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vérifient les axiomes de raccordement; cela implique la construc-
tion, pour les strates de E’, de tubes et de rétractions satisfaisant

a4 IR) et RT); de méme on construira des fonctions tapissantes

comme images réciproques de celles données sur £ qui satisfont
a FT).

II. APPLICATIONS STRATIFIEES.

Une application F d’un ensemble stratifié £ dans un ensemble
stratifié E’ sera dite stratifiée, si: |

10 F est continue;
20 L’image par F de toute strate de £ est une strate de E';

30 La restriction de F & toute strate X de E est une application
différentiable de rang maximum de la strate X sur la strate
image X' = F (X).

Par exemple, si E est 'image réciproque d’un ensemble £
par une application transversale F: R"— R? > E’, alors I'appli-
cation F restreinte & I est stratifiée.

THEOREME 2 DE TRIVIALITE. — Si F est une application stra-
tifiée de ’ensemble E dans le segment I (muni de sa stratifica-
tion banale), et si F est propre, alors F est localement triviale
sur tout segment intérieur a I.

Esquisse de la démonstration. — On construit dans E un champ
de vecteurs (H) tel que: 1° En tout point =z de E, H (x) est un
vecteur de la strate contenant x; 20 Dans chaque strate Y de E,

H est différentiable; 3° L’'image par I'application F de H (x) est
le vecteur unitaire de I; 4° Bien que non nécessairement continu
dans 'espace ambiant contenant E, le champ (H) donne par
intégration des homéomorphismes de toute image réciproque
F~1(a) sur F~1 (), a,be L

La construction se fait par induction sur la dimension des
strates. On obtient la continuité requise pour l'intégration de H
en imposant au champ (/) d’admettre des intégrales premiéres
locales (notamment les fonctions tapissantes, dont c’est 1a la
fonction).
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Dégénérescence et éclatement.

Soit F' une application stratifiée de £ dans E’; si la strate X
de E a pour image la strate X’ de E’, on a nécessairement
dim X = dim X’; la différence ¢ (X) = dim X — dim X’ sera
appelée la dégénérescence de F sur X.

Par exemple, si E est 'image réciproque de E’ par une appli-
cation f': R" — RP transversale sur £’, la dégénérescence g vaut
n—psin =p,0sin < psur toute strate de E.

On dira qu'une application stratifiée F: E— E' présente de
Iéclatement, 811 existe dans E au moins un couple de strates X, ¥
telles que Y-e Et (X) et ¢(Y) < ¢ (X).

Par exemple, I'application associée au ¢-Prozess de la géo-
métrie algébrique, application de R? dans R* définie par X = z,

Y = ay, présente de I'éclatement: en effet, sur la strate z = 0,

qui a pour image le point X = Y =0, la dégénérescence ¢
vaut un,-alors que sur tout demi-plan x # 0, la dégénérescence ¢
vaut zéro.

Au contraire, 'application F: E— E’ mentionnée ci-dessus
(lorsque E est une image réciproque transversale de E’) ne pré-
sente pas d’éclatement, car la dégénérescence ¢ est la méme sur
toute strate de E. | | y

Supposons qu’on ait affaire & la situation suivante: Deux
ensembles stratifiés £, £, et deux applications stratifiées F, G:
F:E—E, G: E'— 1, telles que la composée GO F: E— I soit
également stratifiée. Si a, b désignent deux valeurs intérieures
a I, les images réciproques dans £ et £’ sont des ensembles stra-
tifiés E,, E,, E,, E,; on désignera par F,, F, les restrictions
de F & E,, E,; on a alors le théoréme

TutoreEME 3. — St lapplication stratiﬁée F: E—-E' est sans
pp

- éclatement, les applications sections ¥,, Fy ont méme type topo-
logique. |

Esquisse de la démonstration. — On construit d’abord un
homéomorphisme g, de £’, sur E’, par intégration d’'un champ
(H) dans E’, ainsi que le donne le théoréme 2 de trivialité; pnis
on reléve le champ (/) dans £ en un champ H| tel que, sur toute

T
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strate de E, F (H,) = H; lintégration de H; donne alors un
homéomorphisme £, de E, sur E, tel que le diagramme:

F, ,
Ea—'_*Ea

hab ’ l 9 ab

soit commutatif.

L’hypothése de non-éclatement de F intervient dans le
relevement de H en H,; §’il y a de 'éclatement, alors le champ
(H,) devra admettre un systéme local d’intégrales premieres en
nombre supérieur & la dimension de la strate, ce qui peut conduire
a une impossibilité.

3° Ensembles semi-algébriques.

