Hilbert c'est, bien sûr, faire
de la géométrie (sphères, angles, perpendiculaires); mais c'est

aussi faire de l'algèbre et de l'analyse; par exemple, pour
H. Cartan, le balayage en théorie du potentiel n'est autre

qu'une projection orthogonale sur un cône convexe d'un espace
de Hilbert; plus généralement, les ensembles convexes
appartiennent bien à la géométrie; mais, dans les espaces vectoriels
topologiques, ils constituent un des outils de base de l'analyste.

La multivalence des grandes structures est donc un facteur
d'unité, qui permet un enrichissement mutuel des diverses
théories mathématiques. Pareil phénomène n'est pas nouveau:
Rappelons le rôle de la représentation géométrique plane des

nombres complexes, la synthèse entre géométrie et algèbre
opérée par Descartes, l'appui que les recherches d'Analyse de

Monge ont trouvé dans la géométrie. Mais, grâce à l'algèbre
des ensembles et à son langage universel, ce phénomène s'est
considérablement amplifié; citons seulement quelques exemples
caractéristiques :

— La topologie de Zariski en géométrie algébrique.

— Interprétation et démonstration topologique de plusieurs
théorèmes importants de logique.

— La théorie des faisceaux qui, née en topologie algébrique
(J. Leray), envahit maintenant l'Algèbre et l'Analyse.

3. De cette multivalence résulte aussi qu'on n'étudie plus
un être isolé, mais des familles d'êtres ayant entre eux des
relations. Aussi, non seulement les énoncés acquièrent une vaste
généralité, mais chaque être individuellement est mieux connu,
car ses relations avec d'autres êtres mettent en valeur ses divers
aspects. Ici encoré, ce qui est nouveau n'est pas cette utilisaton
d'un « contexte », c'est la prise de conscience du phénomène et
son ampleur:

Depuis longtemps une tangente à une courbe était définie
au moyen d'une famille de sécantes, les propriétés des fonctions
analytiques dans le domaine réel étaient éclairées par leur étude
dans le domaine complexe, et les « familles normales » de fonctions

analytiques constituaient déjà un outil puissant.

L'Enseignement mathém., t. VIII, fasc. 1-2. g
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Les mathématiques modernes sont donc « relationnelles »,

d'où un dynamisme interne, dont le vocabulaire et la présentation

typographique mêmes sont un reflet: Applications,
injections, jets, sources, flèches et schémas fléchés.

Un symbolisme commode a été créé pour noter relations et
transformations :

x-*/(*); A-+Ä; x~y; x -< y; AxB, nAi,E/R, etc.

Entre les mains du mathématicien les êtres se transforment,
comme une gemme brute entre les mains d'un joaillier, et
chacune des transformations qu'il leur impose en révèle, telle une
facette nouvelle, un aspect inattendu.

Cet aspect relationnel est en accord avec le principe connu
que, pour bien connaître une notion, il faut en étudier les variations,

les contraires; il est aussi en accord avec un principe qui
semble dominer toute la recherche scientifique moderne: C'est

qu'on n'atteint pas 1'« essence » des êtres, on ne peut espérer
connaître que les relations des êtres entre eux: Une expérience
de physique révèle une relation entre l'univers et un dispositif
expérimental; l'essentiel d'une installation téléphonique n'est

pas la nature ou la forme des fils conducteurs, mais le schéma
de l'installation; et, pour le mathématicien, deux ensembles

structurés isomorphes sont équivalènts.
La virtuosité avec laquelle les jeunes mathématiciens formés

aux méthodes nouvelles utilisent le dynamisme des relations,
le plaisir qu'ils en retirent, semblent prouver que ce dynamisme
est adapté à la structure du cerveau humain.

4. La multivalence des théories garantit une plus grande
possibilité d'utilisation par la physique: L'espace de Hilbert
s'est prêté aux interprétations de la théorie quantique des

champs; la géométrie des espaces de Riemann et le calcul
différentiel extérieur ont fourni le cadre de la relativité générale. La
physique théorique moderne se développe d'ailleurs, elle aussi,
de façon axiomatique; on y part de quelques faits fondamentaux
qu'on traduit en axiomes, et on en déduit des conséquences
dont on cherchera plus tard des vérifications expérimentales,
tout en sachant très bien que les axiomes choisis ne traduisent
qu'un aspect du monde physique.
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5. Une bonne axiomatique est souvent le seul moyen de

sortir de difficultés métaphysiques. Ainsi les nombres complexes
n'ont perdu leur mystère et leur caractère « absurde » que le jour
où l'on a identifié leur ensemble à R2 muni de deux opérations
clairement explicitées. Plus près de nous, le point de départ du
calcul des probabilités a été longtemps noyé dans la brume,
à l'époque où la théorie avait encore trois centres: théorie des

jeux, théorie des erreurs, théorie stochastique. Le calcul des

probabilités n'a trouvé son unité et des fondements solides qu'avec
l'axiomatique de Kolmogorov; il apparaissait dès lors comme
une branche de la théorie de la mesure, mais une branche
particulièrement vigoureuse, avec son langage et ses problèmes et
il pouvait, à la fois s'enrichir des méthodes et résultats de la
théorie de la mesure, et féconder l'Analyse classique : Les
relations étroites entre la théorie du potentiel et les processus de
Markov mises en évidence ces dernières années en sont une
brillante illustration.

Dangers de la méthode axiomatique

Si les systèmes axiomatiques sont les machines-outils des

mathématiques, on conçoit qu'ils ne soient intéressants que si
leur rendement est bon. Il est relativement facile de construire
des systèmes axiomatiques, ne serait-ce qu'en modifiant légèrement

des systèmes connus ; le nombre de thèses et travaux ainsi
construits est malheureusement fort grand; leur mise au point
a en général donné beaucoup de plaisir à leur auteur, ce qui le
conduit à leur attacher une importance démesurée. Beaucoup de
ces grandes théories n'ont qu'une maigre application ou pas
d'application du tout.

