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INTRODUCTION A LA GEOMETRIE DES NOMBRESY)

par Claude CHABAUTY

I. ROLE DES NOTIONS GEOMETRIQUES
DANS LES PROBLEMES D’ARITHMETIQUE.

Considérons les énoncés suivants:

(A). Sideux entiers sont chacun somme de deux carrés d’entiers,
leur produit est aussi somme de deux carrés d’entiers.

(B). Soit d un nombre naturel non carré, I'équation 2 — dy? = 1
admet une infinité de solutions en entiers z, ¥.

(C). Soit ax? 4 2bxy + cy® une forme quadratique [& coefli-
cients entiers], il existe un systeme d’entiers z, y, non tous
deux nuls tels que

4
(ax? + 2bxy + cy?)?* < 3 lac —b?| .

(D). Soit 0 un nombre réel, il existe une infinité d’entiers x, vy,
y # 0, tels que
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Les énoncés (A) et (B) sont purement algébriques (c’est-
a-dire ne font intervenir que les lois de composition + et X de
Ianneau des entiers). L’énoncé (D), & 'opposé, a visiblement un
caractére géométrique, puisqu’il fait intervenir le continu des
nombres réels, mais ’énoncé (C) aussi, car 1l s’agit de démontrer
une inégalité, c¢’est-a-dire une relation d’ordre, et non une rela-
tion algébrique. En outre, il s’agit en fait dans (G) d’une pro-
priété valable pour les formes quadratiques binaires, a coeffi-
cients réels quelconques, et se restreindre aux coefficients entiers

1) Exposé fait durant les Journées mathématiques, organisées par la Société
mathématique de France, & Grenoble, mai 1960.
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ne simplifie en rien la démonstration. Remarquons que si on
suppose la forme indéfinie on peut alors montrer que le coeffi-

cient 3 peut étre remplacé par le coefficient 5 et que l'inégalité

a une infinité de solutions entieres. Il est clair que ’énoncé (D)
est alors un corollaire de ce résultat sur les formes indéfinies
que nous noterons (C’), puisque le discriminant de y (z — Oy)

1
est ——.
4

D’autre part, appliquons 4 la forme & coefficients entiers
2% — dy? de (B), I'énoncé (C’). Il nous assure immédiatement
I'existence d’un entier 2, o # 0 parce que d n’est pas carré, tel
que I’équation 2% — dy? = h ait une infinité de solutions en
entiers z, y. Or un calcul élémentaire 1) permet de construire a
partir de telles solutions avec z = 2’ (mod &), ¥y = y' (mod 7),
- une solution en entiers & 2% — dy? = 1.

L’énoncé algébrique (B) a donc une démonstration basée sur
un énonceé (C') & caractere géométrique et en fait ¢’est la démons-
tration la plus naturelle et la plus classique, & des variantes pres.

4 1 \
(La valeur de la constante,—g, ou o, dans (CG’) n’a pas d’im-

portance pour cette démonstration de (B), ce qui compte c’est
qu’il y ait une constante pour laquelle I'inégalité alt une infinité
de solutions entieres.) |

Par contre, I’énoncé algébrique (A) a évidemment sa démons-
tration la plus simple et la plus naturelle & partir de I'identité
bien connue: (u%+¢?) (u'24¢'%) = (uu’'+v0’)24(ue’ — ou’)% Pour
certains énoncés algébriques, il y a la possibilité de démonstra-
tions algébriques et de démonstrations géométriques.

Dans cet exposé nous nous intéresserons aux problémes
d’arithmétique a caractére géométrique. On vient de voir sur
un exemple 2) que le champ de leurs applications comprend
certains problémes d’arithmétique dont I’énoncé a un caractére
algébrique.

1) L’équation (x+yV/ d) (X+ YV d) = x’+v’V/ d définit des entiers X. Y avec
X2 —dY2 = 1.

2) Plusieurs des théorémes de base de la Théorie des Nombres algéhriques ont été
obtenus ainsi. Voir, par exemple, A. CHATELET: Introducizon a la théorie des mombres
algébriques, ol I’aspect géométrlque est souligné,
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