On appelle ensemble semi-algébrigue dans R" I’ensemble des
points dont les coordonnées (z;) vérifient un systeme d’équations
et d’inégalités polynomiales larges P; (r;) = 0, @, (z;) = 0, ou
encore une réunion finie de tels ensembles.

THEOREME 4. — Tout ensemble semi-algébrique est un ensemble
stratifié.

H. Whitney a démontré que tout ensemble algébrique réel
est pourvu d’une stratification [3] douée de la propriété d’inci-
dence réguliére (résultat non encore publié); la présence d’iné-
galités ne change pas substantiellement ce résultat; les tubes,
les rétractions et les fonctions tapissant les strates peuvent dans
ce cas étre construits explicitement.

49 Applications polynomiales.

Soit P une application polynomiale de R" dans R?, E un
ensemble quasi-algébrique compact de R"; on peut alors affirmer

TurorEME 5. — L’ensemble image E' = P (E) est un ensemble
semi-algébrigue. ‘

Cect est une conséquence du théoréme de Tarski-Seidenberg
sur I'élimination réelle. Il est évident, par ailleurs, que la contre-
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image d’un ensemble semi-algébrique par une application poly-
nomiale P est un ensemble semi-algébrique localement.

THEOREME 6. — Si P est une application polynomiale, £ un
ensemble semi-algébrique compact de la source E, E' = P (E)
son image, il existe des stratifications de £ et £’ pour les-
quelles la restriction de P a £ est une application stratifiée.

Esquisse de la démonstration. — Soit Y une strate de E; on
forme le sous-ensemble C (Y) sur lequel le rang de P restreint

a Y s’abaisse; C (Y) est un ensemble semi-algébrique de dimen-
sion inférieure a dim Y; on substratifie £’ de maniere que

P (C (Y)) soit un sous-ensemble stratifié contenu dans la nou-
velle stratification s; de £’; puis on prend la stratification contre-
image de s, dans E par P; aprés itération finie, ce processus
s’arréte; on l'effectue alors sur toutes les strates de £ en pro-
cédant par dimension décroissante. ‘

Remarque. — Le caractére stratifié des applications algé-
briques ne semble pas avoir été explicité dans la littérature; en
fait, les applications analytiques, et « presque-toutes » les appli-

. cations différentiables sont tres vraisemblablement stratifiées...

4o Un exemple.

I1 s’agit de montrer que, dans le théoréme 3, la condition de
non éclatement ne peut étre éliminée. On considére 'application
P (k) de R® (z,y,z) dans R3 (X, Y, Z), dépendant algébrique-
ment du parameétre &, définie par les équations:

X = [x(x*+ y*—a*) — 2ayz]*.

[(ky + x) (x* + y*—a*) — 2az (y —kx)]*
Y = x2 4+ y? —a?
% =K,

Conformément au théoréme 6, cette application peut &tre
stratifiée (par exemple dans une boule de Oxyz de rayon arbi-
trairement grand); I’ensemble critique S, des points ou le rang
de P, est < 2, ainsi que son image par P (k) feront évidemment
partie des stratifications de la source et du but. Or I’ensemble 5,
contient la surface (H) d’équation:
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[x (x* + y*—a®) — 2ayz] |
[(ky + x) (x* + y? —a®) — 2az(y—kx?;| =0,

Cette surface (H) se décompose en deux surfaces (H;), (H5)
d’équations:

X2 4 y2—a2-

2az

ylx

(Hy)

- x2+ y*—a®  y — kx
(H2) \ 2az _ky+x'

x2+y?2—a?=0
z =0

qui fait nécessairement partie de la stratification de la source.
L’application P (k) applique (H,) et (H,) sur le plan X = 0; la
contre-image par P (k) de Porigine ¥ = Z = 0 de ce plan dans
la surface (H) est le cercle (C); on en conclut que la restriction
de P (k) & (H) présente de Uéclatement. En eftet, P (k) est de
dégénérescence un sur le cercle (C), et de dégénérescence nulle
sur les 2-strates voisines de (/) ou (H,). En tant qu’application
stratifiée P (k) présente par suite de I’éclatement pour toute
valeur du parameétre £.

Ces deux surfaces se coupent suivant le cercle (C) {

/N

Paramétrons le cercle C par 'angle polaire 6§ = Ox, OM;
posant m = tg 0, on voit que la surface (/) est engendrée par
la parabole Q (m) variable avec m d’équations: z? + y2 — qa? 2
= 2amz, y = mz. La parabole Q (m) rencontre le cercle (C) aux |
deux points M, M’ diamétralement opposés d’angles polaires 6,
6 + n. Son 1mage par P (k) est la droite Z = 2am Y.

