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INTRODUCTION A LA GEOMETRIE DES NOMBRESY)

par Claude CHABAUTY

I. ROLE DES NOTIONS GEOMETRIQUES
DANS LES PROBLEMES D’ARITHMETIQUE.

Considérons les énoncés suivants:

(A). Sideux entiers sont chacun somme de deux carrés d’entiers,
leur produit est aussi somme de deux carrés d’entiers.

(B). Soit d un nombre naturel non carré, I'équation 2 — dy? = 1
admet une infinité de solutions en entiers z, ¥.

(C). Soit ax? 4 2bxy + cy® une forme quadratique [& coefli-
cients entiers], il existe un systeme d’entiers z, y, non tous
deux nuls tels que

4
(ax? + 2bxy + cy?)?* < 3 lac —b?| .

(D). Soit 0 un nombre réel, il existe une infinité d’entiers x, vy,
y # 0, tels que

X 1
0——| £ —— .
y| T /52

Les énoncés (A) et (B) sont purement algébriques (c’est-
a-dire ne font intervenir que les lois de composition + et X de
Ianneau des entiers). L’énoncé (D), & 'opposé, a visiblement un
caractére géométrique, puisqu’il fait intervenir le continu des
nombres réels, mais ’énoncé (C) aussi, car 1l s’agit de démontrer
une inégalité, c¢’est-a-dire une relation d’ordre, et non une rela-
tion algébrique. En outre, il s’agit en fait dans (G) d’une pro-
priété valable pour les formes quadratiques binaires, a coeffi-
cients réels quelconques, et se restreindre aux coefficients entiers

1) Exposé fait durant les Journées mathématiques, organisées par la Société
mathématique de France, & Grenoble, mai 1960.
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ne simplifie en rien la démonstration. Remarquons que si on
suppose la forme indéfinie on peut alors montrer que le coeffi-

cient 3 peut étre remplacé par le coefficient 5 et que l'inégalité

a une infinité de solutions entieres. Il est clair que ’énoncé (D)
est alors un corollaire de ce résultat sur les formes indéfinies
que nous noterons (C’), puisque le discriminant de y (z — Oy)

1
est ——.
4

D’autre part, appliquons 4 la forme & coefficients entiers
2% — dy? de (B), I'énoncé (C’). Il nous assure immédiatement
I'existence d’un entier 2, o # 0 parce que d n’est pas carré, tel
que I’équation 2% — dy? = h ait une infinité de solutions en
entiers z, y. Or un calcul élémentaire 1) permet de construire a
partir de telles solutions avec z = 2’ (mod &), ¥y = y' (mod 7),
- une solution en entiers & 2% — dy? = 1.

L’énoncé algébrique (B) a donc une démonstration basée sur
un énonceé (C') & caractere géométrique et en fait ¢’est la démons-
tration la plus naturelle et la plus classique, & des variantes pres.

4 1 \
(La valeur de la constante,—g, ou o, dans (CG’) n’a pas d’im-

portance pour cette démonstration de (B), ce qui compte c’est
qu’il y ait une constante pour laquelle I'inégalité alt une infinité
de solutions entieres.) |

Par contre, I’énoncé algébrique (A) a évidemment sa démons-
tration la plus simple et la plus naturelle & partir de I'identité
bien connue: (u%+¢?) (u'24¢'%) = (uu’'+v0’)24(ue’ — ou’)% Pour
certains énoncés algébriques, il y a la possibilité de démonstra-
tions algébriques et de démonstrations géométriques.

Dans cet exposé nous nous intéresserons aux problémes
d’arithmétique a caractére géométrique. On vient de voir sur
un exemple 2) que le champ de leurs applications comprend
certains problémes d’arithmétique dont I’énoncé a un caractére
algébrique.

1) L’équation (x+yV/ d) (X+ YV d) = x’+v’V/ d définit des entiers X. Y avec
X2 —dY2 = 1.

2) Plusieurs des théorémes de base de la Théorie des Nombres algéhriques ont été
obtenus ainsi. Voir, par exemple, A. CHATELET: Introducizon a la théorie des mombres
algébriques, ol I’aspect géométrlque est souligné,
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II. FORMES A DEUX VARIABLES.

Démontrons 1’énoncé (C), dit & Lacrance. On considére
d’abord une forme définie positive (& coefficients réels). On peut
la décomposer en somme de carrés

f(x,9) = (xug + yv)? + (xuy + yvp)? = [xu + yo[?