Une question urgente se pose donc: Quels sont les systèmes
axiomatiques utiles Il n'y a probablement aucun critère absolu
qui permette d'en décider; toutefois on peut admettre qu'il ne
faut pas utiliser «un pavé pour écraser une mouche »; une théorie
générale sera justifiée si elle révèle des liens inattendus et féconds
entre théories jusque-là étrangères en apparence, ou si elle
apporte la solution d'un problème non résolu. Le fait qu'une
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théorie générale s'applique à de nombreux cas n'implique d'ailleurs

pas qu'elle soit utile, si la lumière dont elle les éclaire est

trop maigre.

Un garde-fou, les grands problèmes. — Nous verrons plus loin
avec quelle exigence Bourbaki a trié les théories qui ont droit
de cité dans son oeuvre didactique. Mais il est intéressant d'étudier

quel est, pour Bourbaki, le garde-fou qui va le protéger
de la tentation de développer, comme un but en soi, des systèmes
axiomatiques.

Pour André Weil, « si la logique est l'hygiène du mathématicien,

le pain quotidien dont il vit, ce sont les grands problèmes ».

C'est redire ce que disait déjà Hilbert: « Une branche de la
science est pleine de vie tant qu'elle offre des problèmes en
abondance ; le manque de problèmes est signe de mort. »

Hilbert est d'ailleurs, pour Bourbaki, un modèle et presque
un père, et il est intéressant de savoir ce que le fils pense, du père.
Les Bourbakistes admirent l'élégance et la simplicité de ses

travaux » due à ce qu'il a dégagé de la gangue où nul n'avait su les

voir, les principes fondamentaux qui permettent de tracer vers
la solution la route royale vainement cherchée jusque-là ». C'est

un maître de l'axiomatique—qu'il s'agisse de structure univalente
(géométrie élémentaire) ou multivalente — et il a appris aux
mathématiciens à penser axiomatiquement. «Mais jamais il ne
tombe dans le travers de certains disciples: Créer une grande
théorie pour quelques maigres applications et généraliser pour
le plaisir de généraliser. » (Dieudonné.) Il a la passion du
problème spécial, précis et concret; c'est pour résoudre de tels
problèmes qu'il a forgé des outils dont l'importance n'a pas diminué:
Méthode directe en calcul des variations, basée sur la semi-

continuité, pour résoudre le problème de Dirichlet; définition et
utilisation de 1'« espace de Hilbert » pour la résolution d'équations

intégrales, etc...
Les grands problèmes qu'il a signalés à l'attention des

mathématiciens au Congrès de 1900 n'ont pas cessé de stimuler des

recherches fécondes; on continue, par exemple, à multiplier les

attaques du problème de Riemann sur les zéros de la fonction
£ (s) et la véritable nature de ce problème semble encore inconnue.
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Quelques-uns des outils de l'axiomatique

Lors de l'étude d'une structure, le mathématicien moderne

est amené à utiliser des structures auxiliaires ; pour les construire,
il a besoin d'un guide qui l'oriente vers les bonnes définitions.
Nous examinerons ici quelques procédés qui ont fait leurs preuves
et se sont révélés de bons guides.

Morphismes ; structures initiales et finales. — Une structure
sur un ensemble E est définie par plusieurs axiomes qui s'expriment

en termes d'éléments de E et d'ensembles auxiliaires
éventuels; la forme de ces axiomes définit ce qu'on appelle une
espèce de structure. Nous nous contenterons ici de donner des

exemples :

Les axiomes de groupe définissent une espèce de structure;
les groupes commutatifs en constituent une sous-espèce. Autres
exemples: l'espèce des espaces vectoriels sur i?, des espaces
topologiques compacts, des variétés difïérentiables.

Si deux ensembles A et B sont munis de structures de la
même espèce, une bijection (c'est-à-dire une correspondance
biunivoque) / de A sur B s'appelle un isomorphisme si, en un
sens facile à préciser dans chaque cas, elle échange les structures
de A et B.

Plus généralement un morphisme de A dans B est une
application de A dans B possédant certaines propriétés liées à la
structure ; on choisit la définition des morphismes de telle sorte
que le produit de deux morphismes en soit un autre, et que si

une bijection / de A sur B est un morphisme, ainsi que Z"1,
alors / est un isomorphisme. Par exemple, pour l'espèce de structure

constituée par les espaces topologiques, les applications
continues constituent une classe de morphismes ; les applications

I ouvertes (qui transforment tout ensemble ouvert en un ensemble
ouvert) constituent une autre classe, moins utile d'ailleurs que

; la première.
| Soient alors A un ensemble donné, (Bt) une famille d'ensem-
I bles munis d'une structure d'espèce donnée et, pour tout i,

soit ft une application de A dans Bt. La question se pose de savoir
si l'on peut munir A d'une structure de la même espèce de telle
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sorte que chaque /f devienne un morphisme. Sous certaines conditions

qu'on peut préciser, ceci est possible, et parmi toutes les

solutions, il en existe même une privilégiée, qu'on appelle structure

initiale associée aux (Bt, ft). C'est de cette façon que, pour
l'espèce des espaces topologiques, on définit l'image réciproque
d'une topologie, la topologie induite sur un sous-ensemble d'un
espace donné, le produit d'une famille d'espaces topologiques.

Lorsque, par contre, ft est une application de Bt dans A, la
solution éventuelle du problème s'appelle la structure finale
associée aux (Bu ft); c'est ainsi qu'on définit une topologie sur
l'ensemble quotient A d'un espace topologique B par une relation

d'équivalence B.

Ensembles et applications universelles. — Voici de quoi il s'agit :

Soient £, T deux espèces de structures; soit A un ensemble

d'espèce S] on se donne une famille d'applications, dites (S —T)
applications de A dans les ensembles d'espèce T, et une famille
d'applications, dites ^-applications, des ensembles d'espèce T
dans les ensembles de même espèce; on suppose ces familles
transitives en ce sens que le produit d'une (S — T) application
par une T-application est encore une (S — T) application, et que
le produit de deux ^-applications est encore une ^-application.

