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INTRODUCTION A LA GÉOMÉTRIE DES NOMBRES1)

par Claude Chabauty

I. Rôle des notions géométriques
DANS LES PROBLÈMES D'ARITHMÉTIQUE.

Considérons les énoncés suivants:

(A). Si deux entiers sont chacun somme de deux carrés d'entiers,
leur produit est aussi somme de deux carrés d'entiers.

(B). Soit d un nombre naturel non carré, l'équation x2 — dy2 1

admet une infinité de solutions en entiers x, y.

(C). Soit ax2 + 2bxy + cy2 une forme quadratique [à coeffi¬

cients entiers], il existe un système d'entiers x, y, non tous
deux nuls tels que

4
(<ax2 + 2bxy -h cy2)2 ^ - \ac - b2 |

(D). Soit 9 un nombre réel, il existe une infinité d'entiers x, y,
y 7^0, tels que

1

• V5y2

Les énoncés (A) et (B) sont purement algébriques (c'est-
à-dire ne font intervenir que les lois de composition + et X de

l'anneau des entiers). L'énoncé (D), à l'opposé, a visiblement un
caractère géométrique, puisqu'il fait intervenir le continu des

nombres réels, mais l'énoncé (C) aussi, car il s'agit de démontrer
une inégalité, c'est-à-dire une relation d'ordre, et non une relation

algébrique. En outre, il s'agit en fait dans (C) d'une
propriété valable pour les formes quadratiques binaires, à coefficients

réels quelconques, et se restreindre aux coefficients entiers

i) Exposé fait durant les Journées mathématiques, organisées par la Société
mathématique de France, à Grenoble, mai 1960.
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ne simplifie en rien la démonstration. Remarquons que si on

suppose la forme indéfinie on peut alors montrer que le coefïï-
4 4

cient - peut être remplacé par le coefficient -, et que l'inégalité

a une infinité de solutions entières. Il est clair que l'énoncé (D)
est alors un corollaire de ce résultat sur les formes indéfinies

que nous noterons (C), puisque le discriminant de y (x—Oy)
1

est
4

D'autre part, appliquons à la forme à coefficients entiers
x2 — dy2 de (B), l'énoncé (C'). Il nous assure immédiatement
l'existence d'un entier A, A ^ 0 parce que d n'est pas carré, tel
que l'équation x2 — dy2 — A ait une infinité de solutions en
entiers x, y. Or un calcul élémentaire x) permet de construire à

partir de telles solutions avec x x' (mod A), y y' (mod A),

une solution en entiers à x2 — dy2 1.

L'énoncé algébrique (B) a donc une démonstration basée sur
un énoncé (C') à caractère géométrique et en fait c'est la démonstration

la plus naturelle et la plus classique, à des variantes près.
4 1

(La valeur de la constante,-, dans (C') n'a pas

d'importance pour cette démonstration de (B), ce qui compte c'est

qu'il y ait une constante pour laquelle l'inégalité ait une infinité
de solutions entières.)

Par contre, l'énoncé algébrique (A) a évidemment sa démonstration

la plus simple et la plus naturelle à partir de l'identité
bien connue: (&2+e2) (iï2jrv'2) (uu'+vv')2+(uv'— vu')2. Pour
certains énoncés algébriques, il y a la possibilité de démonstrations

algébriques et de démonstrations géométriques.
Dans cet exposé nous nous intéresserons aux problèmes

d'arithmétique à caractère géométrique. On vient de voir sur
un exemple2) que le champ de leurs applications comprend
certains problèmes d'arithmétique dont l'énoncé a un caractère

algébrique.

1) L'équation (x+y\/d) (X+ Y^/h) — x'+y'^d définit des entiers X. Y avec
V2 —dY2 l.

2) Plusieurs des théorèmes de base de la Théorie des Nombres algébriques ont été
obtenus ainsi. Voir, par exemple, A. Chatelet: Introduction à la théorie des nombres
algébriques, où l'aspect géométrique est souligné.
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II. Formes a deux variables.

Démontrons l'énoncé (C), dû à Lagrange. On considère

d'abord une forme définie positive (à coefficients réels). On peut
la décomposer en somme de carrés

/(*> jO xui+ yv i)2 + (xu2 + yv2)2 M + yv I2

(avec u (ziq, n2), ~v (%, v2)* | | note la distance à l'origine).

