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68 H. G. STEINER

der modernen Mathematik vielleicht drei Hauptbegriffe
herausarbeiten: den Begriff der Menge, den Begriff der Struktur
und den Begriff der Abbildung oder Funktion. Mit diesen

Begriffen war es möglich, in die während der zweiten Hälfte des

vorigen Jahrhunderts ziemlich unübersichtlich gewordene Werkstatt

des Mathematikers eine neue Ordnung zu bringen, mit der
sich nun Material, Werkzeug und Verfahrensweisen, derer der
Mathematiker sich bedient, in einfacher Weise überblicken lassen.
Es war mit diesen Begriffen ferner möglich, das Verhältnis der
Mathematik zu ihren Anwendungen, zu denen gerade in der
letzten Jahrzehnten ganz neuartige Gebiete hinzugetreten sind,
in bestimmten einheitlichen Grundvorstellungen zu erfassen und
damit besser zu beherrschen 1).

II. Der Funktionsbegriff im mathematischen Unterricht.

Die Frage nach der angemessenen Behandlung der Funktionenlehre

in der Schule kann nicht gründlich erörtert werden, ohne die
zuletzt getroffenen Feststellungen zu beachten. Es geht dabei

vor allem um zweierlei: erstens erscheint es als notwendig, auch
in der Schule die heutige mathematische Auffassungsweise in
gebührendem Masse wiederzugeben; zweitens wird man vom
Fortschritt der Wissenschaft, der sich hier auf die Klärung von
Grundbegriffen bezieht, auch didaktische Erleichterungen und
Verbesserungen erwarten können. Wie ein Blick in unsere
Schullehrbücher zeigt, hat die neuere Entwicklung in der Schule
bisher jedoch kaum einen Niederschlag gefunden. Alle antiquierten

Versionen sind noch lebendig:

a) der unklar gelassene Begriff der veränderlichen Grösse und
die dadurch gegebene Vermengung mit dem Kontinuums-
begriff,

b) die Auffassung der Funktionen als Beziehungen zwischen sog.
veränderlichen Grössen ohne Eindeutigkeitsforderung,

c) die Gleichsetzung von Funktion und Kurve in der Zahlen¬

ebene,

i) Siehe hierzu H. G. Steiner, Das moderne mathematische Denken und die
Schulmathematik, Der Mathematikunterricht, 1959, Heft 4.
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d) der unklare Begriff der gesetzmässigen Abhängigkeit und der

gesetzmässigen Änderung,

e) die mangelhafte Unterscheidung von Funktion und
Funktionsbezeichnung, von Funktion, Funktionswert, Term und

Funktionsgleichung,

/) das Fehlen einer gründlichen Bezugnahme auf den Definitions¬
bereich einer Funktion,

g) Verwirrung beim Begriff der Umkehrfunktion.

Demgegenüber liegen unterrichtliche Erfahrungen in bezug
auf den Aufbau einer begrifflich durchgeklärten, hinreichend

allgemeinen Funktionenlehre vor, die bestätigen, dass es auch
keinen methodischen Grund gibt, an den alten unpräzisierten
und mathematisch unzweckmässigen Vorstellungen
festzuhalten. Einen solchen Aufbau will ich im folgenden etwas näher
umreissen. Ich werde mich dabei auf den Unterricht der Mittelstufe

beschränken; denn dies ist in der Tat die geeignete pädagogische

Höhenlage, auf der die Funktionenlehre in aller Gründlichkeit

und Breite zu entwickeln ist. In den Grenzen der vorliegenden

Darstellung ist es allerdings nicht möglich, methodische
Einzelheiten genauer auszuführen1). Es kann im wesentlichen nur
darum gehen, den in Frage stehenden Stoff in einer Weise zu
strukturieren, dass deutlich wird, wie er im Unterricht in
Erscheinung tritt.

1. Zur Einführung des Funktionsbegriffs.

Den Funktionsbegriff wird man in dem gegebenen Rahmen
wohl auf Abbildungen einer Menge M in die Menge R der reellen
Zahlen bzw. in diejenige Zahlenmenge Z, die je nach dem
Unterrichtsstand zur Verfügung steht, beschränken2). Die Schüler
können schon in der Unterstufe (10—12 Jahre) lernen, Mengen zu
erfassen. Dann bietet sich bald eine Fülle von Beispielen für

1) Siehe hierzu ein demnächst in der Schriftenreihe Der Mathematikunterricht
erscheinendes Heft zur Funktionenlehre.

2) Man kann jedoch auch in der Schule den Funktionsbegriff noch allgemeiner
fassen und — etwa in Verbindung mit Beispielen zweistelliger Relationen — mit dem
Begriff der rechtseindeutigen zweistelligen Relation gleichsetzen. Auch dafür lässt
sich ein reiches elementares Einführungs- und Übungsmaterial bereitstellen. Zur
Relationentheorie siehe: H. Gr. Steiner, Einführung in die Relationentheorie. Math.-
phys. Semesterberichte, Bd. V., pp. 261 ff.
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Funktionen an: âuf der Menge der Schüler einer Schulklasse die

Funktionen, die durch Alter, Grösse, Gewicht, Schuhgrösse usw.
gegeben sind; auf der Menge der Waren eines Warenhauses die

Funktionen, die zu Gewicht, Einkaufspreis, Verkaufspreis usw
gehören; auf einer Menge von Städten die Funktionen, die die
Anzahl der Einwohner, die Anzahl der Kinos, die Entfernung
von der Heimatstadt usw. wiedergeben, oder auf der Menge der
Monate eines Jahres die Funktionen, die durch die Anzahl der
Sonntage, die Höchsttemperatur, die Niederschlagsmenge (an
einem festgelegten Orb) usw. bestimmt sind. Andere Beispiele
ergeben sich aus dem innermathematischen Bereich : die
Elementanzahlfunktion auf Mengen von endlichen Mengen (etwa Mengen
von Primzahlen)1), die Abstandsfunktion auf der Menge der

Punktepaare der Ebene, die Inhaltsfunktion auf gewissen Mengen
von Punktmengen der Ebene oder des Raumes usw. Den
Hauptgegenstand bilden natürlich diejenigen Funktionen, bei denen M
eine Teilmenge von Z ist, obwohl auch die anderen Beispiele
immer wieder herangezogen werden. Im Unterricht werden sie

als reine Zahlenfunktionen gekennzeichnet. Ihnen wollen wir
uns im folgenden hauptsächlich zuwenden, wobei wir der
Einfachheit halber wieder kurz nur von Funktionen sprechen.

Zunächst lässt sich eine Reihe von Beispielen, bei denen M
ursprünglich nicht Teilmenge von Z ist, den reinen
Zahlenfunktionen unterordnen. Das ist ein Vorgehen, welches den
Schülern allgemein als charakteristisch für die Mathematisierung
vorliegender Zusammenhänge deutlich gemacht werden kann.
So können etwa die Schüler der Klasse nach der alphabetischen
Anordnung ihrer Namen durch natürliche Zahlen dargestellt
werden, Warenmengen geeigneter Art durch ihre Gewichtszahlen,
die Monate des Jahres in bekannter Weise durch die Zahlen

von 1 bis 12.