On cherche alors s'il existe un ensemble âël d'espèce T et
une (S—T) application O de A dans tels que toute (S—T)
application 9 (de A dans un B) s'écrive <p /o®, où / est une
T-application de gß dans B.

Sous des conditions suffisantes très générales, le problème
a une solution, et même une infinité de solutions non isomorphes.
Pour lever l'indétermination, on ajoute alors la condition
suivante: L'image $ (A) de A dans gß est telle que deux T-applica-
tions de $ dans un i?, qui coïncident dans # (^4), coïncident
dans £ß. L'espace J* ainsi obtenu est i"espace universel associé

à A, et # est Vapplication universelle associée à A.

Exemples.

a) Groupe compact associé à un groupe topologique. — A est

un groupe topologique, T est l'espèce des groupes topologiques
compacts, les (S—T) applications et les T-applications sont des
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homomorphismes continus quelconques. L'espace & s'appelle le

groupe compact associé à A.
On montre qu'il y a identité entre les fonctions presque-

périodiques sur A et les fonctions g ° <ï>, où g est une fonction
continue quelconque sur

Cet exemple montre l'intérêt que peuvent avoir les ensembles

universels pour l'Analyse.

b) Produit tensoriel de deux espaces vectoriels. — A est le

produit (cartésien) de deux espaces vectoriels Ex, E2 (sur le

corps R)\ T est l'espèce des espaces vectoriels sur R\ les (S— T)

applications sont les applications bilinéaires définies dans

E± X E2; les T-applications sont les applications linéaires.

L'espace vectoriel universel s'appelle le produit tensoriel des

espaces E±, E2\ il ramène l'étude des applications bilinéaires
définies dans E1 X E2 à celle des applications linéaires définies
dans

Citons quelques autres ensembles universels:

Structures algébriques libres, anneaux et corps de fractions;
complétion d'un espace uniforme, compactification de Stone-
Cech, groupes topologiques libres, variété d'Albanèse (en
géométrie algébrique).

Catégories et joncteurs. — La théorie des « catégories » est le
dernier-né des grands outils mathématiques. A elle seule, elle
suffirait à prouver l'unité des mathématiques. Elle constitue
un nouveau pas dans l'abstraction; en effet, les relations qu'elle
étudie ne sont même plus des relations entre éléments d'un
même ensemble, mais entre des êtres d'une même « catégorie »,

voire même entre différentes catégories. Il est assez miraculeux
qu'une telle généralité ne soit pas synonyme de vacuité et de

facilité; en fait, cette théorie est devenue, dans de nombreux
domaines, un guide indispensable de la jeune génération.

Nous nous contenterons de donner ici quelques définitions.
Voici d'abord quelques exemples de catégories: La catégorie des

groupes, des espaces vectoriels, des espaces topologiques, des
ensembles ordonnés ; et, plus généralement, la catégorie des ensembles

munis d'une espèce de structure dans laquelle existent des
morphismes.
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Une catégorie n'est donc pas un ensemble; il est commode
de l'imaginer comme une classe d'objets plus vaste qu'un
ensemble.

Soit donc ^ une classe d'objets; à tous:x, y e #, on suppose
associé un ensemble désigné par Horn (x, y), dont les éléments
s'appellent homomorphismes ou morphismes de x dans y\ et

pour tous x, y, z e f, on suppose donnée une application
(/, g) -> gof nommée composition, de Horn (x, y) x Hom (y, z)
dans Horn (x, z).

On dira que #, muni de ses homomorphismes et de leur loi
de composition, est une catégorie si les axiomes suivants sont
satisfaits :

Kv — Associativité de la composition: ho (gof) (hog)of.
K2. — Pour tout x e il existe un élément ex de Horn (x, x)

appelé unité de x, tel que pour tout homomorphisme / on
ait exof — f et /oex =/ (lorsque ces expressions ont un
sens).

On appellera alors isomorphisme de x dans y (x, y e <#) tout
u e Horn (x, y) tel qu'il existe e e Horn (y, x) pour lequel uo ç ey

et ço u ex.

Les joncteurs vont établir des relations entre catégories
différentes:, Soient deux catégories; on se donne une loi F qui,
à tout x e # associe un x' e cê' \ on note cet x' par F (x); on

suppose aussi que, à tous x, y e et à tout u e Horn (x, y),
F associe u' e Horn (x\ y') et on note cet u' par F (u).

On dira que F est un foncteur lorsque

1) Si u est une unité; il en est de même de F (»);
2) Pour tous u, e tels que uov-ait un sens, on a:

F (uoç) F (u)oF (e).

A partir de ces deux notions de base, catégories et foncteurs, on

peut alors construire toute une algèbre qui s'enrichit lorsqu'on
spécialise les catégories. Indiquons sur un exemple simple de

quelle façon la théorie des catégories peut servir de guide: De

l'étude de diverses catégories « concrètes » classiques dans

lesquelles existe une notion de produit (ensembles ordonnés, groupes,
espaces topologiques), on dégage un schéma exprimable en termes
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de catégories générales, d'où une notion de catégorie avec produit;
dès lors, si l'on rencontre une nouvelle catégorie concrète non

encore munie d'une notion de produit, le schéma général permet
de s'assurer si l'on peut définir ce produit, et précise même sa

définition.

Résumons: Nous venons d'étudier quelques outils de caractère

très général; il en existe bien d'autres, comme par exemple les

suites exactes et les diagrammes qui sont d'un usage constant en

algèbre et en topologie algébrique. L'usage de ces outils est

inséparable d'un symbolisme très précis dont le domaine d'application

grandit constamment; c'est un nouveau langage, hermétique

pour le profane, clair et suggestif pour l'initié.
Certes, ces outils ne constituent pas la «pierre philosophale »;

ils ne tiennent pas lieu de géiiie créateur et ne valent que ce que
vaut l'artisan.