Le discriminant de / est A ac—b2 ^dét

Il s'agit de majorer le minimum [i de la distance de l'origine
aux autres points du « réseau » G des points xu+yv (x, y entiers).
Soit m un point de G réalisant ce minimum, m' un point de G

formant avec m une « base » du groupe additif G et situé le

plus près possible de l'origine. Des considérations géométriques
élémentaires1) montrent qu'on a (<•, •> désignant le produit
scalaire, et • a • le produit vectoriel) :

2
|m|4

(< m, m >) <

dét ml5
+3»<DII uu vt V-"\ m2 u2, v2 /

< m, mf >)2 |m Am'|2
et \m \ + —,->,2\m\ \m\

I ffi A
donc |m|2 x |m'|2< ——h A

et finalement

|m|4 < |m|2 x |m'|2 < ~A

ce qui est dans le cas des formes définies le résultat à démontrer.
La majoration est alors la meilleure possible comme on voit en
utilisant

ui, vt
u2, V2

Le lecteur est prié de faire la figure.
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u (1,0) et v j-, "yj> qur correspond à la forme

y\2 3 2
^ + - y2 x2 + xy + j2 pour laquelle ^ 1 et A -

Si maintenant g (x, y) est une forme indéfinie, décomposons
la en différence de deux carrés g (x, y) (xu± -f yvx)2
— + 2/e2)2, I g (a;, y) | est majoré par la forme définie
ffa y) =* (^i + 2/^i)2 + [xu2 + ?/e2)2, et | discr (g) | discr (/),
ce qui démontre (G) pour les formes indéfinies. Si nous utilisons
toutes les décompositions de g en différence de deux carrés, il
en résulte que l'inégalité de (G) a, pour les formes indéfinies, une
infinité de solutions en entiers x, y, résultat suffisant pour obtenir
aisément la démonstration de (B), comme nous avons vu plus
haut.

Il serait tentant de démontrer précisément l'énoncé (G7) avec
1

le coefficient optimum - par le même type de méthode

géométrique élémentaire. Nous y renonçons faute de temps.

III. Formes à n variables: la méthode
de Minkowski.

De tels calculs deviennent plus compliqués dans R3 (Gauss
a trouvé le coefficient optimum pour les formes quadratiques
définies à trois variables) et vraiment difficiles pour les dimensions

supérieures. En renonçant à trouver la valeur exacte de la
constante optima

y„ Sup Minf(xu...,x„)/(discrim(f))11"
f Xi

(xt entiers non tous nuls, / forme quadratique définie positive),
Hermite a pu démontrer que yn était finie, et plus précisément
que

/4\n('î— i )/4*

s (3)

par un raisonnement récurrent.
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Nous appelerons % la constante d'Hermite (de la dimension

n).
La méthode d'attaque de ce problème a été complètement

renouvelée par Minkowski qui a montré tout le parti qu'on
pouvait tirer de la considération de la mesure (aire pour n — 2,

volume pour n 3, des figures associées aux formes étudiées.

Il n'est pas plus difficile d'établir une théorie correcte de la
mesure dans l'espace à n dimension Rn que celle de l'aire dans i?2,

du volume dans i?3. Ce que nous devons supposer établi, c'est que

pour une large classe d'ensembles X de Rn on a pu leur associer

un nombre qu'on notera mes (X) qui est ^ 0 et éventuellement

+ co tel que mes (X u 7) mesure (X) + mes (Y) si X et Y
sont sans point commun, mes (C) 1 pour le « cube » unité
défini par 0 ^ xx < 1, 0 g xn < 1, et qui est invariant par
translation: mes (X+a) mes (X). U intégration des fonctions
f Çx) f (x±, s'en suit en définissant J/ à l'aide de la
mesure dans Rn+1 du domaine associé à / (comme l'intégrale des

fonctions positives d'une variable se définit à l'aide de l'aire du
domaine associé). Alors si X et Y sont des domaines mesurables
sans point commun

lui X Y

Il est commode de supposer qu'il a été démontré que la mesure
et l'intégrale sont des fonctions dénombrablement additives
d'ensembles, c'est-à-dire que

mes(uX„) £mes(Jr„) J/=£J/
n n uln n Xn

quand les Xn sont deux à deux disjoints 1).