Ein neuer Gesichtspunkt kommt dann im Zusammenhang
mit der Beschäftigung mit elementaren Termen zur Geltung. Die
Schüler lernen im Algebraunterricht, mit Ausdrücken umzugehen,

Zur Bedeutung der Elementanzahlfunktion für die Erschliessung einfacher
mengentheoretischer Begriffe sowie für die Vorbereitung der Wahrscheinlichkeitstheorie

siehe: H. G-. Steiner, Elementare Logik und Wahrscheinlichkeitstheorie, Der
Mathematikunterricht 1962, Heft 1.
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die Variable enthalten: a+&, 2xy+z, c2jrd2, 3ft+5, £2+2 usw,
Variable sollten dabei konsequent im Sinne der mathematischen

Logik als Bestandteile der Sprache der Mathematik behandelt

werden, also als Zeichen ohne feste Bedeutung, für die man

gedeutete Zeichen (Konstante, hier speziell: Zahlennamen)
einsetzen kann. Auch der Termbegrilf sollte dabei von vornherein
eine explizite Behandlung erfahren und zwar so, dass dieser

Begriff von Anfang an nicht an bestimmte Bedingungen für den

Aufbau der Terme gebunden ist. Speziell bezogen auf den

vorliegenden Zahlbereich sind Terme:
2

a) Zahlennamen (wozu auch «2 + 5 », « 42 — — » usw. gehören)
o

b) Formen für Zahlennamen, d. h. sprachliche Gebilde mit
Variablen, die bei vollständiger Einsetzung von Zahlennamen selbst
in einen Namen für genau eine Zahl übergehen 1).

Wichtig für den Umgang mit Termen ist die Einsetzungsübung.

Dass z. B. (a + b)2 bezüglich Z nicht äquivalent
(einsetzungsgleich) ist zu a2 + b2, also (a + b)2 a2 + b2 in Z
nicht allgemeingültig ist, kann vom Schüler durch einfache
Einsetzungsübungen erfasst werden. Für unsere Betrachtungen
hier stehen die Einsetzungsübungen bei Termen mit einer
Variablen im Vordergrund. In t (n) : + 5 sollen z. B. für n
der Reihe nach die Zahlen von 1 bis 5 eingesetzt werden. Das
geschieht übersichtlich durch die Anlage einer Zuordnungstabelle

^ an die sich weitere Betrachtungen anschliessen. Zunächst
kann die im Zusammenhang mit früheren Beispielen schon

erläuterte Idee der eindeutigen Zuordnung verdeut-
n \t (n) licht werden: Jedem Element aus der Menge M
1 -* 8 { 1, 2, 3, 4, 5 } ist vermöge t (n) genau eine Zahl zuge-
2 ->11 ordnet. Man kann diese Zuordnung sodann durch
3 -* 14 einen Graphen veranschaulichen. Dabei verstehe ich
4 -> 17 unter einem Graphen allgemein eine Teilmenge der
5 ->20 Zahlenebene, nicht nur die jeweilige Paarmenge, da

über den Graphen gegebenenfalls auch geometrische

i) Zur Behandlung des Variablen- und Termbegriffs siehe H. GL Steiner, Logische
Probleme im Mathematikunterricht: Die Oleichungslehre, Math.-phys. Semesterberichte,
Bd. 7 (1961), p. 178 ff. Ferner aus der Schriftenreihe Der Mathematikunterricht die Hefte:
Logische Probleme I, II und insbesondere das demnächst erscheinende Heft III.
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(topologische, metrische) Aussagen gemacht werden sollen 1). Der
Zuordnungsgedanke muss dann natürlich wieder abgelöst, werden

von den beschränkten Darstellungsmitteln, wie sie. durch die
dem Schüler zunächst zugänglichen elementar arithmetischen
Terme gegeben sind. Hierzu sind u.a. Uebungen geeignet, zu
vorgegebenen (endlichen oder unendlichen) Zuordnungstabellen
einen passenden Term finden zu lassen. Vom Schüler ist dabei
zu erkennen, dass die Tabelle, damit das Problem überhaupt
eine Lösung haben kann, eine wichtige Eigenschaft besitzen
muss: sie muss rechtseindeutig sein, d. h. nirgends dürfen gleiche
Werte links mit verschiedenen Werten rechts gepaart sein. Man
wird an Beispielen auch zeigen, dass sich für endliche Tabellen,
deren Eingangswerte xl9 ,xk sind, mit t± (x) stets auch t2 (x) :

— h(x) + (x — xi) (x — x2) (x — xk) als Lösung 'angeben
lässt. Das führt auf Fragen der Einfachheit der Beschreibung und
der Abhängigkeit von den Darstellungsmitteln, eine Angelegenheit,

über die man nicht früh und deutlich genug Klarheit
schaffen kann. Man wird hier insbesondere auf die Situation des

Naturwissenschaftlers eingehen, der Tabellen (und die
zugehörigen Graphen) durch Messreihen gewinnt und nun einen

möglichst einfachen Term zur Beschreibung der vorliegenden
Zuordnung sucht. Die Fälle, in denen die Auffindung eines Terms
nicht gelingt, machen wie die obigen aus anderen Zusammenhängen

geholten Beispiele deutlich, dass es angebracht ist, die

eindeutigen Zahlenzuordnungen auch unabhängig von den zur
Verfügung stehenden Termen zu betrachten. Zuordnungen der
betrachteten Art werden dann allgemein als Funktionen bezeichnet,

und zwar wird etwa folgendermassen definiert: M sei eine

beliebige Menge. Eine Funktion auf M ist eine Zuordnung* durch
die jedem Element von M genau eine Zahl aus Z zugeordnet
wird. Bei dieser Definition erscheint es mir wichtig, das
Substantiv « Zuordnung » und nicht Redeweisen wie : « eine Funktion
liegt vor, wenn ...» zu verwenden. Damit soll von vornherein
betont werden, dass Funktionen Einzelobjekte sind, mit denen

i) Für die Einführung der Zahlenebene bzw. desjenigen Teils derselben, der dem
kartesischen Produkt Z x Z des jeweils entwickelten Teilbereiches Z von R entspricht,
bieten sich schon auf der Sexta (10 J.) ausgezeichnete Möglichkeiten. Siehe z. B.
H. Enders, Die Verwendung der Netze zum Aufbau einer Geometrie der Unterstufe.
Der Mathematikunterricht, 1955, Heft 1.
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in der Mathematik operiert werden kann wie mit Zahlen oder

Punkten.