(avec u = (uy, u,), 0= (U5, vy); | | note la distance a Porigine).

>2
Il s’agit de majorer le minimum u de la distance de I’origine
aux autres points du « réseau » G des points xu +y o (x, y entiers).
Soit m un point de G réalisant ce minimum, m’ un point de G
formant avec m une « base» du groupe additif G et situé le
plus pres possible de I'origine. Des considérations géométriques

élémentaires ') montrent qu'on a (<-, -> désignant le produit
scalaire, et - A - le produit vectoriel):

Le discriminant de f est 4 = ac—b* = <dét “10 01

u2a 7)2

m|*
(< >y <
’ 2 2
Or |mam')? = (det|™ ™) = (a6t |“ 1)) = 4
My, My Uy, Uy ’
- > - —
<m, m'>)? mAm'|?
et lr_;lIIZ:( ,—>2 )+| —>2|
[m| |m|
14
m
donc m]? x |[m'|>< | 4‘ +4,
et finalement
N 4
Im|* < |m|* x |m'|? <§A ,

ce qui est dans le cas des formes définies le résultat & démontrer.
La majoration est alors la meilleure possible comme on voit en
utilisant

1) Le lecteur est prié de faire la figure.




IAA C. CHABAUTY

L L (1 43 . |
u =(1,0) et v = {5’ \/7}, ce qui” correspond a la forme

2 4

Si maintenant g (z, y) est une forme indéfinie, décomposons
la en différence de deux carrés g (v, y) = (vu, + yvq)?
— (2uy + y95)?, | g (x,y)| est majoré par la forme définie
f(x,y) = (zuy + yo1)® + (zuy + yo,)?, et | diser (g) | = diser (f),
ce qui démontre (C) pour les formes indéfinies. Si nous utilisons
toutes les décompositions de g en différence de deux carrés, il
en résulte que I'inégalité de (C) a, pour les formes indéfinies, une
infinité de solutions en entiers z, y, résultat suffisant pour obtenir
aisément la démonstration de (B), comme nous avons vu plus
haut. |
Il serait tentant de démontrer précisément I’énoncé (C') avec

y\? 3 | c 3
'(x+—> + - y? =x2+xy+y2p0urlaquelleu:1etAZZ.

le coefficient optimumg, par le méme type de méthode géo-

métrique élémentaire. Nous y renoncons faute de temps.

III. FORMES & n VARIABLES: LA METHODE
| DE MINKOWSKI.

De tels calculs deviennent plus compliqués dans R3 (Gauss
a trouvé le coefficient optimum pour les formes quadratiques
définies & trois variables) et vraiment difficiles pour les dimen-
sions supérieures. En renongant a trouver la valeur exacte de la
constante optima

Yo = Sup Min £ (x,, ..., x,)/(diserim (f)"/"
. f »

xi

L

(z; entiers non tous nuls, f forme quadratique déﬁnie. positive),
- HeErMITE a pu démontrer que y, était finie, et plus précisément

’ 4 n(n—1)/4
< | -—
5()

par un raisonnement récurrent.
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Nous appelerons y, la constante d’Hermite (de la dimen-
sion n). ,

La méthode d’attaque de ce probléeme a été complétement
renouvelée par MIiNkOwSKI qui a montré tout le parti qu’on
pouvait tirer de la considération de la mesure (aire pour n = 2,
volume pour n = 3, ...) des figures associées aux formes étudiées.

Il n’est pas plus difficile d’établir une théorie correcte de la
mesure dans Pespace & n dimension R” que celle de ’aire dans A2,
du volume dans R3. Ce que nous devons supposer établi, ¢’est que
pour une large classe d’ensembles X de R"” on a pu leur associer
un nombre qu’on notera mes (X) qui est = 0 et éventuellement
+ oo tel que mes (X U Y) = mesure (X) + mes (¥)si X et ¥V
sont sans point commun, mes (C) = 1 pour le « cube» unité

défini par 0 £ z; < 1,...,0 =z, < 1, et qui est invariant par
translation: mes (X-Fa) = mes (X). L’intégration des fonctions
f(x)=f(zy,...,2,) sen suit en définissant [f & 1'aide de la

mesure dans R""* du domaine associé & f (comme 'intégrale des
fonctions positives d’une variable se définit a ’aide de I’aire du
domaine associé). Alors st X et Y sont des domaines mesurables
sans point commun

[f=]7/+]f.
XuY X Y

I1 est commode de supposer qu’il a été démontré que la mesure
et l'intégrale sont des fonctions dénombrablement additives
d’ensembles, c’est-a-dire que

mes (U X,) = Y mes (X,) i{f = Z);f
quand les X, sont deux a deux disjoints 1).