Désignons par Z" le réseau de tous les points à coordonnées
entières, alors les cubes (C+z, z sZ"), translatés du cube-unité C,
0 ^ Xi < 1 forment une partition de Rn (c'est-à-dire sont
disjoints deux à deux et leur réunion est R"). On a donc alors pour
une fonction f (x) f (aq, x„)^0:

i) Dans la' suite, les ensembles et les fonctions considérés sont supposés implicitement
mesurables et intégrables. La plus grande généralité est obtenue avec la mesure et
l'intégrale de Borel-Lebesgue, mais la mesure et l'intégrale de Riemann-Jordan
fournissent déjà tous les ensembles et fonctions utiles dans les applications. On peut dans
ce cas se dispenser de faire appel à la propriété d'additivité dênombrable.
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^
j/(x) =^z ^ f/(*) jf(x +1) i x/a+z)

xe-R" ~zsZn "JeC + z" ~?eZrc *£C "JeC ~zzZn

c'est-à-dire

JfCx) =J/*(x) (1)
xeRn xzC

avec

r-cx) =jjfCxVz).
zsZn

Supposons que / (x) soit la fonction caractéristique d'un
ensemble A (c'est-à-dire la fonction égale à 1 en tout point de A
et nulle en dehors de ^4), alors:

J mes (A) et /*(x) nbre (04n(x+Z")) nbre ((A -x)nZ")
xeRn

(nbre V) désigne le nombre de points de l'ensemble V).
Disons que A est irréductible par rapport à Z", si x s A^x' eA

et x — x' e Zn entraînent x x', une propriété équivalente est que
la famille d'ensembles (A+~z,~z s Zn) forme un empilement, c'est
à-dire A-j-~z et A-\-~z' n'ont pas d'élément commun si ~z e Zn

z' eZn,~z ^ ~zr c'est encore équivalent au fait que /* (x) ^ 1 quel
que soit x si?"; il en résulte mes (4) J /* (x) ^ 1 (puisque

xeG

mes (C) 1), on peut même préciser mes (^4) < 1, si A est borné
fermé.

Revenons à la fonction / générale. Comme mes (C) ~ 1

Borne inf. /* (x) ^ J/* J/ ^ Borne sup. /* (x)
c Rn

Il en résulte l'existence de a s Rn tel que /* (a) ^ J/ et de
Rn

b s Rn tel que /* (b) J/. Si / est la fonction caractéristique de
Rn

l'ensemble A, on a donc nbre (A —a) ^ mes (A), nbre (^4 — b)

^ mes (A),
Si T est une transformation linéaire inversible de i?n, elle

multiplie la mesure des ensembles par le coefficient | dét (T) |

G T (Zn) est le réseau engendré par les n vecteurs u1 T Çe

~un T (e„), (où les~Cj sont les vecteurs-unités sur les.axes),
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on pose dét (G) | dét (T) | mesure (P) où P est un domaine

fondamental de Rn modulo G, par exemple P est le parallèlotope
formé par les x Yj 0 ù < résultat obtenu ci-dessus

pour le réseau Zn se traduit pour un réseau quelconque G

de Rn, par l'énoncé que nous appellerons Théorème de Minkowski-
Blichfeldt :

Si A est un ensemble et G un réseau de Rn

mes (4) J nbre ((A + ~x) n G)
xeP

autrement dit la valeur moyenne de nbre ((A + x) n G) est égale
à mes (A)/dét (G). En particulier il existe ~a tel que

nbre ((A + a) n G) ^ mes (A)/dét G et il existe b tel que

nbre ((A +b) n G) ^ mes (A)/dét G.

Si A est irréductible par rapport à G, ou, ce qui revient au
même, si la famille des ensembles (A -f ~g, ~g s G) est un empilement
mes (A) ^ det G. Si en outre A est borné fermé, on a mes (A) < 1.

IV. Applications aux formes quadratiques définies
POSITIVES ET AUX APPROXIMATIONS DIOPHANTIENNES

LINÉAIRES.

