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II. Formes a deux variables.

Démontrons l'énoncé (C), dû à Lagrange. On considère

d'abord une forme définie positive (à coefficients réels). On peut
la décomposer en somme de carrés

/(*> jO xui+ yv i)2 + (xu2 + yv2)2 M + yv I2

(avec u (ziq, n2), ~v (%, v2)* | | note la distance à l'origine).

Le discriminant de / est A ac—b2 ^dét

Il s'agit de majorer le minimum [i de la distance de l'origine
aux autres points du « réseau » G des points xu+yv (x, y entiers).
Soit m un point de G réalisant ce minimum, m' un point de G

formant avec m une « base » du groupe additif G et situé le

plus près possible de l'origine. Des considérations géométriques
élémentaires1) montrent qu'on a (<•, •> désignant le produit
scalaire, et • a • le produit vectoriel) :

2
|m|4

(< m, m >) <

dét ml5
+3»<DII uu vt V-"\ m2 u2, v2 /

< m, mf >)2 |m Am'|2
et \m \ + —,->,2\m\ \m\

I ffi A
donc |m|2 x |m'|2< ——h A

et finalement

|m|4 < |m|2 x |m'|2 < ~A

ce qui est dans le cas des formes définies le résultat à démontrer.
La majoration est alors la meilleure possible comme on voit en
utilisant

ui, vt
u2, V2

Le lecteur est prié de faire la figure.
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u (1,0) et v j-, "yj> qur correspond à la forme

y\2 3 2
^ + - y2 x2 + xy + j2 pour laquelle ^ 1 et A -

Si maintenant g (x, y) est une forme indéfinie, décomposons
la en différence de deux carrés g (x, y) (xu± -f yvx)2
— + 2/e2)2, I g (a;, y) | est majoré par la forme définie
ffa y) =* (^i + 2/^i)2 + [xu2 + ?/e2)2, et | discr (g) | discr (/),
ce qui démontre (G) pour les formes indéfinies. Si nous utilisons
toutes les décompositions de g en différence de deux carrés, il
en résulte que l'inégalité de (G) a, pour les formes indéfinies, une
infinité de solutions en entiers x, y, résultat suffisant pour obtenir
aisément la démonstration de (B), comme nous avons vu plus
haut.

Il serait tentant de démontrer précisément l'énoncé (G7) avec
1

le coefficient optimum - par le même type de méthode

géométrique élémentaire. Nous y renonçons faute de temps.

III. Formes à n variables: la méthode
de Minkowski.

De tels calculs deviennent plus compliqués dans R3 (Gauss
a trouvé le coefficient optimum pour les formes quadratiques
définies à trois variables) et vraiment difficiles pour les dimensions

supérieures. En renonçant à trouver la valeur exacte de la
constante optima

y„ Sup Minf(xu...,x„)/(discrim(f))11"
f Xi

(xt entiers non tous nuls, / forme quadratique définie positive),
Hermite a pu démontrer que yn était finie, et plus précisément
que

/4\n('î— i )/4*

s (3)

par un raisonnement récurrent.
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