2. Funktionen als eindeutige Zuordnungen.

Beim Ausbau der Funktionenlehre kommt es darauf an, die

verschiedenen Betrachtungs- und Darstellungsweisen der
Funktionen gründlich zu behandeln. Ich gehe zunächst noch auf
Gesichtspunkte und Begriffe ein, die in Verbindung mit der Idee
der Zuordnung stehen bzw in ihrem Zusammenhang geklärt
werden können. Wir betrachten etwa Funktionen auf der Menge
M { 1, 2, 3, 4}. Um die ganze Weite der Definition zu erfassen,
und die Unabhängigkeit von der Herkunft der Funktionen (ob
z.B. empirisch gewonnen oder nicht) zu demonstrieren, wird man
die Schüler selbst beliebige Beispiele finden lassen. Wir wählen
im Hinblick auf die weiteren Betrachtungen die folgenden aus:

Ml2-> 1

~1 -> 4" "1 -> 1" "1 -> 1"

/ä
2 -> 3

V /s —
2^2

i fi —
2 -> 1

3->17 3 -> 1 3 -> 3 3 -> 1

_4-> 4_
C^lt1

4 4 4 -> 1

Die Menge M, auf der eine Funktion / erklärt ist, wird
Definitionsmenge von / genannt, kurz Dfl die Menge der Zahlen, die
als zugeordnete Elemente auftreten, Wertmenge von /, kurz Wf.
In den Beispielen gilt also:

Dfi Du.Df, M,wA{ |-, 1, 17, 4 |, wft

Wfs ~M,wu {l}.
Beispiele wie fz führen zum Begriff der identischen Funktion

auf M, Beispiele wie /4 zum Begriff der konstanten Funktion:
f heisst die identische Funktion auf M genau dann, wenn jedes
Element aus. M sich selbst zugeordnet wird. / heisst eine
konstante Funktion genau dann, wenn Wf {c} (oder Wf ein-
elementig). Die allgemeine Situation kann jeweils durch ein
einfaches Pfeilbild wiedergegeben werden. Dabei repräsentieren
wir die Menge Z zweimal (s. Figur 2-5).
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An diese ersten Betrachtungen lässt sich bereits eine Fülle
von Hebungen anschliessen. Eine (endliche) Menge M wird
vorgegeben ; es gilt, Beispiele von Funktionen auf M anzugeben,
speziell konstante Funktionen, die identische Funktion,
Funktionen, für die Wf Df M\ es sollen die jeweiligen Mengen

/1Y'
Fig. 3.

Fig. 4.

Wf bestimmt werden, ferner zu verschiedenen Teilmengen von M
die zugehörigen Teilmengen von Wf; es sollen Diagramme
gezeichnet werden, usw.

Es ist wichtig, frühzeitig auch die Abbildungssprechweise, die

aus dem Geometrieunterricht, soweit er mit Hilfe des Abbil-
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dungsbegriffs aufgebaut wird, schon bekannt ist, auf Funktionen
anzuwenden: « / ist eine Funktion auf M » ist danach gleichbedeutend

mit « / ist eine Abbildung der Menge M in die Menge
der Zahlen Z ». Ferner sagt man: Eine Funktion / ist eine

Abbildung der Menge Df — M auf die Menge Wf. Ist D' eine

Teilmenge von Df und W' die D' vermöge / zugeordnete Teilmenge
von Wfy so nennt man D' auch die Originalmenge von W' und
W' die Bildmenge von D' bezüglich /. Ist M Df — Wf wie
in den Beispielen /2 und /3, so ist / eine Abbildung der Menge M
auf sich. Ist M dabei endlich, so nennt man / auch eine Permutation

von M. Die Beschäftigung mit Permutationen hat hier
einen Anknüpfungspunkt.

Der bisher zur Darstellung von Zuordnungen verwendete
Pfeil eignet sich auch, um den Uebergang von Termen zu den
durch sie gegebenen Funktionen in einer logisch einwandfreien
Schreibweise zu erfassen. Liegt etwa der Term 3/2+5 vor und
betrachten wir ihn wie oben auf der Menge M {1, 2, 3, 4, 5},
so schreiben wir statt

n |3/2+5
1 -> 8"
2 -> 11

3 -> 14

4 -> 17

5 -> 20 _

einfacher |~neM -» 3/2+5], was zudem besonders vorteilhaft ist,
wenn M unendlich, etwa die Menge der natürlichen Zahlen, ist.
Allgemein soll also « [xeM - t(x)] » ein Name für die durch den
Term t(x) auf der Menge M gegebene Funktion sein. Das Symbol
kann gelesen werden: die Funktion, die xeM zuordnet t(x).
Durch diese Schreibweise wird die Zuordnung konsequent von
dem Term selbst unterschieden. Die Variable x ist als gebundene
Variable im Sinne der Logik zu betrachten.

Bei der sich sehr bald aufdrängenden Schreibweise « f(a) »

für den Wert der Funktion f an der Stelle a oder das Bild von a
bezüglich / hat man darauf zu achten, dass man im Sinne unserer
Termdefinition mit dem Zeichen « f(x) » einen neuen Term
eingeführt hat. Ist also « / » ein Zeichen für eine wohlbestimmte

1 8
2 -* 11

3 -> 14 oder
4 17

5 20
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Funktion mit dem Definitionsbereich M, so ist « f(x) » ein auf M
erklärter Term derart, dass [xeM -> f(x)] gerade die Funktion /
ist. Ist / selbst etwa durch einen arithmetischen Term t(x)
vorgegeben, so ist natürlich t(x) bezüglich M äquivalent (einsetzungsgleich)

mit f(x), also die Gleichung f(x) t(x) per defmitionem
allgemeingültig in M. Es ist dies die Stelle, wo die arithmetischen
Terme als Terme besonderer Art hervorzuheben sind, und wo
zu verdeutlichen ist, dass die obige Aufgabe der Termflndung
jetzt bedeutet: suche einen zu f(x) bezüglich M einsetzungs-
gleichen arithmetischen Term.

Mit Hilfe der Termschreibweise lassen sich die algebraischen
Operationen mit Funktionen allgemein definieren. Sind / und g
Funktionen mit demselben Definitionsbereich M, so ist z.B. /+g
definiert gemäss

f+g: [xeM -+ f(x) +g(x)]

Ausgangspunkte sind auch hier wieder einfache Beispiele wie

i- | + 4

2 -> 1 +3.
3 -> 17 + 1

.4-+ 4 + 2.

fl + /2 —

und speziell Anwendungsbeispiele, die diese Definition motivieren.
Von grundlegender Bedeutung ist sodann die Verkettung von

Funktionen im Sinne der Hintereinanderschaltung der

Zuordnungen. Auch hier kann man von verschiedenen Beispielen aus
ansetzen. Ist etwa bei einem Bewegungsvorgang längs einer
Strasse durch / gewissen durch Zahlenangaben dargestellten
Zeitpunkten die jeweilige Masszahl der Entfernung vom Ausgangspunkt

zugeordnet und durch g den durch ihre Entfernung
dargestellten Ortspunkten die jeweilige Masszahl ihrer Höhe über
NN, so stellt fog die Zuordnung der Höhe zu den Zeitangaben
dar. Innermathematische Beispiele von besonderem Interesse
bieten die Permutationen. Die Verkettung von /2 mit

i -> il r 1

2
ergibt die Permutation /2 o /5

1

/s —
2

3

4

3

2

4

4
2

3 1

4 3
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Davon verschieden ist

h°h

1 -» 4
2 1

3.-> 3

4 2

Es gilt ferner /2 o /3 /2 usw. Selbstverständlich wird man

die hier wie analog bei den Abbildungen der Geometrie sich

bietenden Möglichkeiten, in die Gruppentheorie vorzustossen,

nicht ungenutzt lassen.