Considérons dans Rn la boule de rayon unité centrée à l'origine
et ouverte, B: t\ + t\ + Û < i et soit Qn sa mesure. Nous
noterons Br celle de rayon r: t\ + t\ + ••• + Û < r2-

Soit G un réseau de Rn. Pour que G n Br se réduise à l'origine,
il faut et il suffit que Brj2 soit irréductible par rapport à G, autrement

dit que les (Br/2 + !/, ~9 6 G) forment un empilement. On a
rn

donc alors mes (Brj2) ^ dét G, c'est-à-dire — Qn ^ dét G. Si donc

m est un point de G (autre que l'origine) ayant la distance minima
à l'origine

|m|2 ^ 4(dét (G))2/02/n

La constante d'Hermite satisfait donc à

7n ^ 4!Ql'n
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Si Ton remarque que la boule-unité < 1 contient le cube
\ xi \ < •••>

\ xn\ < 1/Vn de 2/^w, dont la mesure
est 2njnn/2, il vient > 2M/ftn/2 et par conséquent

In < n

On a naturellement un résultat un peu plus fort en utilisant la
valeur exacte de Qn qui est donnée, à partir des valeurs bien
connues Q1 2, Q2 7i, par la formule de récurrence
Qn 2nQïl_2\n. En particulier on peut écrire:

yn ^ (1 + s(n)) 2nlne, avec lim s(n) 0
n

On voit le progrès fait depuis la première majoration d'Her-
mite. Celle-ci donne la valeur exacte de y pour n — 2, mais
devient beaucoup moins bonne que celle de Minkowski pour
n grand. Mais en outre la majoration, de Minkowski a été obtenue

par une méthode de portée très générale et qui s'applique non seulement

aux boules mais à toute jauge. Nous appelons ainsi tout
ensemble J convexe (a s /, b s J entraîne que le segment
joignant a et b est dans /), et symétrique par rapport à

l'origine 1).

Pour une jauge J et un réseau G de i?", la propriété que
J n G se réduise à l'origine équivaut encore à: \ J irréductible

par rapport à G2), ou encore que les ensembles (i J Jr~g,~g e G)

forment un empilement, et par conséquent entraîne mes (/)
^ 2n dét (G) et mes (J) < 2n dét G si J bornée fermée. C'est le

théorème de Minkowski sur les jauges.
Considérons par exemple un système de formes linéaires

indépendantes à coefficients réels: a1}1 xx + + aliM xni

an,î xi + ••• + an,n Xm s°if D — | dét | aifj ||. Si les ti sont des

constantes > 0 telles que t±xt2x ...Xtn D, le domaine H de

Rn défini par les n inégalités

1) En général, on met dans les propriétés qui définissent les jauges, celles d'être
un ensemble borné et d'avoir l'origine comme point intérieur. Ces conditions sont bien
vérifiées dans les exemples que nous considérons.

2) i A désigne l'ensemble homothétique de l'ensemble A par rapport à l'origine
et dans le rapport XA.
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\al,l X1 + + al,nXn\ ~ h

\an,l xl + + an,nXn\ ^ C

est un parallèlotope fermé de mesure 2". Donc il contient un
point du réseau Zn différent de l'origine. Autrement dit les

inégalités admettent au moins une solution en entiers xlf x„,
non tous nuls. C'est le théorème de Minkowski sur les formes
linéaires. Corollaire: le produit des valeurs absolues des formes
est ^ D pour une infinité de systèmes d'entiers xl7 x„.

En spécialisant les formes et les coefficients, on obtient le
Théorème fondamental des approximations diopkantiennes
linéaires :

Pour tout t > 1, les inégalités

l*i -CUiyy-...-C1:qyq\^l/t"'"

K~Cp,iyt -,..-CMyq\^1/t"'"

bil ^ t, |yq\ ^ t

ont au moins une solution en entiers xx, xp, yx, yqy les yt
étant non tous nuls.

Par exemple, pour p — 1, q 1, on a un théorème qu'on
peut écrire: pour tout nombre 6 réel et toute constante t > 1

les inégalités

\y6 — x| < j 0 <y St

ont au mbins une solution en entiers x, y, et par conséquent
l'inégalité

x 1
I

2
y y

a une infinité de solutions en entiers x, y, avec y ^ 0. C'est un
énoncé voisin de l'énoncé (D), moins fort par le coefficient numérique

(1 au lieu de l/v5), plus fort par la présence du paramètre t.
Remarquons que si la fonction

/(* i,-,xn)
(ai,i X1 + + ax>nXn) X X (an>1 xt + + an>nxn)

L'Enseignement matliém., t. VIII, fasc. 1-2. 4
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a ses coefficients entiers, mais est rationnellement indécomposable

(les dij sont donc des nombres algébriques) et si

/ (1, 0, 0) 1 le théorème du produit montre que pour un
entier h 0 convenable l'équation f (xly xn) h a une infinité

de solutions en entiers x1} xn. Si en outre / (1, 0r0) 1

on peut déduire de deux solutions entières congrues mod A,

une solution de / (xly 1 qui a ainsi une infinité de

solutions. C'est la généralisation à n variables du résultat (B)
sur l'équation de Pell-Fermat1).

