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II. FORMES A DEUX VARIABLES.

Démontrons 1’énoncé (C), dit & Lacrance. On considére
d’abord une forme définie positive (& coefficients réels). On peut
la décomposer en somme de carrés

f(x,9) = (xug + yv)? + (xuy + yvp)? = [xu + yo[?

(avec u = (uy, u,), 0= (U5, vy); | | note la distance a Porigine).

>2
Il s’agit de majorer le minimum u de la distance de I’origine
aux autres points du « réseau » G des points xu +y o (x, y entiers).
Soit m un point de G réalisant ce minimum, m’ un point de G
formant avec m une « base» du groupe additif G et situé le
plus pres possible de I'origine. Des considérations géométriques

élémentaires ') montrent qu'on a (<-, -> désignant le produit
scalaire, et - A - le produit vectoriel):

Le discriminant de f est 4 = ac—b* = <dét “10 01

u2a 7)2

m|*
(< >y <
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Or |mam')? = (det|™ ™) = (a6t |“ 1)) = 4
My, My Uy, Uy ’
- > - —
<m, m'>)? mAm'|?
et lr_;lIIZ:( ,—>2 )+| —>2|
[m| |m|
14
m
donc m]? x |[m'|>< | 4‘ +4,
et finalement
N 4
Im|* < |m|* x |m'|? <§A ,

ce qui est dans le cas des formes définies le résultat & démontrer.
La majoration est alors la meilleure possible comme on voit en
utilisant

1) Le lecteur est prié de faire la figure.
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u =(1,0) et v = {5’ \/7}, ce qui” correspond a la forme

2 4

Si maintenant g (z, y) est une forme indéfinie, décomposons
la en différence de deux carrés g (v, y) = (vu, + yvq)?
— (2uy + y95)?, | g (x,y)| est majoré par la forme définie
f(x,y) = (zuy + yo1)® + (zuy + yo,)?, et | diser (g) | = diser (f),
ce qui démontre (C) pour les formes indéfinies. Si nous utilisons
toutes les décompositions de g en différence de deux carrés, il
en résulte que I'inégalité de (C) a, pour les formes indéfinies, une
infinité de solutions en entiers z, y, résultat suffisant pour obtenir
aisément la démonstration de (B), comme nous avons vu plus
haut. |
Il serait tentant de démontrer précisément I’énoncé (C') avec

y\? 3 | c 3
'(x+—> + - y? =x2+xy+y2p0urlaquelleu:1etAZZ.

le coefficient optimumg, par le méme type de méthode géo-

métrique élémentaire. Nous y renoncons faute de temps.

III. FORMES & n VARIABLES: LA METHODE
| DE MINKOWSKI.

De tels calculs deviennent plus compliqués dans R3 (Gauss
a trouvé le coefficient optimum pour les formes quadratiques
définies & trois variables) et vraiment difficiles pour les dimen-
sions supérieures. En renongant a trouver la valeur exacte de la
constante optima

Yo = Sup Min £ (x,, ..., x,)/(diserim (f)"/"
. f »

xi

L

(z; entiers non tous nuls, f forme quadratique déﬁnie. positive),
- HeErMITE a pu démontrer que y, était finie, et plus précisément

’ 4 n(n—1)/4
< | -—
5()

par un raisonnement récurrent.
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