Yerkettungsbeispiele wie /4 mit /2 oder /x mit /2, letzteres

etwa dargestellt durch

"2 -> 1 ->.4'
4 -> 4 -> 2höh

führen dazu, für die Verkettung von / und g — damit sich nicht
die leere Funktion ergibt —, allgemein nur vorauszusetzen,
dass der Durchschnitt Wf n Dg nicht leer ist. fog ist dann

definiert auf der /-Originalmenge von Wf n D^. Entsprechende
bildliche Darstellungen können die allgemeine Situation
veranschaulichen (Figur 6).

Dem Verketten von Funktionen entspricht das Einsetzen der

Terme ineinander: statt (/ o g)(x) schreiben wir auch g(f(x))1
was leicht zu motivieren ist und zum Anlass genommen werden
kann, auch bei der Verkettungsschreibweise die in der Mathematik

übliche entgegengesetzte Reihenfolge g o / einzuführen.
Entsprechende Einsetzungsübungen mit arithmetischen Termen
gehören bereits in den algebraischen Anfangsunterricht (wo
Einsetzungen benötigt werden etwa beim Beweis von Formeln).



78 H. G. STEINER

Sie sollten bei allen sich bietenden Gelegenheiten stärker als
bisher beachtet werden 1).

3. Funktionen und Paarmengen.

Lässt man in einer rechtseindeutigen Zuordnungstabelle die
Pfeile weg und schreibt stattdessen etwa

r (i,8 -
(2,11)
(3,14)
(4,17)

_ (5,20) J

so ergibt sich eine Menge geordneter Paare, kurz Paarmenge, die
zur Vorgabe der Funktion ausreicht. Offensichtlich-gehört so zu
jeder Funktion / genau eine Paarmenge F. Diese ist endlich
bzw. unendlich je nachdem, ob Df endlich bzw. unendlich ist.
Es ist noch einmal zu verdeutlichen, wann umgekehrt eine

derartige Paarmenge eine Funktion bestimmt. Die Einschränkung

ist durch die Rechtseindeutigkeit gegeben: zu verschiedenen
Elementen an der rechten Stelle (der zweiten Koordinate) müssen
verschiedene Elemente an der linken Stelle (der ersten Koordinate)

gehören, d.h. für alle (x1 y^), (x2, ?/2) aus der
Paarmenge muss gelten: y1 •=£ y2 => x1 ^ x2 (oder, durch die
Kontraposition ausgedrückt: x1 x2=> yx y2)- Die Behandlung der

Paarmenge steht in unmittelbarer Verbindung mit der
graphischen Darstellung der Funktion in der Koordinatenebene.
Wir wollen auf die Graphen im geometrischen Sinne jedoch erst
etwas später eingehen.

Mit Hilfe der einer Funktion / zugehörigen Paarmenge F
kann eine Reihe von Begriffen aus der Funktionenlehre in
einfacher Weise mengentheoretisch geklärt werden:

a) Funktionen sind identisch genau dann, wenn die zugehörigen
Paarmengen identisch sind, d. h. wenn diese dieselben
Elemente haben : / g <^> F G.

i) Siehe hierzu: H. Gr. Steiner, Semantische und syntaktische Fragen im Alge-
braunterricht, erscheint im Heft: Logische Probleme im Mathematikunterricht III.
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b) Die Beschränkung fD, der Funktion / auf eine Teilmenge Dr
von Df ist gegeben durch die Menge aller Paare aus F, deren

erste Koordinaten Elemente von D' sind :

g fD> o G F n (D' X Z).

c) g ist die Fortsetzung von / genau dann, wenn G zd F (oder

gDf /)•

Die Beschränkung spielt bekanntlich eine grosse Rolle, wenn
man wie bei der quadratischen oder bei der Sinusfunktion einen
umkehrbaren Teil herausgreifen will. Unter das Thema
Fortsetzung lässt sich das Interpolationsproblem unterordnen und
dadurch besonders klar erfassen.

Zum Begriff der Umkehrung einer Funktion gehört die

Bildung der inversen Paarmenge, die darin besteht, dass man in
allen Paaren das erste mit dem zweiten Element vertauscht.
Das entspricht dem Uebergang zur inversen (auch konversen)'
Relation. Man kann dann definieren:

d) Eine Funktion heisst umkehrbar genau dann, wenn die zuge¬
hörige inverse Paarmenge eine Funktion darstellt, also auch
rechtseindeutig ist.

Die durch die inverse Paarmenge von / gegebene Funktion
heisst dann die Umkehrfunktion von /. (Die Paarmenge einer
umkehrbaren Funktion ist also stes rechts- und linkseindeutig,
kurz: eineindeutig.)

4. Funktionen und Graphen.

Dir Verwendung von Graphen, der wir uns nun etwas
eingehender zuwenden wollen, sollte in der Funktionenlehre von
Anfang an eine grosse Rolle spielen. Wir wollen — wie bereits
bemerkt — unter einem Graphen allgemein eine Teilmenge der
kartesischen Zahlenebene verstehen. Diese Teilmengen sind in
bekannter Weise den Paarmengen eineindeutig zugeordnet. Zu
jeder Funktion (reinen Zahlenfunktion) gehört also ein
wohlbestimmter Graph.

Wann bestimmt umgekehrt ein Graph eine Funktion Die
Antwort lautet in grober, einprägsamer Form: Ein Graph ist
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genau dann ein Funktionsgraph, wenn an keiner Stelle Punkte
des Graphen übereinander liegen. Mit dieser einfachen
Feststellung wird dem Funktionsbegriff (besonders für die Erörterung
unendlicher Beispiele) eine wichtige anschauliche Stütze gegeben
und zugleich ein reiches allgemeines Diskussionsmaterial
bereitgestellt. Was durch endliche Tabellen und mit den elementaren
arithmetischen Termen nicht geleistet werden kann, das lässt
sich häufig durch entsprechende Figuren in der Zahlenebene
erreichen.Die Beschäftigung mit Funktionsgraphen ist natürlich
einzubetten in ein allgemeineres Studium von Punktmengen in der

Zahlenebene, das also nicht erst mit der sog. Analytischen
Geometrie des Oberstufenunterrichts beginnen sollte. Hierzu kann
u. a. eine stärkere geometrische Fassung der Lehre von den

Gleichungen und Ungleichungen (letztere in Verbindung mit
Beispielen für das lineare Programmieren) dienen. Allgemein
sollte der Schüler schon auf der Mittelstufe lernen, dass zu jeder
über dem Zahlenbereich Z erklärten Bedingung (Aussageform)
in zwei Variablen eine Erfüllungsmenge gehört, deren Elemente
geordnete Paare von Elementen aus Z sind, und damit also ein

Graph in der Zahlenebene1). Das Studium von
Symmetrieeigenschaften der Graphen und deren Zusammenhang mit der
Struktur der Bedingungen (© (x, y) <=> 23 (y, x), © (x, y) o
© (x, — y), © (x, y) o © (— xy — y) usw.) ist dabei eine wichtige
Angelegenheit. Insbesondere gehört hierher auch die einfache

Transformationsregel: Ist G der Graph der Bedingung S (x,y),
so ist der um den Vektor (x0, y0) verschobene Graph G' der

Graph der Bedingung © (x — x0, y — y0).