MÉTHODES DE DÉCOUVERTES LIÉES A L'AXIOMATIQUE

Aucun outil et aucune méthode ne peuvent susciter les dons

créateurs si ceux-ci n'existent déjà, mais ils peuvent considérablement

en augmenter l'efficacité. Nous venons d'étudier quelques
outils des théories axiomatiques ; nous allons maintenant analyser
quelques méthodes de découverte qui ne prennent tout leur sens

que dans l'étude de structures multivalentes. Tout chercheur
sérieux les redécouvre pour son compte, mais il n'est pas sans
intérêt de les expliciter.

1. Méthode de relâchement des axiomes.

Voici un analyste qui croit exact un énoncé E concernant une
structure-carrefour S définie par de nombreux axiomes. L' énoncé
E est formulé en termes simples qui garderaient un sens pour un
système axiomatique S' moins riche en axiomes (ce qui ne veut
pas dire d'ailleurs que cet énoncé soit vrai dans S'). Il peut alors
suivre la méthode suivante, qui revient à « relâcher » certains
axiomes: Il va chercher à démontrer l'énoncé E dans S'; le moins
grand nombre des combinaisons d'axiomes de S' peut faciliter
alors la recherche de la démonstration; dans le cas favorable, ou
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bien il démontrera E dans S\ donc aussi dans S, ou bien il mettra
en évidence dans S' un « contre-exemple » C mettant l'énoncé E
en défaut. Une étude approfondie de C peut alors l'amener à
formuler une propriété supplémentaire P qui, ajoutée aux axiomes
de iS", permettrait de démontrer E. Il lui reste alors à revenir
au système S pour examiner si on peut démontrer P; la démonstration

de E en résultera.

2. Méthode de renforcement des axiomes.

La méthode précédente consistait à supprimer temporairement

certains axiomes du système S; une autre méthode de

recherche consiste à en ajouter de nouveaux, autrement dit à

étudier des cas particuliers.
Les axiomes supplémentaires permettent d'utiliser des outils

dont on ne disposait pas dans S ; on obtient ainsi des énoncés et
des démonstrations inattendus; on revient ensuite en arrière et
on essaie d'adapter à S les résultats obtenus.

Un cas particulier bien connu de cette méthode consiste en
l'utilisation de modèles discrets ou même finis: Par exemple, en
calcul des probabilités, les processus de Markov doivent beaucoup
à l'étude des processus sur les ensembles discrets ou finis; en
théorie du potentiel, l'étude des noyaux sur un ensemble fini
révèle des phénomènes insoupçonnés dans le cas général.

3. Etude de structures voisines.

Si l'on ne sait pas démontrér un énoncé E relatif aune structure-
carrefour <l>, mais qu'on sait le démontrer pour une structure S'
dont les axiomes diffèrent peu de ceux de 5, une grande partie
des lemmes en lesquels se décompose la démontration de E dans

S' est en général encore valable dans S\ on examine les autres,
on les formule au besoin d'une autre façon pour obtenir des

énoncés valables dans S.

C'est ainsi que, dans l'impossibilité actuelle de démontrer
l'hypothèse de Riemann, on étudie les problèmes voisins relatifs
à des corps finis; on espère, soit pouvoir transposer une partie
des résultats ainsi obtenus au cas classique, soit même faire

apparaître ces divers cas comme des cas particuliers d'un même
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problème arithmético-algébrique. Un tel problème, plus général,

peut être plus facilement résoluble ; l'histoire des mathématiques
montre en effet abondamment qu'un niveau convenable de

généralité s'accompagne souvent d'une plus grande souplesse et dégage
les ressorts secrets des démonstrations.

Il importe toutefois de ne pas tomber dans le travers consistant,
lorsqu'on ne sait pas résoudre un problème, à résoudre des

problèmes voisins plus faciles, et à croire qu'on a fait progresser la

question initiale; de tels essais sont d'excellents travaux d'approche,

mais il est souvent préférable de ne pas en imposer la lecture
à autrui.

4. Création de structures soumises à des exigences données.

L'industrie construit maintenant, à la demande, des machines-
outils capables de réaliser tel travail complexe; on est proche du

jour où la chimie saura synthétiser les fibres-textiles satisfaisant
à telle exigence du consommateur; en mathématiques, la théorie
des catégories permet d'envisager maintenant la construction de

structures possédant telles propriétés utiles dans telle question.
L'état d'esprit du jeune mathématicien n'est plus en effet celui
d'un constructeur en contact avec la matière. Il ne construit
plus, de proche en proche, à partir de leurs éléments, les êtres
complexes dont il a besoin; il impose seulement à ces êtres d'avoir
des relations mutuelles données (et non contradictoires) ; ils
constituent alors une catégorie qu'on étudie par une méthode régulière

; la réalisation des éléments de la catégorie comme ensembles
munis d'une certaine structure est l'un des derniers stades de la
recherche.

Quelques caractères de l'œuvre de Bourbaki
en Analyse

Nous avons examiné les outils et les principes; voyons
maintenant la réalisation, dans l'œuvre collective ou personnelle des
Bourbakistes.

1. Axiomatique et multivalence.

Conformément à ses principes, Bourbaki manifeste une
prédilection pour les structures multivalentes. Il aime les énoncés
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généraux : « Quand ça ne coûte pas plus cher, on fait la théorie
dans le cadre le plus général. » D'où économie de pensée, d'où
aussi parfois un effort plus grand d'abstraction exigé du lecteur.

Ainsi, non seulement les espaces vectoriels sont étudiés sur
un corps quelconque, mais partout où c'est possible, on remplace
leur étude par celle des modules sur un anneau avec unité (ce qui
oblige évidemment à adopter des définitions valables dans le cas

général, par exemple celle du produit tensoriel). De même, les

équations différentielles x' f (.x, t) sont étudiées, non dans le
cadre des espaces de dimension finie, mais dans celui des espaces
normés, et / (x, t) est seulement supposée lipschitzienne en x, et
réglée en I1.

