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R" and (n—1)-spheres oriented with orientations induced by

their interiors.

Symbols ¢"~ 1, g""1, ... denote oriented (n—1)-cycles mn R";
D=t y»=1 denote (n—1)-spheres in R". [E" denotes a closed
solid n-sphere in R", and the boundary of E”is denoted by §"~ L
7" denotes a closed n-cell in R" and the boundary of 7" is de-
noted by ¢" 1.

In this paper " is assumed to be the image of E" under
homeomorphism 6, and %" and ¢"~' obtain their orientations

from E" and S"”! respectively.

3. Tug TurNING INDEX

Let ¢" ! be an (n—1)-cycle in R" and g a continuous map of
¢"" ! into R" having no fixed point. Let D"~ ' be an (n—1)-sphere
with center 0, called a direction sphere [2]. Let ¢"~* be mapped
on D" ! as follows. To apoint ¢ € ¢"~ ! there corresponds a point
d ¢ D"~ ! such that the line segment from 0 to d has the same sense
and direction as that from ¢ to g(c¢). The resulting (r—1)-cycle
g" Yon D" !is called, in the sequel, the (n—1)-cycle g"~* resulting
from g applied to ¢~ ', and the degree of the resulting map, that
is, the multiple of D"~ ! which is homologous to g"~! (which is
clearly independent of the radius of D"~ ! and the location of 0)
is called the turning index of ¢"~! under g.

If pis a point not on ¢*~ !, the index of p relative to "~ ! is
defined as the turning index of the map which maps every point
of ¢*"*into p. (For odd n, this is the negative of the correspond-
ing definition given in [3], as shown by Theorem 1.5, page 105).

4. PRELIMINARY LEMMAS

Lemma 1. Let g and h be two continuous maps into R" of
an (n—1)-cycle ¢'~*, such that neither leaves any point of ¢*~ 1
fized, and, for no point c e "~ are the directions from c to g (c) and
from ¢ to h(c) exactly opposite. Then the turning indices of ¢* !
under g and h are equal.

Proof. For each ¢ ¢ ¢"™1, the directions of the two vectors
¢,g (¢) and ¢, (c) are not opposite and hence, if not identical,




36 ‘ A. ABIAN AND A.B. BROWN

determine a 2-plane P in which they make an angle of less than
w radians. As a parameter p varies from 0 to 1, let the direction

of ¢,k (c) change in P so that the angle between the two vectors

¢,h (¢) and c¢,g (c) decreases uniformly to zero while their lengths
remain fixed. If the angle is zero at the start, no change in direc-
tion takes place. For each value of p, 0 = p = 1, the corres-
ponding mapping as determined above in the definition of turn-
ing index, maps ¢"~* on the direction sphere D"~ ! and the result,
as p varies from 0 to 1, is to deform the (n—1)-cycle 2"~ on
D"~ resulting from % applied to ¢"~* into the (n—1)-cycle g"~ !
resulting from g applied to ¢"~*. Hence A"~ ! is homologous to
g"" 1, and therefore to the same multiple of D"™! so that the
turning indices under consideration are equal. Thus Lemma 1
1s proved.

Lemma 2. Let g be a continuous map into R" of an (n—1)-
cycle ¢c®~ ', such that ¢"~ ' and g (¢"™ 1) are contained in different
half-spaces into which R" is separated by some (n—1)-plane. Then
the turning index of ¢"~* under g is zero.

Proof. Since the (n —1)-cycle g"~ ! resulting from g applied to
¢"~1 is clearly entirely on one hemisphere of D"~!, we conclude
that ¢"~! cannot be homologous to any multiple of D"~ ! other
than zero. Thus Lemma 2 is proved.

Lemma 3. Let " ! be the boundary of a closed n-cell n"-= R".
Let e be a point in the inside of 6"~ *. Then the index of e relative
too" tis1or—1.

While this result is given in [3], page 109, Theorem 4.1, the
following proof is given as shorter and obtained independently.