Fig. 7.

i) Einfache logisch kombinierte Bedingungen dieser Art sind etwa:
*2 + y2 ^ i a x ^ o, (.| x | '+ | y | ^ 1 A y ^ 0) V (oc2 + y2 ^ 1 A y ^ 0),

y2 x A x ^ 0, x 0 V y 0 usw.
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Um die Verwendung von Graphen in der Funktionenlehre

zu erläutern, wollen wir kurz darlegen, wie sich die bisher von

uns erörterten Begriffsbildungen in der Darstellung durch

Graphen widerspiegeln. Dabei wollen wir zunächst hervorheben,
dass auch bei diesen Darstellungen stets der Zuordnungsgedanke

wachgehalten werden muss. Dies sei verdeutlicht an den Figuren

7 und 8, deren letztere speziell auf die Hintereinanderschaltung

von Zuordnungen Bezug nimmt.

Die weiteren Begriffe gehen wir kurz der Reihe nach durch:
Die Definitions- und Wertmenge ergeben sich durch die

Projektion des Graphen auf die erste bzw. die zweite Achse. Die
identische Funktion auf der Menge aller reellen Zahlen R hat als

Graph die erste Diagonale in der Zahlenebene, eine konstante
Funktion auf R eine Parallele zur ersten Achse. Besonders

geeignet für die Mittelstufe ist die geometrische Behandlung
der algebraischen Operationen mit Funktionen. Es gibt eine
Fülle von sehr schönen, einfachen Methoden, diese Konstruktionen

punktweise auszuführen 1). Daneben sind für die gröbere
Orientierung ausreichende Verfahren zu pflegen. Ich denke hier
an so einfache Dinge wie die Konstruktion des « reziproken

Graphen », die für das Beispiel xeM mit M ~ R —
| x | — 2_

{2, — 2 } aus Figur 9 ersichtlich ist. Dies Beispiel, bei dem
man vom Graphen der Funktion [.xeR -> | x | —2] ausgeht, möge
zugleich zur Erläuterung dafür dienen, wie Schüler auf der

i) Es sei hierzu verwiesen etwa auf: J. C. H. G-erretsen, Raaklijn en oppervlakte,
Haarlem 1959. Das Buch erscheint demnächst in deutscher Übersetzung.

L'Enseignement mathém., t. VIII, fasc. 1-2. 6
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Mittelstufe mit Hilfe des in seinen wesentlichen Teilen bestimmten
Graphen durch Projektion den Wertebereich der Funktion
r i

xeM 7—:—^ ermitteln können
L ' l*l-2.

W R — <j x > < 0 |> { x>x ^ vx> 0

Die rein mengentheoretischen Begriffsbildungen übertragen
sich naturgemäss sofort in die graphische Darstellungsweise:
Funktionen sind genau dann identisch, wenn ihre Graphen
identisch sind; entsprechend beziehen sich die Begriffe
Fortsetzung und Beschränkung unmittelbar auf die Graphen. Zur
Frage der Umkehrung gehört die Behandlung des ander 1. Diagonalen

gespiegelten Graphen. Parallel zur rein mengentheoretischen
Beschreibung lässt sich sagen: Eine Funktion ist genau dann
umkehrbar, wenn der an der 1. Diagonalen gespiegelte Graph
wieder ein Funktionsgraph ist, oder: Eine Funktion ist genau
dann umkehrbar, wenn in ihrem Graphen keine Punkte gleicher
Höhe vorkommen. Ferner gilt: Eine Funktion ist genau dann
mit ihrer Umkehrung identisch, wenn ihr Graph spiegelsymmetrisch

zur 1. Diagonalen ist. Wichtig sind sodann die Symmetrien
zur 2. Achse und zum Koordinatenursprung ; sie gehören zum
Begriff der geraden und der ungeraden Funktion.
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5. Funktionen und Terme.

Wir kommen jetzt noch einmal auf die Bedeutung der Terme

im Rahmen der Funktionenlehre zurück. Wie wie schon

hervorgehoben haben, wird der Termbegriff zunächst in Verbindung
mit dem ersten Algebraunterricht (insbesondere der Einführung
in die Gleichungslehre) entwickelt; er bezieht sich dabei anfangs

nur auf elementar arithmetische Terme (e. a. T.), d. h.

Ausdrücke, die in folgender Weise aufgebaut sind:

a) Jeder Zahlenname ist ein e. a. Term,

b) jede Variable x, y, ist ein e. a. Term,

c) mit tx und t2 sind auch t1 + t2, t± — t2l t±.t2, tu t2 e. a. Terme,
wobei im letzten Fall t2 nicht Name für die Zahl 0 sein darf.

Von diesen Termen sind im Hinblick auf die einstelligen
Funktionen, auf die wir uns bisher beschränkten, selbstverständlich

nur diejenigen von Bedeutung, in denen genau eine

Variable vorkommt. (Es sei denn, dass man Termformen (oder
Klassen von Termen) wie ax% + bx + c betrachtet, wo a, b, c

dann aber eine besondere Rolle spielen als Formvariable (oder
Klassenparameter)). Die Schüler lernen zunächst keine explizite
Definition der elementar arithmetischen Terme kennen. Sie

verstehen von Beispielen aus, was gemeint ist. Zur allgemeinen
Umschreibung, die nötig ist, wenn vom Funktionsbegriff her
auch andere Terme eingeführt werden, reicht der Hinweis auf
die vier Grundoperationen aus. Später wird man jedoch wenigstens
die Polynome und Polynomquotienten genauer beschreiben.
Dabei genügt es wohl, ein Polynom in x als einen Term der
Form a0 + a1 x + + an xn vorzustellen, in dem die at
Namen für Elemente aus einem bestimmten Grundbereich U
sind. Entsprechend unserer strengen Unterscheidung zwischen
Term und Funktion sind dann die ganz rationalen Funktionen
auf U die Funktionen [xeU a0 +... +a„x"] 1).

Ein wesentlicher sachlicher wie didaktischer Nachteil der
traditionellen Behandlung der Funktionenlehre besteht vom
heutigen Standpunkt aus zweifellos darin, dass der Funktionsbegriff

jahrelang allein an den Polynomen orientiert ist. Die
Grundgedanken und Zugänge zu einem allgemeineren und tieferen

i) Siehe hierzu die erste unter n zitierte Arbeit.