De méme, la surface (/,) est engendrée par la parabole
variable Q (m’) 2 4+ y2 — a? = 2am’ z, m' = y — kx/ky + x
=m—k/l + km.

Silon pose k = tg«, on voit que sim’ = m, Q (m’) rencontre
(C) aux points diamétralement opposés d’angles polaires 6 = «,
O +7n = «. Autrement dit: les paraboles Q (m), Q (m’) ont
méme image par P (k), si et seulement si m’ = m, ou encore si
les diametres suivant lesquels elles rencontrent (C) font entre
eux un angle égal & «. |

—
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Je dis alors que deux applications P (k), P (k') correspondant,
a deux valeurs distinctes du parameétre k£ sont de types topolo-
giques différents; en effet les homéomorphismes de raccord %
et g de la source et du but doivent nécessairement conserver
globalement et la surface (H), et le cercle (C) qui en est une ligne
double, donc aussi leurs images au but: le plan YO0Z, et 'origine
X =Y =7 = 0. Or, pour qu'un chemin continu g: [ - YOZ,
d’origine O (g (0) = 0) soit 'image par P (k) d’un chemin
continu ayant pour origine un point M de (C), il faut et il suffit
que le chemin g admette une tangente en O; par suite, tout
homéomorphisme g du but tel que go P (k') = P (k) o h, doit
nécessairement conserver globalement tous les chemins ayant
une tangente en O; or les directions issues de O dans YOZ sont
miges en correspondance biunivoque par I'éclatement de P (k)
sur I'une des surfaces (H;) ou (H,) avec les diamétres de (C), cu
encore avec les points du cercle (C,) quotient de (C) par la trans-
formation antipodique. Donc [D'application P (k) détermine
intrinsequement une correspondance (%) sur (C,), a savoir la
rotation 60— (6 — «): des points homologues par () correspon-
dent & la méme direction issue de (0) dans YOZ; il résulte de la
que ’homéomorphisme & de la source doit transformer (C;) en
lui-méme de facon que la correspondance (t,) soit transforraée
n (#.). Or.on sait classiquement{2] que deux rotations d’angles
différents du cercle ne peuvent se transformer I'une dans ’autre
par un homéomorphisme du cercle (théorie du « nombre de rota-
tion » d’un homéomorphisme). Par suite, un tel homéomor-
phisme % ne peut exister.

5o Remarques finales et conclusions.

I’exemple précédent présente un caractére typique: la pré-
sence d’éclatement dans une application stratifiée peut conduire
a l'instabilité du type topologique pour la raison suivante: dans
un voisinage d’une strate éclatée, 'application opere des iden-
tifications qui se traduisent par une correspondance dans la

strate (S) elle-méme; or le probléme qui consiste & classifier les
“correspondances d’un espace S sous I’action du groupe des homéo-
morphismes de (S) conduit & une classification encore plus fine
que le probléme d’équivalence topologique de deux applications.
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Pour terminer, je voudrais signaler les applications possibles
de la théorie des applications stratifiées au probleme de la
stabilité topologique des applications différentiables. Admettons
que « presque-toute » application différentiable est stratifiée (ce
qui est, semble-t-il, la majeure difficulté qui subsiste); pour
qu'une application f soit topologiquement stable (c’est-a-dire
de méme type topologique que toute application assez voisine
dans la C"-topologie), il suffit qu’elle présente les caractéres sui-
vants: 1° f est stratifiée; 20 les strates de la source sont définies
partout par des équations locales de rang maximum (dont les
premiers membres sont des fonctions précises de f et de ses déri-
vées); 3° en tant qu’application stratifiée, f ne présente pas
d’éclatement. '

Or la condition 3, & elle seule, ne semble pas devoir présenter
de grandes difficultés, et elle est certainement vraie de presque-
toute application différentiable stratifiée.

Signalons enfin le rapport de cette théorie avec le probléme
suivant: peut-on «trianguler» une application différentiable,
analytique, etc. ? Si V et M sont deux variétés différentiables
compactes pourvues de triangulations différentiables et f une
application simpliciale pour ces triangulations, alors il est clair
que f peut étre considérée comme une application stratifiée. Matis
alors { ne présente pas d’éclatement: en effet, la dégénérescence
d’une application simpliciale f sur un simplexe s" est toujours
au moins égale & la dégénérescence de f sur tout simplexe incident
a s". On peut raisonnablement conjecturer qu’il s’agit 1a d’une
condition nécessaire et suffisante pour qu’une application ana-
lytique, par exemple, puisse étre triangulée.
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