2. Bourbaki est essentiellement algébriste.

Ses promoteurs ont découvert l'algèbre auprès des grands algé-
bristes allemands, à une époque où, en France, on ignorait l'algèbre
moderne ; aussi leur œuvre d'Analyse est-elle imprégnée d'algèbre
et de notations algébriques: Algèbre des ensembles certes, mais
aussi groupes, algèbre linéaire et multilinéaire, dualité. Ils ont le

goût des transformations, des propriétés qui s'expriment sous
forme de relation algébrique.

Lorsqu'une théorie, classiquement considérée comme de l'Analyse,

peut s'algébriser, totalement ou en partie, le Bourbakiste
ne résiste pas au plaisir de le faire.

Autrefois l'Analyse était essentiellement l'étude des fonctions
définies sur R ou Rn et à valeurs dans R ou i?M, et des opérations
de dérivation et d'intégration. Maintenant pour le Bourbakiste,
R est avant tout un corps commutatif de caractéristique' 0, et cela

lui suffit souvent; lorsque c'est vraiment de R qu'il a besoin, il
sait exactement qu'il lui suffit de tenir compte de son ordre et de

sa locale compacité.
Entre les mains de C. Chevalley, l'étude des groupes de Lie

et des Algèbres de Lie se dégage de sa gangue; l'analyse n'y joue
plus qu'un rôle restreint ; elle sert seulement à établir l'existence
d'êtres munis de telle propriété, ou à définir telle opération. Par

0 Une fonction réglée de t e st une limite uniforme de fonctions constantes par
intervalles.
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exemple on ne retient de la dérivation que son caractère d'application

linéaire d'une algèbre dans elle-même, vérifiant l'identité
D (x y) x D (y) + D (x) y.

De même, avec H. Cartan, la théorie des fonctions de

plusieurs variables complexes s'épure; l'intégration reste un outil
de base, mais il en localise l'étude, en dégage les propriétés
algébriques, qui seront les seules à être utilisées désormais. Dans sa

« Théorie élémentaire des fonctions analytiques d'une ou plusieurs
variables complexes », il adopte le point de vue de Weierstrass
plutôt que celui de Cauchy, et dans le premier chapitre, il tire
de l'étude algébrique des séries formelles le maximum d'information

concernant leur composition, leur inversion et leur dérivation.

Lorsqu'il étudie la théorie du potentiel, il donne la préférence

aux outils algébriques: Formule de composition de noyaux,
interprétation du balayage comme projection orthogonale dans

un espace de Hilbert.

3. Renouvellement constant de Vœuvre.

L'œuvre de Bourbaki n'est pas un bilan du passé, mais une
œuvre de jeunes; c'est une construction vivante en perpétuelle
évolution et tournée vers l'avenir. Bourbaki incorpore à son

œuvre les développements, même récents, qui ont fait leurs

preuves et, en fonction du développement de telle structure, revoit
toutes les branches maîtresses (y découvrant parfois au passage
des fruits succulents et inattendus). C'est ainsi que les fascicules
anciens vont être remaniés en termes de catégories, sous forme
implicite ou explicite; de même les espaces topologiques non
séparés ont maintenant droit de cité, depuis qu'ils ont manifesté
leur importance dans diverses théories, en particulier en géométrie
algébrique; les équations aux dérivées partielles linéaires seront
traitées en termes de distributions, de convolution, de transformation

de Fourier et Laplace.
Certes Bourbaki, tout polycéphale qu'il soit, a sur certains

points des phobies irrationnelles: C'est ainsi qu'il s'est fait de
la théorie de la mesure une conception intéressante, mais exagérément

rigide en termes d'espaces localement compacts et de convergence

vague; et il relègue au ftrusée des horreurs les mesures
abstraites, fermant ainsi à ses disciples les portes du calcul des
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probabilités, qui n'a peut-être pas encore trouvé les meilleurs
outils, mais manifeste actuellement une vitalité étonnante.

4. Choix des définitions.

La recherche des bonnes définitions est une partie essentielle
de l'oeuvre bourbakiste. On reproche parfois à cette œuvre son
caractère trop formel et déductif : Bourbaki pose les axiomes et en
tire les conséquences, mais ne révèle pas la raison du choix de ces

axiomes et des théorèmes qu'il démontre. C'est qu'en fait l'histoire
de ces choix serait bien longue; quiconque a essayé de faire
l'axiomatique d'une théorie jusque-là confuse sait que les bonnes
définitions ne se trouvent qu'après de multiples essais avortés,
dont il ne faut plus ensuite s'encombrer, car l'esprit, partagé
entre plusieurs axiomatiques voisines, s'affaiblit et perd son
dynamisme.

La véritable justification d'une bonne axiomatique, c'est son
succès.

Observons Bourbaki à l'œuvre dans le choix des définitions:
L'Analyse classique partait de définitions « naturelles » dans un
contexte historique, et en déduisait des théorèmes-clefs; puis
poursuivait l'étude de la théorie, en gardant les définitions de

départ.
Bourbaki, dans la même situation, va modifier les définitions

en fonction des théorèmes-clefs; il va, en termes incorrects mais

expressifs, prendre les théorèmes-clefs pour définitions. C'est là
un des aspects les plus importants de la bourbakisation des théories.

De façon plus précise, lorsqu'un théorème établit que des

êtres E définis par une définition D ont une propriété jP, qui se

révèle par la suite plus maniable que 2), ou qui garde un sens dans

un champ plus vaste que 2), ouvrant ainsi la voie à des généralisations,

Bourbaki fait jouer à P le rôle initial de 2), obtenant ainsi,
soit une définition de E équivalente mais plus commode, soit un
élargissement de la classe des êtres E auxquels s'appliquera la
théorie.