84 H. G. STEINER

Verständnis der Funktionenlehre werden damit zugeschüttet,
und das, was in vielfältiger Weise begrifflich zu trennen ist,
wird von vornherein zu wenigen, zum Teil recht unklaren
Vorstellungen vermischt. Das hat verhängnisvolle Auswirkungen
auf allen späteren Stufen des Mathematikunterrichtes. So haben
die Schüler auch noch als Studenten grosse Schwierigkeiten,
einzusehen, dass es der Mühe wert ist, sich mit der Präzisierung
von Begriffen wie Stetigkeit, Differenzierbarkeit und Integrier -

barkeit abzumühen, da sie immer nur an Beispiele denken, bei
denen diese Eigenschaften nahezu selbstverständlich sind.
Führt man jedoch erst bei dieser späten Gelegenheit
Gegenbeispiele ein, so fällt es ihnen schwer, die ihnen vorgesetzten

„ kuriosen Ausnahmen " überhaupt als Funktionen zu akzeptieren.

Will man diese heute auch vom didaktischen Standpunkt
aus nicht mehr vertretbare Enge der Funktionenlehre vermeiden,
so wird man etwa so vorgehen müssen, wie wir es vorangehend
dargelegt haben. Dabei erscheint mir unter dem Gesichtspunkt
der Behandlung des Termbegriffs noch das Folgende wichtig.
Es muss einmal die Menge der Standardterme für den Unterricht
erweitert werden. Das kann in fruchtbarer Weise bereits dadurch
geschehen, dass man zu den üblichen Standardtermen noch \x\,
[x] (Gausskiammer von x oder Index von x) und sign x
hinzunimmt und vielfältig verwendet. Man kommt damit bekannterweise

zu einer Fülle von unstetigen oder nicht differenzierbaren
Funktionen, die mit diesen Termen beschreibbar sind (z. B.
\xeR-» [x] + x],[xsR -» signx][xeR - - 1)M], [xeR -> | ].
usw.) Die Verwendung dieser Terme sollte dabei natürlich nicht
allein zur Vorgabe und Beschreibung von Funktionen dienen,
sondern allgemeiner auch zur Aufstellung von Bedingungen
in einer oder zwei Variablen. Ich denke hier an so einfache

Gleichungen w^e \y\ |x|, [y] [x], \y\ [x], y x2 +
5 | x J +6, deren Graphen interessant sind, oder an Gleichungen

in einer Variablen wie [x] 2, x2 — 5 | x | + 6 0-,

J[x2 — 5x + 6] (|x | — 10) 0 usw., die durch ihre Lösungsmengen

(im letzten Beispiel:

.5 —\j5 5 + y/5 \
<x < 2 v 3 < x < vx lOvx — 10 > J
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die Gleichungslehre wesentlich bereichern können. Entsprechend

sind natürlich Ungleichungen und zusammengesetzte Bedingungen

zu behandeln. Selbstverständlich lassen sich in dieser Weise

auch die sonst im Rahmen der Funktionenlehre betrachteten

Terme verwenden. Betrachten wir neben der oben eingeführten
Funktion f± etwa die Funktion

f6

1 2

2 -> 1

3 17

4 -> 3

5 -> 5.

so sind mitfi (x) 17 oder^fx) f6 (x) Gleichungen und mit

/i (x) < 5 oder f6 (x) ^ f± (x) Ungleichungen gegeben, deren

Behandlung für das Verständnis der Funktionenlehre wie der

Lehre von den Gleichungen und Ungleichungen äusserst

instruktiv ist.

6. Funktionen und Aussageformen.

Wir kommen schliesslich noch zur Darstellung von Funktionen

durch Gleichungen und Bedingungen. Dabei gehen wir von
der Feststellung aus, dass man in unseren Schulbüchern durchweg

den Begriff der Funktionsgleichung findet, der hier in so

unklarer Weise eingeführt und gehandhabt wird, dass daran die

ganze Kalamität der traditionellen Funktionenlehre zum
Ausdruck kommt.

Da ist zunächst die platte Identifikation von Gleichung und
Funktion. In einem Lehrbuch heisst es z.B.: «Diese neue
Gleichung wird Funktionsgleichung oder kurz Funktion genannt.»
Die Identifizierung hat neben der Verwirrung von Zeichen und
Bezeichnetem (ganz abgesehen davon, dass zur Verwendung von
Gleichungen als Funktionsbezeichnungen die Variablen erst
gebunden werden müssten) u. a. zur Folge, dass der Schüler den
Eindruck gewinnt, zur Vorgabe von Funktionen seien nur
Aussageformen in Gestalt von Gleichungen geeignet. Das absolute
Vorherrschen der Gleichungen in der Funktionenlehre verfährt
zudem zu einer totalen Vernachlässigung der Bezogenheit auf
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einen grundsätzlich frei wählbaren Definitionsbereich1. An die
Identifikation yon Gleichung und Funktion lagert sich ferner
eine z. T. sehr irreführende Terminologie an. So wird von
expliziten und impliziten Funktionen gesprochen, je nachdem
ob in einer Gleichung in x und y der links stehende Term nur
aus der Variablen y besteht und der rechts stehende Term y
nicht enthält oder nicht. Das ist eine Unterscheidung, die für
die gemeinten Zuordnungen keinerlei Bedeutung hat. Sodann
wird in manchen Schulbüchern die nach x aufgelöste Form einer
Gleichung y — / (x) die Umkehrung der Funktion y / (x)
genannt (also z. B. x y + 1 die Umkehrung von y x — 1).

Legt man, wie in den Büchern allgemein üblich, x als erste (sog.
unabhängige) und y als zweite (sog. abhängige) Variable fest,
so gibt auch diese Unterscheidung keine verschiedenen
Zuordnungen wieder, sie kann höchstens dazu dienen, den ohnehin
schon reichlich konfus behandelten Begriff der Umkehrfunktion
restlos zu verdunkeln.

Eine andere fast überall in den Schullehrbüchern
anzutreffende Verwendungsweise des Wortes « Funktionsgleichung »

geht dahin, die Gleichung eines Graphen im Rahmen der
analytischen Geometrie allgemein als Funktionsgleichung dieses

Graphen, also etwa x2 + y2 — 25 als Funktionsgleichung des

entsprechenden Kreises, zu bezeichnen. Damit wird nun auch
noch das Prinzip der Eindeutigkeit durchbrochen, und es wird
zugleich jene oben schon kritisierte Bindung des Funktionsbegriffs

an die Vorstellung einer glatten Kurve hervorgerufen.
Wir werden nach diesen kritischen Bemerkungen, die sich

in vielfacher Hinsicht vermehren und detaillieren liessen,
auseinanderzusetzen haben, wie sich der Begriff der Funktionsgleichung,

wenn man ihn weiterhin benutzen will, in dem von
uns umrissenen Aufbau der Funktionenlehre fassen und
verwenden lässt2. Grundlegend ist dabei natürlich wieder der

Funktionsbegriff selbst. Die Verbindung von den Gleichungen in

i) Es ist dann nicht verwunderlich, dass es den derart vorgebildeten Schülern als
Mathematikstudenten schwerfällt, eine Funktionsgleichung in x und y nur über einer
Teilmenge der Menge aller sc, denen durch die Gleichung ein bestimmtes y zugeordnet
wird, zu interpretieren. Siehe hierzu die interessanten Beobachtungen bei Studenten
der Anfangssemester in G. Pickert, Bemerkungen zum Funktionsbegriff, Der math.-
naturwissenschaftliche Unterricht VIII/9, p. 396.