Désignons par Z" le réseau de tous les points & coordonnées
entiéres, alors les cubes (C4z, z ¢ Z"), translatés du cube-unité C,
0 < 2; < 1 forment une partition de R" (c’est-a-dire sont dis-
joints deux & deux et leur réunion est R"). On a donc alors pour
une fonction f (%) = f (2, ..., ,) = O: |

1) Dans la suite, les ensembles et les fonctions considérés sont supposés implicitement
mesurables et intégrables. La plus grande généralité est obtenue avec la mesure et 1’in-
tégrale de Borel-Lebesgue, mais la mesure et l'intégrale de Riemann-Jordan four-
nissent déja tous les ensembles et fonctions utiles dans les applications. On peut dans
ce cas se dispenser de faire appel 4 la propriété d’additivité dénombrable.
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[fG) = DINRNICED) If(x+z) - | YIG+2)

xaRn eZn st+z vaZn st stn

¢’est-a-dire

If(X) = If*(x) (D

xeRn xaC

avec

I*G) = SSG+3).

—_
zedn

Supposons que f (x) soit la fonction caractéristique d’un
ensemble A (c’est-a-dire la fonction égale & 1 en tout point de A
et nulle en dehors de A), alors:

j = mes (A4) et f*(x) = nbre (An(x+2Z") = nbre ((A —?)me’)

—
xeRn

(nbre (V) désigne le nombre de points de I’ensemble V).

" Disons que A est irréductible par rapport & Z", si x e A,x" ¢ A
et x — x’ & Z" entrainent x = X', une propriété équivalente est que
la famille d’ensembles (4 + z, z ¢ Z") forme un empilement, c’est
a-dire A+7z et A+7Z' n'ont pas d’élément commun si Z ¢ Z"
z'eZ", z # z' ¢’est encore équivalent au fait que f* (x) < 1 quel
que soit x ¢ R"; il en résulte mes (4) = [ f*(X) =< 1 (puisque

xeG '
mes (C) = 1), on peut méme préciser mes (A) < 1, si A est borné
fermé. ,
Revenons a la fonction f générale. Comme mes (C) = 1

Borne inf. f* (z) < [f* f < Borne sup. /* (z) .
c :

Rn.

Il en résulte 'existence de a ¢ R" tel que f* (a) < [f et de
. o

b e R" tel que f* (bj > (. Sif est la fonction caractéristique de
. n R
Iensemble A, on a donc nbre (4 —a) < mes (4), nbre (4 —b)
> mes (4). o

Si T est une transformation linéaire inversible de R", elle
multiplie la mesure des ensembles par le coefficient [dét (7) |,
G = T (Z") est le résean engendré par les n vecteurs u; = T (¢;),

oo, U, = T (e,), (001 les e; sont les vecteurs-unités sur les axes),
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on pose dét (G) = | dét (T') | = mesure (P) ou P est un domaine
fondamental de R" modulo G, par exemple P est le parallélotope
formé par les X = Y t; u;, 0 < ¢; < 1, et le résultat obtenu ci-des-
sus pour le réseau Z" se traduit pour un réseau quelconque G
de R", par ’énoncé que nous appellerons Théoréme de Minkowski-
Blichfeldt :

Si A est un ensemble et G un réseau de R"

mes (4) = [ nbre (4+x) N G)
xeP
autrement dit la valeur moyenne de nbre ((44-x) N G) est égale
a mes (A)/dét (G). En particulier il existe a tel que

nbre (4 +a) n G) = mes (4)/dét G et il existe b tel que
nbre (4 +b) N G) = mes (4)/dét G.

Si A est irréductible par rapport a G, ou, ce qui revient au
méme, si la famille des ensembles (A -+ ¢, g & G) est un empilement
mes (A) < det G. Sien outre A est borné fermé, on a mes (4) < 1.

IV. APPLICATIONS AUX FORMES QUADRATIQUES DEFINIES
POSITIVES ET AUX APPROXIMATIONS DIOPHANTIENNES
LINEAIRES.

Considérons dans /2" la boule de rayon unité centrée a I'origine
et ouverte, B: 13 415 + ... + &2 < 1 et soit Q, sa mesure. Nous
noterons B, celle de rayon r: t7 + &3 + ... + 2 < r2.