V. Densité d'empilement de sphères:
LE RÉSULTAT DE BLICHFELDT.

Mais revenons aux formes quadratiques définies. Le résultat
de Minkowski, yn ^ n, qui surprit tous ses contemporains par la
simplicité et la généralité de la méthode de majoration utilisée,
n'est en fait que la traduction du résultat intuitif que, dans

un empilement (A + ~g, ~gs G) le quotient de l'espace occupé

par l'empilement à l'espace total est ^ 1. Tel quel bien
entendu l'énoncé n'est pas correct puisque l'espace entier
et l'espace occupé par l'empilement sont infinis, il faut se

restreindre à un domaine | x-, | ^ Z, \xn\ ^ Z, et étudier ce

qui se passe quand l croit indéfiniment. On obtient alors comme
limite du quotient, que nous appellerons la densité de Vempilement,

mes (^4)/dét G. Ne peut-on améliorer cette majoration
triviale: densité de l'empilement ^ 1 Il ne peut être question
de l'améliorer pour un ensemble A quelconque, même si c'est

une jauge, car si A est par exemple le cube défini par les inégalités

1111<Xi < - <Xn< ~ 5

2
1

2 2 "2
l'empilement (A+"|, ~g s Zn) recouvre l'espace, à un ensemble de

mesure nulle près, donc la densité de l'empilement est égale à 1.

i) Comme les résultats sur l'équation de Pell sont équivalents à des résultats sur
les «unités» du corps quadratique engendré par V"d, les résultats sur 3'équation

(xi, xn) 1 sont équivalents à des résultats sur les unités d'un -corps de nombres
algébriques de degré n, associé à y. Le cas considéré ici correspond aux corps dont tous
les conjugués sont réels. Le cas général peut être traité à partir d'une extension du
théorème sur les formes linéaires au cas des coefficients complexes.
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Dans le cas des boules, Blichfeldt (1914) est arrivé à un
résultat remarquable : dans Vespace à n dimensions, la densité d'un
empilement de boules g & G) a une densité toujours

^ (n+2)/2 (v/2)". Ce résultat n'a pas été très sensiblement
amélioré depuis; par ailleurs, il ne pourrait l'être que d'une façon
limitée, car on a démontré qu'il y a des empilements de boules de

densité ^ l/2~"+1, résultat valable d'ailleurs pour toute jauge.
(Hlawka, 1944.)

Ce dernier résultat peut s'obtenir facilement à partir d'un
théorème de moyenne dû à Mahler, très analogue au théorème
de Minkowski-Blichfeldt démontré précédemment, qui, lui,
permet de démontrer la majoration de Blichfeldt. Nous nous
contenterons de démontrer le résultat suivant: la densité des

empilements de boules est ^ (ra-f 1)/(V2)".
On démontre d'abord par une récurrence facile que si dans

Rn, H est un système de n+2 points donnés, pour un point P
quelconque de l'espace, il y a au moins une paire de points Àn B

de H tels que APB n/2. (En effet, si les produits scalaires

< PX, P7 >, Is E, Y s H, X =£ 7, étaient tous < 0, les

projections sur l'hyperplan II perpendiculaire à PA en P (A
étant un élément arbitraire pris dans H) des points de H différents

de A, formeraient dans cet espace à n— 1 dimensions un
système H' de n+1 points distincts avec < PX\ PYr > < 0,
X' e H', Y' s H', Xf # 7', et en itérant on aurait trois points
distincts L,M,N sur une droite passant par P et tels que < PL,
PM > < PM, PN > et < PN, PL > soient tous négatifs, ce qui
est évidemment impossible.)