2) Siehe auch hierzu die erste unter u zitierte Arbeit.
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2 Variablen zum Funktionsbegriff wird dabei am einfachsten
mit Hilfe der Paarmenge oder des Graphen hergestellt. Wir
betrachten in Anlehnung an den üblichen Unterricht zunächst

Gleichungen in x und ?/, wobei x als erste Variable und y als

zweite Variable, also eine Reihenfolge der Variablen, ein-
fürallemal festgelegt ist. Der Schüler muss verstehen, dass die

Lösungen solcher Gleichungen © (x, y) in bezug auf den jeweiligen
Grundbereich [/, der bei der Behandlung von Gleichungen immer
angegeben werden sollte, nicht einzelne Zahlen, sondern Paare

von Elementen aus U sind. Die Lösungsmenge ist also eine

Paarmenge, zu der ein bestimmter Graph gehört. Man kann
dann einprägsam definieren: Die Gleichung © (x, y) heisst
Funktionsgleichung in bezug auf die Grundmenge £7, wenn die
Lösungsmenge { (x, y) | (x, y) e V X U a © (x, y) } von ©(#, y)
bezüglich U rechtseindeutig ist (oder: wenn der Graph von
©(ic, y) bezüglich U ein Funktionsgraph ist).

Die Rechtseindeutigkeit der Lösungsmenge von © (x, y)
bezüglich [/bedeutet:

(x^yje UxU a (x2, y2) e U x U a ©(Xi,^) a ®(x2,j;2)
a — x2 => y2 -

Für die Handhabung des Begriffs Funktionsgleichung ist das

wichtig. Man entscheidet damit z. B. leicht, dass

y x2,x Vy, |x | (Vy)2,

x2 3y + 9, 4, —— — 8
Vx+x-2 [x— 5 | x | +6] (|xl —10)

y — tg x0

usw. Funktionsgleichungen bezüglich R sind. Keine
Funktionsgleichungen bezüglich R sind etwa + 1, 2 — 0,

I xI + I VI 1 oder [y] x. Mit Ausnahme des letzten
Beispiels sind dies jedoch Funktionsgleichungen, wenn man als
Grundmenge die Menge der nichtnegativen reellen Zahlen wählt.
Die Eigenschaft, eine Funktionsgleichung zu sein, hängt also
wesentlich vom Grundbereich U ab. Aufgrund der
Eindeutigkeitseigenschaft der Terme gilt übrigens allgemein: Ist /
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ein Term, so ist y f (x) eine Funktionsgleiehung bezüglich R.
Wir wollen Gleichungen dieser Gestalt explizite
Funktionsgleichungen nennen, alle anderen implizite Funktionsgleichungen.

Wie wir schon hervorgehoben haben, sind die Gleichungen
in x und y nur spezielle Bedingungen (Aussageformen) in den
Variablen x und y, durch die Funktionen gegeben werden können.
Wir werden also auch im Unterricht ganz generell (und zwar
völlig analog wie bei den Gleichungen) erklären, wann eine

Bedingung 33(#, y) eine Funktionsbedingung bezüglich U ist,
und wir werden die Gleichungen von vornherein in diesem

grösseren Rahmen behandeln. Alles, was oben schon über die
Bedingungen 93(#, y) gesagt wurde, überträgt sich dann speziell
auf Funktionsbedingungen und insbesondere auf Funktions-
gleichungen. Wir erwähnen hier noch einmal besonders die

Bildung der inversen Bedingung, die jetzt mit dem Begriff der
Umkehrfunktion in Verbindung zu bringen ist. Wir können

sagen: Eine durch eine Bedingung 93(#, y) (bezüglich U) gegebene

Funktion ist umkehrbar genau dann, wenn die inverse

Bedingung S(y, x) eine Funktionsbedingung (bezüglich U) ist.
Auf die Einführung von Bedingungen, die nicht nur aus einer

Gleichung bestehen, kommt man im Rahmen der Funktionenlehre

von verschiedenen Ueberlegungen aus. Wir hatten z. B.
oben schon die Beschränkung einer im ganzen nicht umkehrbaren
Funktion auf einen umkehrbaren Teil genannt. So sind durch die

71 71

Bedingungen y x h x 0 oder y sm x a — — ^ x ^ + —

bezüglich R umkehrbare Funktionen gegeben, deren Inver-7! 7T .7T
sionen x y a y ^ 0 bzw. x sm y a — — ^ y ^ + — man

als Definiens für die zu definierenden Funktionsgleichungen

y Vx bzw. y arcsin0 x verwenden kann. Ferner erlaubt
es die Einführung von zusammengesetzten Bedingungen, als

Grundbereich allgemein R zu nehmen und den Uebergang zu
kleineren Grundmengen in den Bedingungen selbst zum
Ausdruck zu bringen. So ist z. B. x2 + y2 1 a x ^ 0 a y ^ 0

(was man auch schreiben kann : 3/ Vl-x2Ax^0) eine

Funktionsbedingung bezüglich R (wobei letzteres nun nicht
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mehr stets dazu gesagt zu werden braucht). Wir erwähnen auch

noch, dass eine Gleichung wie

V $ y n4 oder
Vx+x-2 [x2 —5 | x | + 6] (| x | —10)

bezüglich R nur dann durch eine äquivalente explizite Gleichung
ersetzt werden kann, wenn man dieser die Zusatzbedingung
x 1 bzw.

5 — V5 5 + >/ 5

<jc<2v3<x< vx=10vx=- 10

konjunktiv anfügt.
Um von einer Funktionsbedingung 23 (x, y) direkt zu einem

Term in x übergehen zu können, ist in der mathematischen Logik
ein Kennzeichnungsoperator xy (auch mit anderen Zeichen) eingeführt

worden, durch den die Variable y in 23 (x, y) gebunden wird.
« Xy 23(#, y) » wird gelesen: dasjenige y, für das 23(£, y). Die
durch 23(£, y) bezüglich U gegebene Funktion mit dem
Definitionsbereich D kann dann also auch durch [veD xy 23 (x, y)~]

dargestellt werden. Auf diese Schreibweise, durch deren
unterschiedliche Bindungsweise der Variablen x und y insbesondere
die Unterscheidung der sog. unabhängigen von der sog. abhängigen

Variablen formal sichtbar wird, kann man im Unterricht
verzichten, da genügend andere Ausdrucksmittel zur Verfügung
stehen. Eine besondere Situation tritt jedoch dadurch auf, dass

man Funktionsbedingungen ja keineswegs immer in den
Variablen x und y anschreiben möchte, z. B. nicht, wenn man aus

der Physik kommende Gleichungen wie s ~ t2 als

Funktionsgleichungen behandeln will. Für diese Fälle empfiehlt es sich,
zum Begriff der Funktionsbedingung noch die Kennzeichnung
«von t nach 5» («von x nach y ») u.ä. hinzuzufügen, die
Auszeichnung der Variablen also mit in die Definition hineinzunehmen.