Soit G un réseau de R". Pour que G n B, se réduise & Porigine,
il faut et il suffit que B,,, soit irréductible par rapport & G, autre-
ment dit que les (B,,, + ¢, g ¢ G) forment un empilement. On a

n

donc alors mes (B,,,) < dét G, c’est-a-dire -;—n Q, < dét G. Sidone

m est un point de G (autre que ’origine) ayant la distance minima
a lorigine -
Im|* < 4(dét (G))*/ Q" .

La constante d’Hermite satisfait donc a

e S 4/Q2"
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Si I'on remarque que la boule-unité ¥ ¢7 < 1 contient le cube
|2y | < 4Jn, . | @ | < 1]/n de cbté 2/\/n, dont la mesure
est 2"/n"?, il v1ent Q, > 2"/n"? et par conséquent,

Ve < K.

On a naturellement un résultat un peu plus fort en utilisant la
valeur exacte de Q, qui est donnée, a partir des valeurs bien
connues @, = 2, Q, = 7, par la formule de récurrence
Q, = 2nQ,_,/n. En particulier on peut écrire:

Y, = (1 4+ e(n))2n/ne, avec lim &(n) =

n

On voit le progres fait depuis la premiére majoration d’Her-
mite. Celle-ci donne la valeur exacte de y pour n = 2, mais
devient beaucoup moins bonne que celle de Minkowski pour
n grand. Mais en outre la majoration, de Minkowski a été obtenue
par une méthode de portée trés générale et qui s’applique non seule-
ment aux boules mais a toute jauge. Nous appelons ainsi tout

ensemble J convexe (ae¢J, b J entraine que le segment
joignant a et b est dans J), et symétrique par rapport a
lorigine 1).

Pour une jauge J et un réseau G de R", la propriété que
J N G se réduise a I'origine équivaut encore a: % J irréductible
par rapport a G 2), ou encore que les ensembles (3 J-+9¢,9 ¢ G)
forment un empilement, et par conséquent entraine mes (J)
< 2" dét (G) et mes (J) < 2" dét G si J bornée fermée. C’est le
théoréme de Minkowskt sur les jauges.

Considérons par exemple un systéme de formes linéaires
indépendantes & coefficients réels: a;; 1 + ... + a1, Tpy oooy
Ap1 Xy + oo + Ay Ty, €1 soit D = | dét | @;; ||. Siles ¢; sont des
constantes > 0 telles que t; Xty X...Xt, = D, le domaine H de
R" défini par les n inégalités ‘

1) En général, on met dans les propriétés qui définissent les jauges, celles d’étre
un ensemble borné et d’avoir ’origine comme point intérieur. Ces conditions sont bien
vérifiées dans les exemples que nous considérons.

2) ¥+ A désigne ’ensemble homothétique de 1’ensemble A par rapport & l’origine
et dans le rapport Y.
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------------

est un parallelotope fermé de mesure 2". Donc il contient un
point du réseau Z" différent de l'origine. Autrement dit les
inégalités admettent au moins une solution en entiers xy, ..., Z,,
non tous nuls. C’est le théoréeme de Minkowski sur les formes
linéaires. Corollaire: le produit des valeurs absolues des formes
est < D pour une infinité de systéemes d’entiers zy, ..., ,.

En spécialisant les formes et les coefficients, on obtient le.
Théoréme  fondamental des approximations diophantiennes
linéaires :

Pour tout # > 1, les inégalités

X1 =C1,1 1 —. —Cy ,y,| S 1/¢4/?

lxp_cp,l yl—---_cp,qu] < l/tq/p
il Sty St

ont au moins une solution en entiers x, ..., Z,, Yy, ..., Yy, les y;
étant non tous nuls.

j Par exemple, pour p =1, ¢ = 1, on a un théoréme qu’on
! peut écrire: pour tout nombre 0 réel et toute constante ¢ > 1
les inégalités

|
| 1 :
? ly9——x|<;, O<y=t,
| ont au moins une solution en entiers z, y, et par conséquent
I'inégalité |
X 1
10— -] = >
y

a une infinité de solutions en entiers z, y, avec y # 0. C’est un
énoncé voisin de I’énoncé (D), moins fort par le coefficient numé-

rique (1 au lieu'de 1 /\/g), plus fort par la présence du parameétre ¢.
Remarquons que si la fonction

f(xla "'axn) |

= (a; 1%+ ...+ AfpXy) X oo X (a,,,1 X1t e+ Gy X,)

