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44 C. CHABAU

u (1,0) et v j-, "yj> qur correspond à la forme

y\2 3 2
^ + - y2 x2 + xy + j2 pour laquelle ^ 1 et A -

Si maintenant g (x, y) est une forme indéfinie, décomposons
la en différence de deux carrés g (x, y) (xu± -f yvx)2
— + 2/e2)2, I g (a;, y) | est majoré par la forme définie
ffa y) =* (^i + 2/^i)2 + [xu2 + ?/e2)2, et | discr (g) | discr (/),
ce qui démontre (G) pour les formes indéfinies. Si nous utilisons
toutes les décompositions de g en différence de deux carrés, il
en résulte que l'inégalité de (G) a, pour les formes indéfinies, une
infinité de solutions en entiers x, y, résultat suffisant pour obtenir
aisément la démonstration de (B), comme nous avons vu plus
haut.

Il serait tentant de démontrer précisément l'énoncé (G7) avec
1

le coefficient optimum - par le même type de méthode

géométrique élémentaire. Nous y renonçons faute de temps.

III. Formes à n variables: la méthode
de Minkowski.

De tels calculs deviennent plus compliqués dans R3 (Gauss
a trouvé le coefficient optimum pour les formes quadratiques
définies à trois variables) et vraiment difficiles pour les dimensions

supérieures. En renonçant à trouver la valeur exacte de la
constante optima

y„ Sup Minf(xu...,x„)/(discrim(f))11"
f Xi

(xt entiers non tous nuls, / forme quadratique définie positive),
Hermite a pu démontrer que yn était finie, et plus précisément
que

/4\n('î— i )/4*

s (3)

par un raisonnement récurrent.
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Nous appelerons % la constante d'Hermite (de la dimension

n).
La méthode d'attaque de ce problème a été complètement

renouvelée par Minkowski qui a montré tout le parti qu'on
pouvait tirer de la considération de la mesure (aire pour n — 2,

volume pour n 3, des figures associées aux formes étudiées.

Il n'est pas plus difficile d'établir une théorie correcte de la
mesure dans l'espace à n dimension Rn que celle de l'aire dans i?2,

du volume dans i?3. Ce que nous devons supposer établi, c'est que

pour une large classe d'ensembles X de Rn on a pu leur associer

un nombre qu'on notera mes (X) qui est ^ 0 et éventuellement

+ co tel que mes (X u 7) mesure (X) + mes (Y) si X et Y
sont sans point commun, mes (C) 1 pour le « cube » unité
défini par 0 ^ xx < 1, 0 g xn < 1, et qui est invariant par
translation: mes (X+a) mes (X). U intégration des fonctions
f Çx) f (x±, s'en suit en définissant J/ à l'aide de la
mesure dans Rn+1 du domaine associé à / (comme l'intégrale des

fonctions positives d'une variable se définit à l'aide de l'aire du
domaine associé). Alors si X et Y sont des domaines mesurables
sans point commun

lui X Y

Il est commode de supposer qu'il a été démontré que la mesure
et l'intégrale sont des fonctions dénombrablement additives
d'ensembles, c'est-à-dire que

mes(uX„) £mes(Jr„) J/=£J/
n n uln n Xn

quand les Xn sont deux à deux disjoints 1).

Désignons par Z" le réseau de tous les points à coordonnées
entières, alors les cubes (C+z, z sZ"), translatés du cube-unité C,
0 ^ Xi < 1 forment une partition de Rn (c'est-à-dire sont
disjoints deux à deux et leur réunion est R"). On a donc alors pour
une fonction f (x) f (aq, x„)^0:

i) Dans la' suite, les ensembles et les fonctions considérés sont supposés implicitement
mesurables et intégrables. La plus grande généralité est obtenue avec la mesure et
l'intégrale de Borel-Lebesgue, mais la mesure et l'intégrale de Riemann-Jordan
fournissent déjà tous les ensembles et fonctions utiles dans les applications. On peut dans
ce cas se dispenser de faire appel à la propriété d'additivité dênombrable.
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^
j/(x) =^z ^ f/(*) jf(x +1) i x/a+z)

xe-R" ~zsZn "JeC + z" ~?eZrc *£C "JeC ~zzZn

c'est-à-dire

JfCx) =J/*(x) (1)
xeRn xzC

avec

r-cx) =jjfCxVz).
zsZn

Supposons que / (x) soit la fonction caractéristique d'un
ensemble A (c'est-à-dire la fonction égale à 1 en tout point de A
et nulle en dehors de ^4), alors:

J mes (A) et /*(x) nbre (04n(x+Z")) nbre ((A -x)nZ")
xeRn

(nbre V) désigne le nombre de points de l'ensemble V).
Disons que A est irréductible par rapport à Z", si x s A^x' eA

et x — x' e Zn entraînent x x', une propriété équivalente est que
la famille d'ensembles (A+~z,~z s Zn) forme un empilement, c'est
à-dire A-j-~z et A-\-~z' n'ont pas d'élément commun si ~z e Zn

z' eZn,~z ^ ~zr c'est encore équivalent au fait que /* (x) ^ 1 quel
que soit x si?"; il en résulte mes (4) J /* (x) ^ 1 (puisque

xeG

mes (C) 1), on peut même préciser mes (^4) < 1, si A est borné
fermé.

Revenons à la fonction / générale. Comme mes (C) ~ 1

Borne inf. /* (x) ^ J/* J/ ^ Borne sup. /* (x)
c Rn

Il en résulte l'existence de a s Rn tel que /* (a) ^ J/ et de
Rn

b s Rn tel que /* (b) J/. Si / est la fonction caractéristique de
Rn

l'ensemble A, on a donc nbre (A —a) ^ mes (A), nbre (^4 — b)

^ mes (A),
Si T est une transformation linéaire inversible de i?n, elle

multiplie la mesure des ensembles par le coefficient | dét (T) |

G T (Zn) est le réseau engendré par les n vecteurs u1 T Çe

~un T (e„), (où les~Cj sont les vecteurs-unités sur les.axes),
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on pose dét (G) | dét (T) | mesure (P) où P est un domaine

fondamental de Rn modulo G, par exemple P est le parallèlotope
formé par les x Yj 0 ù < résultat obtenu ci-dessus

pour le réseau Zn se traduit pour un réseau quelconque G

de Rn, par l'énoncé que nous appellerons Théorème de Minkowski-
Blichfeldt :

Si A est un ensemble et G un réseau de Rn

mes (4) J nbre ((A + ~x) n G)
xeP

autrement dit la valeur moyenne de nbre ((A + x) n G) est égale
à mes (A)/dét (G). En particulier il existe ~a tel que

nbre ((A + a) n G) ^ mes (A)/dét G et il existe b tel que

nbre ((A +b) n G) ^ mes (A)/dét G.

Si A est irréductible par rapport à G, ou, ce qui revient au
même, si la famille des ensembles (A -f ~g, ~g s G) est un empilement
mes (A) ^ det G. Si en outre A est borné fermé, on a mes (A) < 1.

IV. Applications aux formes quadratiques définies
POSITIVES ET AUX APPROXIMATIONS DIOPHANTIENNES

LINÉAIRES.

Considérons dans Rn la boule de rayon unité centrée à l'origine
et ouverte, B: t\ + t\ + Û < i et soit Qn sa mesure. Nous
noterons Br celle de rayon r: t\ + t\ + ••• + Û < r2-

Soit G un réseau de Rn. Pour que G n Br se réduise à l'origine,
il faut et il suffit que Brj2 soit irréductible par rapport à G, autrement

dit que les (Br/2 + !/, ~9 6 G) forment un empilement. On a
rn

donc alors mes (Brj2) ^ dét G, c'est-à-dire — Qn ^ dét G. Si donc

m est un point de G (autre que l'origine) ayant la distance minima
à l'origine

|m|2 ^ 4(dét (G))2/02/n

La constante d'Hermite satisfait donc à

7n ^ 4!Ql'n
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