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Let u be the center of S"~!. Since f has no fixed point, it is
clear that we can choose d > 0 so small that a closed solid
n-sphere Hy of radius d with center at 0 (u) is entirely in »", and
Hj and its image f (Hj) are contained in different half-spaces
into which R" is separated by some (n—1)-plane.

Now, let $""' undergo a deformation by uniform radial
shrinking toward u till it reaches a position S5~ ! whose image
o, ! under 6 is contained in the interior of Hj. By means of 0,
there results a deformation of ¢"~! into o5~ ! which by means of
the mapping f induces a deformation, on the direction sphere,
of the (n—1)-cycle /! resulting from f applied to "~ * into the
(n—1)-cycle f571 resulting from f applied to o5 L.

Thus the turning index of 6"~ ! under f equals the turning
index of 63~ ! under f, which by Lemma 2 equals zero. Thus
Lemma 4 is proved.

5. THE THEOREMS

Tueorem 1. Letn" < R" be a closed n-cell and f a continuous
mapping of n" into R" such that f maps the boundary "' of "
into v". Then [ has at least one fixed point.

Proof. Assume no fixed points. Let, as in the case of
Lemma 3, %" and ¢" ' be respectively the images (under the
‘homeomorphism 6) of the closed solid n-sphere E" with boundary
S* 1 ie,n"=0(E" and ¢"" ' = 0 (S"1).

Let u be the center of S"'. Consider the mapping /' of
o"~! which maps every point ¢ € ¢"~ ! into the point 6 (z). Since
f' is the mapping which appears in the definition of the index of
6 (u) relative to 6" ', we see by Lemma 3 that the turning index
of 6"~ ! under ' is non-zero.

By hypothesis, f (c) € %" for every o ¢ " Hence we may
deform f (6"~ ') as follows. As a parameter p varies from 0 to 1,

=1

the point ¢’ moves in n" along the path 6[67 17 (o), u] starting
from ¢ and ending at 0 (u).

For p = 1, the above deformation ylelds the mappmg f.
Therefore, the (n-1)-cycle resulting from f applied to ¢" ' is
homologous on the direction sphere (as a consequence of a
deformation) to the (n—1)-cycle resulting from f' applied to
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s"~1. Consequently, the turning index of ¢~ ! under f equals the
turning index of ¢"~* under f’, and hence is not zero. But this
contradicts Lemma 4. Thus, Theorem 1 is true.

TueorEM 2. Let w" = R" be a closed n-cell with boundary
"' and f a continuous map of 0" into R" which leaves no point
of o"~ ! fixed. If there exists an inner point e of n" and an angle o
with 0 = o = 7, such that for no point o € ¢"~ ' is o an angle

from the vector o, [ (c) to the vector e, c then f leaves at least one
point fized. '

Proof. Suppose f leaves no point fixed. We shall show that
under the hypotheses of Theorem 2, either

i) for no point o ¢ 6"~ ! is the direction from o to f (c) opposite
to that from e to o,
or

ii) for no point 6 ¢ 6"~ ! is the direction from ¢ to f (s) opposite
to that from o to e.

For, otherwise we would have points o; and .c, ¢ 6"~ " such
that, as o traverses a path from o to o, on "~ %, the angle be-

1

tween o, f (c) and o, e would change continuously from 0 to =,
hence assume the value «, a contradiction.

If 1) holds, we apply Lemma 1 taking the mapping g of -
Lemma 1 as the mapping f, and as the mapping &, we take a
mapping which makes correspond to each point e ¢" ' the
intersection of the half line starting at the point e and passing
through the point o, with an (n—1)-sphere V"~ whose center is
e and which is located completely outside of ¢"~*. We infer by
Lemma 1 that the turning indices of "' under f and % are
equal. Since the turning index of ¢"~ ! under A clearly equals
the turning index of 6"~ * relative to V"1, we infer from Lemma 3
that the turning index of "~ ! under f is non-zero.

If ii) holds, again by Lemmas 1 and 3 the turning index of
<"~ ' under f is non-zero. (Here, for the mapping g of Lemma 1,
we again take the mapping f, and for the mapping %, we take a
mapping which makes correspond to each point oe ¢" ' the
intersection of the half line starting at the point e and passing
through the point o, with an (n—1)-sphere V"~ ! whose center is
e and which is located completely inside of "1).
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In short, the _turning index of 6"~ ! under the assumption of
the absence of fixed points is non-zero, a fact which contradicts
Lemma 4. Hence f has at least one fixed point, and Theorem 2
1s proved.

CoroLLARY 1. Let E" be a closed solid n-sphere and f a con-
tinuous mapping of E" into R" such that f maps the boundary
S*=Y of E™ into E™. Then f has at least one fixed point.

Proof. 1If no point of S"~1 is fixed, then the hypotheses of
Theorem 2 are seen to be satisfied with e at the center of the
sphere £" and oo = 0.

Clearly, Corollary 1 also follows immediately from Theorem 1.
Proofs of this corollary also appear in the literature ([3],
page 115).

CoroLLARY 2. Let 0" < R" be a closed n-cell with boundary
"1, and f and g two continuous maps of v" into R" such that for
no point ce ¢~ ' is f (6) = g (o). If there exists an inner point e
of 0" and a constant angle B, 0 = ==, such that for no point
oce ¢" L is B an angle between the vectors e, ¢ and f (), g (c), then
there is a point my € q" such that f (v,) = g (1) )

Proof. Consider the map & of %" into R" such that for every

point me " the vectors , & (n) and f(7), g (n) are equal. By
Theorem 2, the map % has a fixed point 7, Consequently,

f (no) = & (Mo)-
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