Voici quelques illustrations de ce processus fécond:

a) Mesures de Radon. — Un théorème de F. Riesz établit que,
sur 2Î, il y a identité entre les intégrales de Stieltjes (définies à
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partir d'une fonction localement à variation bornée), et les formes

linéaires continues sur l'espace JT (R) des fonctions numériques
continues nulles hors d'un compact.

Or cette seconde définition a de multiples avantages : Extension
immédiate, non seulement à i?", mais à tout espace localement

I compact; maniabilité beaucoup plus grande dans l'étude des

opérations sur les mesures (produit de mesures, image de mesures,

etc...), adaptation parfaite à la définition de la topologie vague
sur l'espace des mesures, qui s'est révélée la plus commode des

topologies.
D'où la définition bien connue des mesures de Radon. L'histoire

devait montrer que le choix de cette nouvelle définition n'était
pas heureux que pour l'intégration. En effet, on s'aperçut vite
de la commodité du procédé: Une mesure de Radon n'était autre
qu'une forme linéaire continue sur un certain espace vectoriel
topologique. Il n'y avait qu'un pas à franchir pour disposer aussitôt

ij d'un procédé fécond de définition d'êtres nouveaux: Soit F un
espace vectoriel topologique ; les formes linéaires continues sur F

j sont de nouveaux êtres qui constituent un espace vectoriel F',
ti dual de F; la théorie de la dualité, maintenant bien constituée,
i permet de définir sur F' des topologies variées, qui en facilitent
j l'étude. A tout choix de F va correspondre un espace F', d'où

Ij une grande richesse de possibilités. Signalons par exemple les
;j distributions de L. Schwartz, les courants de de Rham, les sur-
I faces généralisées de L. C. Young.

| b) Mesures invariantes sur un groupe. — L'intégrale (de
j Lebesgue) sur Rpeut être définie à partir de celle des fonctions
I continues à support compact par un procédé de prolongement bien

connu; sur X(R), c'est une forme linéaire I qui est positive en
ce sens que I (f)=: 0 pour toute =î 0; et elle est invariante par
translation, en ce sens que /(/)=/ (g) lorsque g se déduit de /
par translation.

Or on montre que toute fonction I sur (R) qui possède ces
propriétés ne diffère de l'intégrale de Lebesgue que par un facteur
constant. D'où une définition axiomatique de l'intégrale de
Lebesgue sur R (à un facteur près): C'est une forme linéaire
sur X(R),positiveet invariante par les translations de R. Non



128 G. CHOQUET

seulement cette nouvelle définition est commode parce que,
débarrassée de l'écran d'une construction effective, elle met en
évidence les propriétés directement utiles de l'intégrale, mais elle

s'adapte immédiatement au cas des groupes localement compacts
quelconques.

c) Fonctions mesurables. — L'Analyse classique définit les

applications mesurables de Rn dans R de la façon suivante:
/ est mesurable si pour tout nombre X, l'ensemble des x tels

que f (x) ^ X est mesurable (par rapport à la mesure de Lebesgue).

Le théorème de Lusin montre l'équivalence de cette définition
et de la suivante :

/ est mesurable si, pour tout compact K de Z?n, et pour tout
nombre s > 0, il existe un sous-compact K' de K tel que 1) la
mesure de {K + K') soit inférieure à s; 2) la restriction de / à Kf
soit continue.

Or, la propriété évoquée dans cette seconde définition est à la
fois suggestive et commode dans de nombreuses applications;
d'autre part elle conserve un sens intéressant lorsqu'on remplace
la mesure par une fonction d'ensemble plus générale, par exemple
la capacité en théorie du potentiel; enfin elle s'adapte immédiatement

à la définition des applications mesurables d'un espace
localement compact (muni d'une mesure de Radon positive) dans

un espace topologique quelconque.
On adoptera donc la seconde définition, plutôt que la définition

classique.

5. Choix des matières et des théorèmes.

Dans l'élaboration de son traité, Bourbaki doit à chaque
instant choisir; nous l'avons vu à l'œuvre dans le choix des
définitions ; il choisit avec autant de soin la matière qu'il incorporera
à l'œuvre.

Il s'intéresse surtout aux outils, et uniquement à ceux qui
se sont révélés utiles; les résultats élégants et même profonds,
mais qui apparaissent comme des fins de théorie ou des impasses,
ne retiennent pas son attention. Il élimine, sans souci d'être complet,

des notions voisines de celles qu'il a jugées les plus fondamentales;

s'il estime qu'une théorie n'est pas assez mûre pour qu'un
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choix s'impose entre ses diverses axiomatiques possibles, il préfère
attendre que la théorie mûrisse. Il n'a pas le goût des hors-

d'oeuvre, des enjolivures, des développements gratuits sans
connexion avec le reste des mathématiques.

Il construit solidement, à la romaine; si l'œuvre est parfois
élégante, elle le doit à la beauté de sa structure interne ; quant à lui,
il recherche avant tout simplicité, solidité, utilité, rendement.

En topologie générale il a, après Hausdorff, fait un choix
sobre dans une jungle de notions: Choix d'axiomes commodes
des espaces topologiques généraux, choix de la bonne notion de

compacité; l'introduction des filtres (H. Cartan) est venue simplifier
la notion de convergence; celle des espaces uniformes( A. Weil)
a unifié plusieurs notions jusque-là isolées, et les relations entre
les espaces compacts et les espaces uniformes l'a entièrement
justifiée.

En Analyse fonctionnelle, il a bien mis en valeur les notions et
outils consacrés par l'usage, locale convexité des espaces vectoriels
topologiques, dualité, théorème du graphe fermé, théorèmes de

séparation d'ensembles convexes, théorèmes de Krein et Milman,
de Stone-Weierstrass.

Dans la théorie de l'intégration, nous avons souligné déjà son
option exclusive des mesures de Radon sur les espaces localement
compacts, qui sont devenues entre ses mains un outil remarquable.

