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INTRODUCTION A LA GÉOMÉTRIE DES NOMBRES1)

par Claude Chabauty

I. Rôle des notions géométriques
DANS LES PROBLÈMES D'ARITHMÉTIQUE.

Considérons les énoncés suivants:

(A). Si deux entiers sont chacun somme de deux carrés d'entiers,
leur produit est aussi somme de deux carrés d'entiers.

(B). Soit d un nombre naturel non carré, l'équation x2 — dy2 1

admet une infinité de solutions en entiers x, y.

(C). Soit ax2 + 2bxy + cy2 une forme quadratique [à coeffi¬

cients entiers], il existe un système d'entiers x, y, non tous
deux nuls tels que

4
(<ax2 + 2bxy -h cy2)2 ^ - \ac - b2 |

(D). Soit 9 un nombre réel, il existe une infinité d'entiers x, y,
y 7^0, tels que

1

• V5y2

Les énoncés (A) et (B) sont purement algébriques (c'est-
à-dire ne font intervenir que les lois de composition + et X de

l'anneau des entiers). L'énoncé (D), à l'opposé, a visiblement un
caractère géométrique, puisqu'il fait intervenir le continu des

nombres réels, mais l'énoncé (C) aussi, car il s'agit de démontrer
une inégalité, c'est-à-dire une relation d'ordre, et non une relation

algébrique. En outre, il s'agit en fait dans (C) d'une
propriété valable pour les formes quadratiques binaires, à coefficients

réels quelconques, et se restreindre aux coefficients entiers

i) Exposé fait durant les Journées mathématiques, organisées par la Société
mathématique de France, à Grenoble, mai 1960.
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ne simplifie en rien la démonstration. Remarquons que si on

suppose la forme indéfinie on peut alors montrer que le coefïï-
4 4

cient - peut être remplacé par le coefficient -, et que l'inégalité

a une infinité de solutions entières. Il est clair que l'énoncé (D)
est alors un corollaire de ce résultat sur les formes indéfinies

que nous noterons (C), puisque le discriminant de y (x—Oy)
1

est
4

D'autre part, appliquons à la forme à coefficients entiers
x2 — dy2 de (B), l'énoncé (C'). Il nous assure immédiatement
l'existence d'un entier A, A ^ 0 parce que d n'est pas carré, tel
que l'équation x2 — dy2 — A ait une infinité de solutions en
entiers x, y. Or un calcul élémentaire x) permet de construire à

partir de telles solutions avec x x' (mod A), y y' (mod A),

une solution en entiers à x2 — dy2 1.

L'énoncé algébrique (B) a donc une démonstration basée sur
un énoncé (C') à caractère géométrique et en fait c'est la démonstration

la plus naturelle et la plus classique, à des variantes près.
4 1

(La valeur de la constante,-, dans (C') n'a pas

d'importance pour cette démonstration de (B), ce qui compte c'est

qu'il y ait une constante pour laquelle l'inégalité ait une infinité
de solutions entières.)

Par contre, l'énoncé algébrique (A) a évidemment sa démonstration

la plus simple et la plus naturelle à partir de l'identité
bien connue: (&2+e2) (iï2jrv'2) (uu'+vv')2+(uv'— vu')2. Pour
certains énoncés algébriques, il y a la possibilité de démonstrations

algébriques et de démonstrations géométriques.
Dans cet exposé nous nous intéresserons aux problèmes

d'arithmétique à caractère géométrique. On vient de voir sur
un exemple2) que le champ de leurs applications comprend
certains problèmes d'arithmétique dont l'énoncé a un caractère

algébrique.

1) L'équation (x+y\/d) (X+ Y^/h) — x'+y'^d définit des entiers X. Y avec
V2 —dY2 l.

2) Plusieurs des théorèmes de base de la Théorie des Nombres algébriques ont été
obtenus ainsi. Voir, par exemple, A. Chatelet: Introduction à la théorie des nombres
algébriques, où l'aspect géométrique est souligné.


	I. RÔLE DES NOTIONS GEOMETRIQUES DANS LES PROBLÈMES D'ARITHMETIQUE,