L’Enseignement mathém., t. VIII, fasc. 1-2. 4
i -
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a ses coefficients entiers, mais est rationnellement indécom-
posable (les a;; sont donc des nombres algébriques) et si
f(1,0,..,0) =1 le théoréeme du produit montre que pour un
entier & # 0.convenable I’équation f (z, ..:, 2,) = & a une infi-
nité de solutions en entiers x, ..., z,. Si en outre f (1, 0, ..., 0) = 1
‘on peut déduire de deux solutions entiéres congrues mod £,
une solution de f (x4, ..., x,) = 1 qui a ainsi une infinité de
solutions. C’est la généralisation & n variables du résultat (B)-
sur I’équation de Pell-Fermat ).

V. DENSITE D'EMPILEMENT DE SPHERES:
LE RESULTAT DE BLICHFELDT.

Mais revenons aux formes quadratiques définies. Le résultat
de Minkowski, y, £ n, qui surprit tous ses contemporains par la
simplicité et la généralité de la méthode de majoration utilisée,
n’est en fait que la traduction du résultat intuitif que, dans
un empilement (4 4+ g, ge G) le quotient de l'espace occupé
par l'empilement & l'espace total est < 1. Tel quel bien
entendu 1’énoncé n’est pas correct puisque l’espace entier
et I'espace occupé par l'empilement sont infinis; il faut se
restreindre & un domaine |z, | = [, ..., |z, | = [, et étudier ce
qui se passe quand [ croit indéfiniment. On obtient alors comme
limite du quotient, que nous appellerons la densité de empile-
ment, mes (A)/dét G. Ne peut-on améliorer cette majoration
triviale: densité de 'empilement < 1 ? Il ne peut étre question
de ’améliorer pour un ensemble A quelconque, méme si c’est
une jauge, car si A est par exemple le cube défini par les inégalités

1 1 1 1 |
— = <Xy < =y, — = <X, < =,
2 2 2 2
’empilement (A4-g, g & Z") recouvre I’espace, & .un ensemble de
mesure nulle prés, donc la densité de 'empilement est égale a 1.

1) Comme les résultats sur I’équation de Pell sont équivalents & des résultats sur

les «unités » du corps quadratique engendré par \/ d, les résultats sur 1’équation
i (x1, ..., xn) = 1 sont équivalents & des résultats sur les unités d'un -corps de nombres
algébriques de degré n, associé & . Le cas considéré ici correspond aux corps dont tous
les coniugués sont réels. Le cas général peut étre traité 3 partir d’'une extension du
théoréme sur les formes linéaires au cas des coeflicients complexes.
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Dans le cas des boules, BLicarELDT (1914) est arrivé a un
résultat remarquable: dans l’espace d n dimensions, la densité d’un
empilement de boules (B4 g, g ¢ G) a une densité toujours
< (n+2)/2 (\/,‘Z)". Ce résultat n’a pas été trés sensiblement
amélioré depuis; par ailleurs, il ne pourrait I’étre que d’une facon
limitée, car on a démontré qu’il y a des empilements de boules de
densité = 1/27""' résultat valable d’ailleurs pour toute jauge.
(HLoawka, 1944.)

Ce dernier résultat peut s’obtenir facilement a partir d’un
théoreme de moyenne dii & MAHLER, trés analogue au théoréme
de Minkowski-Blichfeldt démontré précédemment, qui, lui,
permet de démontrer la majoration de Blichfeldt. Nous nous
contenterons de démontrer le résultat suivant: la densité des

empilements de boules est < (n41)/ \/2

On démontre d’abord par une récurrence facile que si dans
R", H est un systeme de n+2 points donnés, pour un point P
quelconque de l’espace i1l y a au moins une paire de points 4, B

de H tels que APB < n/2. (En effet, siles produits scalaires

<PX PY> XeH, YeH, X # Y, étaient tous < 0, les
projections sur lhyperplan Il perpendiculaire & PA en P (A
étant un élément arbitraire pris dans H) des points de H diffé-

rents de A, formeraient dans cet espace & n — 1 dimensions un-

systéeme H' de n+1 points distincts avec < }T)Z:’, PY' > < 0,
X' eH' Y eH X' # Y', et en itérant on aurait trois points

dlstmots LM N sur une droite passant par P et tels que < PL

—_——

PM >, < PM PN > et < PN, PL > soient tous négatifs, ce qui
est ev1demment impossible.)