Dans les «livres élémentaires», les questions classiques sont
traitées à la fois avec une économie de moyens et une généralité
inusuelles. Le théorème des accroissements finis est énoncé pour
des fonctions à valeurs dans un espace normé; les fonctions
convexes sont traitées élémentairement mais de façon assez complète

pour les besoins courants de l'analyse; les primitives sont
définies dans le cadre des fonctions réglées; enfin nous avons déjà
noté la généralité de son étude « élémentaire » des équations
différentielles.

L'Analyse moderne dans le monde

J'ai affirmé au début de ce travail que l'étude de l'œuvre de
Bourraki et de ses disciples donnait une idée assez fidèle des
tendances modernes de l'Analyse.
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Après notre brève étude des traits saillants de cette œuvre,
nous pouvons tenter de vérifier cette affirmation en examinant
ce qui se fait dans le monde en Analyse. Ouvrons pour cela les

Mathematical Reviews', quelques coups de sonde révèlent qu'au
moins les deux tiers de ce qui se fait actuellement aurait pu être
fait avec les outils dont on disposait il y a une trentaine d'années ;

une bonne partie de ces travaux est estimable; certains sont de

l'Analyse fine très difficile; des notions importantes y sont
introduites, des outils y sont créés et essayés dans un domaine localisé.

On peut regretter néanmoins que trop d'auteurs ignorent
encore des outils de base qui ont fait leurs preuves et qu'ils
retrouvent, ingénieusement mais péniblement et dans un domaine

trop restreint des cas particuliers de théorèmes généraux connus.
Dans le tiers restant, les auteurs utilisent les outils modernes.

On y retrouve le déchet inévitable dans toute production scientifique;

beaucoup des travaux sont creux et ne contribuent pas à

l'édification du «temple mathématique»; par contre, chez les

meilleurs, les outils modernes ont un rendement étonnant; chaque
année apporte la solution de problèmes réputés inaccessibles et
voit se créer des ponts entre théories jusque-là étrangères.

Voici une liste des branches les plus florissantes de l'Analyse
et de ses frontières:

Groupes topologiques et théorie de Lie;
Algèbre topologique;
Mesure et intégration;
Fonctions de plusieurs variables complexes et variétés analy¬

tiques (outils algébriques nombreux, faisceaux,, espaces

fibrés,...);
Equations aux dérivées partielles (utilisation des distributions

et autres fonctions généralisées; cas non-linéaire);
Potentiel (noyaux généraux, étude des principes, relation avec

probabilités) ;

Analyse harmonique sur des groupes généraux; fonctions de

type positif, ...;
Analyse fonctionnelle (e.v.t. loc. convexes, convexité, théorie

spectrale des operateurs) ;

Topologie générale;
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Géométrie différentielle ;

Topologie différentielle;
Probabilités.

Ces disciplines en pleine activité se développent suivant les

mêmes principes que Bourbaki; le langage utilisé est le même.

Dans les colloques spécialisés qui leur sont consacrées, les meilleurs

spécialistes utilisent les mêmes méthodes, le même langage, ont
les mêmes préoccupations. Dans ses parties les plus dynamiques,
l'Analyse moderne manifeste donc une grande unité.

Qu'en conclure pour l'enseignement

De tout temps on a adapté l'enseignement à l'évolution de

la science, mais il y a eu souvent des retards à cette adaptation,
pour le plus grand dommage de la science et de l'enseignement;
en particulier, depuis un demi-siècle le progrès scientifique a été
si rapide qu'un grand retard était presque inévitable; ainsi en

Mathématiques, où la révolution provoquée par la théorie des

ensembles et la méthode axiomatique a donné à notre science un
visage nouveau. Plusieurs raisons nous invitent de façon urgente
à rénover à tous les niveaux, universitaire, secondaire et primaire:

— Pour l'avenir des Mathématiques d'abord; ce ne sont ni les

vieillards, ni même les hommes mûrs qui font œuvre géniale en
Mathématiques; il faut donc « déblayer le terrain » pour les jeunes.
Pour que l'assimilation leur reste possible, on doit leur rendre
apparentes les grandes idées simplificatrices, leur apprendre à

débrouiller des situations complexes, en leur enseignant des

théories qui unifient, qui jettent des ponts entre diverses
disciplines. Certes il faut pour cela faire des sacrifices, accepter de ne
plus enseigner telle théorie élégante que plusieurs siècles avaient
polie, mais qui n'apparaît plus que comme un rameau isolé.

— Pour les utilisateurs (de plus en plus nombreux) des
mathématiques, ensuite. D'une part de nombreux outils mathématiques
sont devenus indispensables ou utiles en physique ou dans la
technique: Matrices, transformations de Fourier ou Laplace, équations

aux dérivées partielles, distributions, espaces de Hilbert, etc. ;
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d'autre part les Mathématiques nouvelles ont apporté dans tous
les domaines une simplification et une économie de pensée, dont
le technicien ou le physicien peuvent faire leur profit, aussi bien
que le futur mathématicien.

Certes, les livres d'enseignement indispensables pour cette
rénovation manquent encore; tout à leur travail de découverte,
les mathématiciens ont laissé se creuser un large fossé entre
recherche et enseignement; depuis une dizaine d'années, effrayés
de voir s'agrandir le fossé, ils ont réagi: Ils.ont d'abord réformé
leur propre enseignement; puis ils se sont tournés vers leurs
collègues de l'enseignement secondaire et ont commencé avec eux
une conversation féconde ; il leur reste à s'armer de courage pour
un travail essentiel et urgent: Le temps des critiques et des indications

vagues est passé; il leur faut maintenant écrire des livres
d'enseignement ou aider leurs collègues techniciens et de l'enseignement

secondaire à en écrire. Il ne s'agira pas de décalquer l'œuvre
de Bourbaki, qui était conçue pour des étudiants avancés, mais
d'adapter à chaque niveau, langage, méthodes et outils des

mathématiques de notre temps.