Proof. Let n" and 6"~ ! be respectively the homeomorphic
images (under homeomorphism 0) of the closed solid n-sphere
E" with boundary S" ! ie., n" =0 (E") and ¢" ' = 6 (S"71).
By use of the invariance of regionality, it is easy to show that
7" = 0 (E™) contains no point outside ¢"~' and contains every
point inside ¢" L -

Let V"™ ! be an (n—1)-sphere with center at e, so small that
¥»~1 and its interior are inside "~ ', hence composed of points
of . Let "' =071 (V" )and d = 07" (e).
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For each point b ¢ "~ * let the half-line beginning at d and
passing through b intersect S"~* at b’

Now, for every ¢, with 0 = ¢ = 1, let 7' (¢) be the (n—1)-
cycle determined as follows. For each point be "™ " there corres-

ponds a point & (¢) of "' (¢) on the closed segment from b to 6"

such that the distance from b to b (f) is ¢ times the distance
from b to b'.

Let V"1 (@) =0[pg"" ! (1], 0 =1t =< 1.

As ¢ varies from O to 1, the cyecle V"~ ! (¢) undergoes a defor-
mation from initial position ¥"~! (0) = V™' to final position
V"=t (1). Since V" ! (1) is on ¢" ', there is an integer x such that

(1) Vrmlt(1) ~ z ot on ¢" "1,

where ~ stands for “ is homologous to ”

For each ¢, let k (t) be the mapping which maps every point
of V"1 (¢) into e, and let V"~ ! serve as the direction sphere. As
t varies from 0 to 1, the (n—1)-cycle k"~ (0) resulting from
k (0) applied to V"~ ! is deformed on the direction sphere V"1
into the (n—1)-cycle k"' (1) resulting from £k (1) applied to
V1 (1). Thus these two (n—1) cycles are homologous on
V»~1. Therefore the index of e relative to V"~ ! equals the index
of e relative to V"~! (1). However, since & (0) maps every point
of V"~ into e, we derive that ([4], page 92)

(2) the index of e relative to V"1 (1) = (—1)".

Let y be the index of e relative to ¢"~'. From (1) we infer

that xy is the index of e relative to V"~ (1). Hence, by (2),

xy = (—1)". Consequently, y = 1 or y = —1. Thus Lemma 3
1s proved. ‘

LemMA 4. If a continuous map f of a closed n-cell y* = R"
mto R™ has no fized point, then the turning mdex of the boundary
c" "t of " under f is zero.

Proof. Let, as in the proof of Lemma 3, »" = 6 (E") and
¢""1 =0 (85""") be respectively the images under the homeo-

morphlsm 0 of the closed solid n-sphere E" and its boundary
Sn
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Let u be the center of S"~!. Since f has no fixed point, it is
clear that we can choose d > 0 so small that a closed solid
n-sphere Hy of radius d with center at 0 (u) is entirely in »", and
Hj and its image f (Hj) are contained in different half-spaces
into which R" is separated by some (n—1)-plane.

Now, let $""' undergo a deformation by uniform radial
shrinking toward u till it reaches a position S5~ ! whose image
o, ! under 6 is contained in the interior of Hj. By means of 0,
there results a deformation of ¢"~! into o5~ ! which by means of
the mapping f induces a deformation, on the direction sphere,
of the (n—1)-cycle /! resulting from f applied to "~ * into the
(n—1)-cycle f571 resulting from f applied to o5 L.

Thus the turning index of 6"~ ! under f equals the turning
index of 63~ ! under f, which by Lemma 2 equals zero. Thus
Lemma 4 is proved.

5. THE THEOREMS

Tueorem 1. Letn" < R" be a closed n-cell and f a continuous
mapping of n" into R" such that f maps the boundary "' of "
into v". Then [ has at least one fixed point.

Proof. Assume no fixed points. Let, as in the case of
Lemma 3, %" and ¢" ' be respectively the images (under the
‘homeomorphism 6) of the closed solid n-sphere E" with boundary
S* 1 ie,n"=0(E" and ¢"" ' = 0 (S"1).

Let u be the center of S"'. Consider the mapping /' of
o"~! which maps every point ¢ € ¢"~ ! into the point 6 (z). Since
f' is the mapping which appears in the definition of the index of
6 (u) relative to 6" ', we see by Lemma 3 that the turning index
of 6"~ ! under ' is non-zero.

By hypothesis, f (c) € %" for every o ¢ " Hence we may
deform f (6"~ ') as follows. As a parameter p varies from 0 to 1,

=1

the point ¢’ moves in n" along the path 6[67 17 (o), u] starting
from ¢ and ending at 0 (u).

For p = 1, the above deformation ylelds the mappmg f.
Therefore, the (n-1)-cycle resulting from f applied to ¢" ' is
homologous on the direction sphere (as a consequence of a
deformation) to the (n—1)-cycle resulting from f' applied to
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