Soit alors un empilement {B+~g, ~g s G} de boules, de rayon 1

pour fixer les idées, alors les centres de deux boules distinctes
quelconques de l'empilement ont une distance ^ 2. Il résulte
alors du lemme précédent qu'une boule de rayon V2 ouverte et
de centre C arbitraire (xt — Cl)2+... + {xn — cn)2 < 2 ne peut
contenir plus de n-f-1 centres des boules empilées, centres qui
sont les points de G. Or d'après le théorème de Minkowski-
Blichfeldt on peut trouver C tel qu'une telle boule contienne un
nombre de points de G supérieur ou égal à la mesure de la boule
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(c'est-à-dire (V2)Mß„), divisé par le déterminant de G. Par
conséquent:

n + 1 ^ (sliy QJdét (G)
ou encore:

densité de l'empilement QJdét G (n + l)/(\/2)n
c'est ce que nous nous proposions de démontrer.

Traduit sur yn, cela améliore le résultat de Minkowski par un
1 ~f" £ (jl)

coefficient multiplicatif

^ — (1 + e(n))
ne

Le théorème de Hlawka cité plus haut montre

7« ^ (1 + ßW) •

2ne

On voudrait bien en savoir plus, en particulier si la densité

peut être majorée par kn avec k < 1/V2.

VI. Conclusion.

Ces quelques exemples peuvent donner une idée de l'efficacité

des méthodes que Minkowski a introduites en Géométrie
des nombres, ceux que nous avons donnés sont fondamentaux.
Mais la variété des problèmes qui se posent est très grande.
Pour l'étude des f(xl1..^xn) pour lesquels la figure associée
| / (xx,. ,xn) | S 1 est non bornée et de mesure infinie, seule une
partie des problèmes peut être étudiée par les méthodes de

Minkowski et d'autres techniques doivent être introduites.
Il faut signaler pour terminer que, si dans cet exposé on a

insisté sur des résultats très généraux, où le nombre de dimensions

de l'espace, c'est-à-dire le nombre des variables était
indifférent, il y a encore des problèmes à un petit nombre de

variables, intéressants et non résolus. Par exemple, appelant
maintenant empilement une famille d'ensembles (A-\-~g,~g s H)
disjoints deux à deux, H n'étant plus nécessairement un réseau,
si empilement régulier, une telle famille, si H est un réseau, on
ne sait pas encore s'il n'y a pas dans l'espace à trois dimensions
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d'empilement plus « dense » que l'empilement régulier le plus
dense, qui est l'empilement « en boulet de canon », celui dont le

réseau a pour base des points formant avec l'origine un tétraèdre

équilatéral (de côté 2 si les boules empilées ont le rayon 1). Une

démonstration a été donnée par Lord Kelvin, sur la foi de laquelle
physiciens et minéralogistes croient qu'un tel empilement est

impossible, mais cette démonstration est insuffisante et la question

est toujours ouverte. Par contre pour R2 la question est

résolue par la négative, il n'y a pas d'empilement irrégulier, plus
dense que l'empilement régulier le plus dense, c'est-à-dire celui

correspondant au réseau admettant pour base deux points
formant avec l'origine un triangle équilatéral (de côté 2 si les

disques empilés ont le rayon 1) (cf § II)1).
On trouvera dans Koksma [4], un résumé très complet des

résultats jusqu'en 1936 et dans Cassels [1, 2] les principaux
résultats classiques et les résultats récents avec leurs
démonstrations. Ce sont des ouvrages techniques, on y trouvera une
bibliographie étendue. A l'opposé, on trouvera une introduction
élémentaire et très intéressante à la géométrie des nombres dans

plusieurs des chapitres du Hardy et Wright [3]. Je ne connais

pas d'ouvrage d'un niveau intermédiaire.
Il est intéressant aussi de lire les exposés faits aux différents

Congrès internationaux de Mathématiques sur les résultats et
les conjectures en Géométrie des nombres, par exemple celles
de Mordell au congrès de 1937, celles de Davenport au congrès
de 1950 et aux congrès suivants et les exposés de séminaires,
car les idées générales y sont soulignées plus que les détails
techniques qu'on pourra étudier ensuite.
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0 Signalons à ce propos que la majoration de BlicMeJdt pour la densité d'empilement
de boules de Rn, est valable même si l'empilement n'est pas construit à partird'un réseau.
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