— Pour ceux qui ne deviendront ni mathématiciens, ni utilisateurs

des mathématiques, les mathématiques constituent une discipline

essentielle pour la formation de l'esprit; l'accord est fait
depuis longtemps sur ce point. A ceux-là les mathématiques
modernes apporteront peut-être plus encore: La théorie des

ensembles étudiée en connexion avec la logique est formatrice et
séduisante; la simplicité des systèmes axiomatiques multivalents
rend possible leur étude sans une grande technique, et leurs

applications sont suffisamment variées pour que cette* étude

n'apparaisse pas comme un jeu vain.
Il est hors de question d'établir ici un programme ou même

d'en indiquer les grandes lignes. Je me contenterai de dégager
quelques principes auxquels semble conduire l'étude qui précède:

— Habituer dès que possible nos élèves à penser en termes
d'ensembles, d'opérations; ils doivent, très jeunes, savoir utiliser
le langage et l'algèbre des ensembles; son symbolisme est simple
et précis, et de nombreuses expériences ont montré que les enfants
aiment s'en servir.
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Parallèlement à l'algèbre des ensembles, on leur apprendra les

rudiments de la logique, en relation avec l'étude grammaticale
de leur langue. On constate que de grands élèves de 19 ans

raisonnent mal, ne savent pas prendre la négation d'une proposition,
ni énoncer correctement une définition ou un théorème; c'est en

fait bien plus tôt que doit commencer cet apprentissage.

— Très tôt aussi nos élèves doivent concevoir clairement là
notion de fonction ; pour cela ils doivent avoir étudié et construit
eux-mêmes des exemples variés de fonctions dans divers domaines,

algèbre, arithmétique, géométrie, physique, vie courante, etc...
Ils doivent savoir composer deux fonctions, prendre la fonction
réciproque d'une fonction biunivoque, reconnaître une transformation

et un groupe de transformations.

— On leur fera connaître progressivement les grandes structures,

d'équivalence, d'ordre, topologiques, algébriques. Ces structures

peuvent être étudiées, à des niveaux variés, dès le début de

l'enseignement secondaire.
Certes il ne faut pas perdre de vue qu'on cherche avant tout

à fournir un outil à nos élèves et à leur en apprendre l'usage.
Aussi ne faut-il pas se perdre dans les généralités; au contraire,
aller droit dès que possible vers les théorèmes-clefs, qui englobent
une foule de théorèmes spéciaux, aux applications immédiates:

Par exemple, en géométrie élémentaire, on dégagera très vite
la structure affine du plan ou de l'espace, et on utilisera l'algèbre
des vecteurs; puis, d'une façon ou d'une autre, on introduira le

produit scalaire qui ramènera à quelques calculs simples l'essentiel
de la géométrie métrique usuelle.

De même, au niveau universitaire, on dégagera les grands
outils, théorèmes sur les espaces compacts, métrique de 1a. convergence

uniforme, théorème de Stone-Weierstrass, méthode des

approximations successives, etc... On habituera les étudiants à

reconnaître dans les énoncés les structures qui interviennent, ce
qui suppose évidemment qu'on ait partout choisi définitions et
énoncés qui soulignent ces structures. Par exemple, l'intégrale de
Lebesgue sur R" devra leur apparaître à un stade convenable
comme une forme linéaire positive sur X (i?n), invariante par
translation; lorsqu'ils étudieront le laplacien, il devra leur appa-
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raître comme le seul opérateur différentiel du deuxième ordre
invariant par les déplacements; etc...

La place de l'Analyse dans l'enseignement

J'ai, dans ce travail, beaucoup parlé des Mathématiques en
général, et peu de l'Analyse en particulier; c'est qu'en fait il n'est
plus possible, comme je l'ai déjà souligné, de diviser l'enseignement

des mathématiques en Algèbre, Géométrie, Analyse.
Les bases de l'Analyse, même dans l'enseignement secondaire,

sont l'algèbre (algèbre des ensembles, étude du corps i?, algèbre
linéaire, groupes) et la topologie. Or la même base algébrique est
nécessaire à l'étude de la géométrie (qui au niveau secondaire
se réduit à l'étude d'un espace vectoriel à deux ou trois dimensions
muni d'un produit scalaire).

Il devient donc essentiel de concevoir un enseignement dont
les grandes fibres soient les structures fondamentales. L'algèbre
et la géométrie se soutiendront mutuellement, l'algèbre apportant
son symbolisme et ses opérations, la géométrie son langage chargé
d'intuition; la géométrie fournira à l'Analyse un cadre topologique,

l'outil de la convexité, et une interprétation commode de

l'intégration et de la dérivation ; l'Analyse elle-même fournira à

l'algèbre une riche collection de groupes, d'espaces vectoriels.

L'activité mathématique globale

Je n'ai parlé ici que de théories mathématiques élabprées, et

un peu des méthodes de recherche. Je ne voudrais pas terminer
cette étude faite pour servir l'enseignement des mathématiques
sans avoir souligné les aspects de l'activité mathématique que j'ai
dû négliger ici entièrement.

Toute activité mathématique se décompose en cycles, grands
ou petits, dans chacun desquels on reconnaît, en gros, les stades

suivants: observation, mathématisation, déduction, applications.
Ces quatre stades sont essentiels; en particulier un enseignement

qui serait purement déductif serait traumatisant et stérile.
Chacun des grands cycles correspond à l'acquisition d'une
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nouvelle notion; ses quatre stades sont les étapes nécessaires qui
permettent au cerveau de se restructurer et de passer d'un niveau
de pensée à un autre. Ceci est aussi valable pour le chercheur que

pour l'élève dont l'activité créatrice ne peut s'exercer que si no.us
le laissons parcourir, avec notre aide, le chemin qui conduit à la
connaissance.

Institut Henri Poincaré
Paris.
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