Soit alors un empilement{ B+g, g ¢ G } de boules, de rayon 1
pour fixer les idées, alors les centres de deux boules distinctes
quelconques de I'empilement ont une distance = 2. I1 résulte

alors du lemme précédent qu'une boule de rayon /2 ouverte et
de centre C arbitraire (z; — ¢;)2+...4(x, — ¢,)2 < 2 ne peut
contenir plus de n+-1 centres des boules empilées, centres qui
sont les points de G. Or d’aprés le théoréme de Minkowski-
Blichfeldt on peut trouver C tel qu'une telle boule contienne un
nombre de points de G supérieur ou égal & la mesure de la boule

S N——

I I R R R R R R R o I R R I —



F!
59 | C. CHABAUTY

(c’est-a-dire (\/5)" Q,), divisé par le déterminant de G. Par
conséquent:

n+1 22y Q,dét (6),
ou encore:
densité de I'empilement = Q,/dét G < (n + 1)/(v/2)",

c’est ce que nous nous proposions de démontrer.
Traduit sur y,, cela améliore le résultat de Minkowski par un .

: T
coefficient multiplicatif ——8@

n
Y= — (14 e(m)
e
Le théoreme de Hlawka cité plus haut montre

n
VY g 5;; (1 +8(”’)) *

On voudrait bien en savoir plus, en particulier si la densité
peut étre majorée par k" avec £ < 1/\/2.

VI. CoNcLUSION.

Ces quelques exemples peuvent donner une idée de Peffica-
cité des méthodes que Minkowski a introduites en Géométrie
des nombres, ceux que nous avons donnés sont fondamentaux.
Mais la variété des problémes qui se posent est trés grande.
Pour Pétude des f (zy,...,z,) pour lesquels la figure associée
| f(zy,...,m,) | S 1 estnonbornéeet de mesure infinie, seule une
partie des problémes peut étre étudiée par les méthodes de Min-
kowski et d’autres techniques doivent &tre introduites.

I1 faut signaler pour terminer que, si dans cet exposé on a
ingisté sur des résultats trés généraux, ou le nombre de dimen-
sions de l’espace, c’est-a-dire le nombre des variables était
" indifférent, il y a encore des problémes a un petit nombre de
variables, intéressants et non résolus. Par exemple, appelant
maintenant empilement une famille d’ensembles (A-+g, g ¢ H)
disjoints deux & deux, H n’étant plus nécessairement un réseau, -
et empilement régulier, une telle famille, si H est un réseau, on
ne sait pas encore §'il n’y a pas dans I’espace & trois dimensions
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d’empilement plus «dense » que l'empilement régulier le plus
dense, qui est I’empilement « en boulet de canon », celui dont le
réseau a pour base des points formant avec I’origine un tétraedre
équilatéral (de coté 2 si les boules empilées ont le rayon 1). Une
démonstration a été donnée par Lord Kelvin, sur la foi de laquelle
physiciens et minéralogistes croient qu'un tel empilement est
impossible, mais cette démonstration est insuffisante et la ques-
tion est toujours ouverte. Par contre pour R? la question est
résolue par la négative, il n’y a pas d’empilement irrégulier, plus
dense que empilement régulier le plus dense, c’est-a-dire celui
correspondant au réseau admettant pour base deux points for-
mant avec lorigine un triangle équilatéral (de coté 2 si les
disques empilés ont le rayon 1) (cf § II)1).

On trouvera dans Koxsma [4], un résumé trées complet des
résultats jusqu’en 1936 et dans Cassers [1, 2] les principaux

- résultats classiques et les résultats récents avec leurs démons-

trations. Ce sont des ouvrages techniques, on y trouvera une
bibliographie étendue. A 'opposé, on trouvera une introduction
élémentaire et treés intéressante a la géométrie des nombres dans
plusieurs des chapitres du Harpy et WricHT [3]. Je ne connais
pas d’ouvrage d’un niveau intermédiaire.

IT est intéressant aussi de lire les exposés faits aux différents
Congres internationaux de Mathématiques sur les résultats et
les conjectures en Géométrie des nombres, par exemple celles
de Mordell au congres de 1937, celles de Davenport au congrés
de 1950 et aux congres suivants et les exposés de séminaires,
car les idées générales y sont soulignées plus que les détails tech-
niques qu’on pourra étudier ensuite.
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1) Signalons & ce propos que la majoration de Blichfeldt pour la densité d’empile-
glent de boules de R=», est valable méme si ’empilement n’est pas construit a partir
‘un réseau. '
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