Man kann dann z. B. auch sagen, was die generelle
Festlegung der Reihenfolge von x und y nicht erlaubt: Ist
y f (x) eine Funktionsgleichung von x nach y bezüglich U,
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die durch sie gegebene Funktion / umkehrbar und g die Umkehrfunktion

von /, so ist x g (y) eine Funktionsgleichung von y
nach x bezüglich U.

7. Ergänzende Bemerkungen.

Die Fülle dessen, was wir in der vorangehenden Darstellung
nicht behandelt haben, veranlasst uns, wenigstens einige
Gesichtspunkte abschliessend noch kurz zu streifen.

Ich erwähne hier zunächst die Definition der Folgen als

Funktionen, deren Definitionsbereich die Menge der natürlichen
Zahlen (und im endlichen Falle ein Anfang der Menge der
natürlichen Zahlen) ist. Wesentliche begriffliche Schwierigkeiten,
wie sie etwa bei den konstanten Folgen häufig im Unterricht
auftreten, lassen sich durch diesen Einbau in die Funktionenlehre

vermeiden. Es bietet sich heute zudem auch in der Analysis
bei der Behandlung der Stetigkeit und des Grenzwertbegriffs
eine Unterordnung der Folgen unter die Funktionen an 1.

Sodann seien einige Bemerkungen zu den mehrstelligen Funktionen

gemacht. Auf sie stösst man ja schon recht früh im Unterricht,

etwa in Verbindung mit der Grundformel der Prozent-
Gp

rechnung P mit Termen in mehreren Variablen, mit ders 100 '

Behandlung der algebraischen Operationen (etwa [(a, b) a+b])
usw. Diese Ansätze lassen sich ohne Schwierigkeiten aufgreifen
und zu einer entsprechenden Entwicklung der mehrstelligen
Funktionenlehre weiterführen. Das kann in sehr enger
Verbindung zu den Methoden der einstelligen Funktionenlehre
geschehen, aus der die mehrstellige im wesentlichen dadurch
hervorgeht, dass nun der Definitionsbereich eine ft-Tupel-Menge
ist, anstelle von x also das ft-Tupel x (x1} xn) tritt. Die
vorangehend entwickelten Begriffe lassen sich dann alle
entsprechend übertragen. Auch der Begriff des Graphen ist wenigstens

im Falle n 2 noch geometrisch anschaulich erfassbar.
Selbstverständlich wird man in der Behandlung mehrstelliger
Funktionen auf der Schule nicht allzuweit gehen. Das
Prinzipielle lässt sich bereits an wenigen Beispielen erläutern.

i) Siehe hierzu den Vortrag yon Gr. Pickert: Die Einführung des Stetigkeitsund
Grenzwertbegriffs in der Schule.
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Schliesslich will ich noch auf einen Gesichtspunkt eingehen,

der durch das Stichwort „ funktionales Denken " gekennzeichnet
ist. Die Forderung des funktionalen Denkens war ein Kernstück

der Meraner Reformpläne. Ueber diese Pläne schrieb

W. Lietzmann1: «Ihr Verdienst ist es, in den vielerlei Formen, in
denen der Funktionsbegriff in der Schule auftrat, das Gemeinsame

erkannt zu haben, gezeigt zu haben, wie dieser Begriff in immer
wechselnder Gestalt in fast allen Gebieten der Schulmathematik
wiederkehrt, sie beherrscht. Hier setzen die positiven Vorschläge
ein. Es galt, dieses Durchtränken der Mathematik mit dem

Funktionsbegriff gründlicher als bisher zu betreiben, den

Funktionsbegriff als den Kitt zu verwenden, der die verschiedenen

Kapitel der Schulmathematik zu einer Gesamtheit zu vereinigen
geeignet ist. » Dies gilt erneut und in verstärktem Masse in der

heutigen Situation der Schulmathematik, wo ein gegenüber der
traditionellen Fassung verbesserter und erweiterter Funktionsbegriff

zur Verfügung steht. Ein Unterschied aber wird sich

unter diesen Gesichtspunkten vielleicht beim Vergleich der
traditionellen mit der heutigen Funktionenlehre in der Schule
aufdrängen. Er ist mehr psychologischer Natur: die an der
«Abhängigkeit von veränderlichen Grössen » orientierte kinematische

Denkweise, die in der Forderung des funktionalen Denkens immer
mitgemeint war, scheint einer mehr statischen Denkweise weichen
zu müssen. Das wäre ohne Zweifel ein Verlust an Vorstellungen,
die bei all ihrer Ungenauigkeit für die produktive mathematische
Arbeit wie für das über das Formale hinausgehende Verständnis
mathematischer Begriffe, und damit auch für den Unterricht,
unentbehrlich sind 2. Hierzu ist jedoch zu sagen, dass die «kine-
matiscue Denkweise» im Rahmen einer modernen Funktionenlehre

keineswegs verloren zu gehen braucht, ohne dass man
wieder von veränderlichen Grössen und Abhängigkeiten zwischen
diesen redet. Man wird sie da entwickeln, wo sie genauer zu
fassen ist, und das auch bewusst machen, nämlich an den
Beispielen, bei denen im Definitions- und Wertebereich eine
Ordnungsrelation (oder ein Umgebungsbegriff) gegeben ist. So wird

1) W. Lietzmann, Methodik des mathematischen Unterrichts, Heidelberg 1951, p. 71.
2) Siehe hierzu die interessante Studie yon K. Strunz, Das funktionale Denken

in der Mathematik, Stadium generale 2 (1949), p. 31 ff.
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man Feststellungen zulassen und auch pflegen, bei denen etwa
gesagt wird: Wenn ich^ den geordneten Definitionsbereich in
einem bestimmten Sinne durchlaufe, so werden die Werte des

Wertebereiches vermöge der Zuordnung / in dem und dem Sinne
durchlaufen. Dazu müssen dann natürlich strengere Formulierungen

treten, wie sie etwa in der Definition der Monotonieeigenschaft

vorliegen: Wenn*! <x2, so/(vi) <f(x2) (usw.). Wir kommen
hier wieder — wie schon bei früheren Gelegenheiten — auf die

Notwendigkeit, Ungleichungen im Unterricht mehr zu pflegen.
In ihrer intensiveren Behandlung liegen die eigentlichen Möglichkeiten,

das kinematische Denken mathematisch wirklich fruchtbar

werden zu lassen.
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