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STABILITE DES APPLICATIONS POLYNOMIALES 25

La démonstration exige une description de la structure des
applications polynomiales; il n’est pas question de donner ici
une justification compléte des propriétés énoncées, qui entraine-
rait & des développements techniques trés étendus; je me bornerai
a donner les définitions nécessaires ainsi que I’énoncé des théo-
rémes principaux sans démonstration; les théorémes 1 & 3 cités
icl ne jouent d’ailleurs pas de role dans la discussion de notre
exemple.

Les notions fondamentales sont celles d’ensembles stratifiés,
et d’applications stratifiées. Nous allons les définir:

I. ENSEMBLES STRATIFIES.

Un ensemble stratifié (Manifold Collection) est un fermé de
Iespace R"; si k est la dimension de ’ensemble stratifié¢ E, il
existe dans F des sous-ensembles fermés E* 1o E¥ ' 5 || o E°,
également stratifiés, tels que la différence £/ -— E'~1 soit une
variété différentiablement plongée de dimension j; en particulier
E° est constitué d’un ensemble de points isolés.

On appellera strate de dimension j de Pensemble E toute
composante connexe de la variété E/ — E'~1, Les sous-ensembles
stratifiés de E doivent satisfaire aux propriétés suivantes:

1) L’adhérence de toute strate est un sous-ensemble stratifié;
1r) La frontiere de I'adhérence d’une strate X constitue un en-
semble stratifié de dimension strictement inférieure & dim X,
le bord de X (noté dX); ,
tir) Toute réunion et toute intersection finies de sous-ensembles
stratifiés sont des sous-ensembles stratifiés;
1) Le nombre des strates de E est fini.

Il importe ensuite de préciser comment les strates se raccor-
dent entre elles; on va donner dans ce but un certain nombre

“d’axiomes auxquels doit satisfaire tout ensemble stratifié.

Si Y est une strate de E, on appellera étoile de Y (notée Et (Y))
I'ensemble des strates X telles que ¥ < X ; 'adhérence de Et (Y)
est un ensemble stratifié.

A toute strate ¥ de £ on associe un voisinage tubulaire T (Y)
assez petit au voisinage de 3 Y pour que la condition suivante soit
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satisfaite. Sr Y et Z sont deux strates, et si T (Y) n T (Z) n’est
pas vide, alors 'une des strates Y (ou Z) est adhérente & 'autre.
Chaque tube T'(Y) est muni d’une rétraction ky: 7' (Y)— Y,
de rang maximum sur 7 (Y); si Z est une strate de I’étoile de Y,
alors T' (Y) n Z n’est pas vide, on désignera par ky, la restriction
de ky & T(Y) nZ. Le systeme des tubes T (Y) et de leurs
rétractions %y sera supposé satisfaire aux axiomes: |

IR) (Incidence réguliére) : La restriction ky,: T (Y) n Z — Y est
de rang maximum (= dim Y).

RT) (Raccordement des tubes) : Si on a trois strates X, Y, Z telles
que X <Y, Y < dZ, alors dans T (X) n T(Y) A Z, on a:

kyz; = kxyokys .

Enfin on suppose définie sur toute strate X une fonction
réelle Gy nulle sur 3 X, strictement positive sur X et de classe C1,
telle que la différentielle dGyx ne s’annule pas dans un voisinage

Gy < ade dX dans X. Une telle fonction (dite « fonction tapis-

sante » pour la strate X) devra satisfaire a 'axiome:

FT) (Fonction tapissante): Si X < dY, la restriction de kyy &
~une hypersurface de niveau de la fonction Gy = b est de rang
maximum dans 7 (X) n Y, pour toute valeur b assez petite.

On peut observer que I'axiome FT) implique I'axiome IR),
tout au moins pour un tube 7" contenu dans 7.

DeriniTioN. — Une application différentiable F: R*— R? est
dite transversale (t-réguliére au sens de [1]) sur un sous-
ensemble stratifié £ de RP, si F est transversale sur toutes les
strates de £. :

En vertu des théorémes connus de transversalité[1], « presque-
toute » application (au sens de la C’-topologie) est transversale
sur £. On a alors: |

TatoriME 1. — S1 F: R"— RP? est une immersion transversale
sur E, image réciproque £’ = F™1 (E) est un ensemble
stratifié de E’.

- Les. strates de E’ constituent évidemment les variétés F~1 (Y),
ou Y est une strate de E; il reste & s’assurer que ces strates
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vérifient les axiomes de raccordement; cela implique la construc-
tion, pour les strates de E’, de tubes et de rétractions satisfaisant

a4 IR) et RT); de méme on construira des fonctions tapissantes

comme images réciproques de celles données sur £ qui satisfont
a FT).

II. APPLICATIONS STRATIFIEES.

Une application F d’un ensemble stratifié £ dans un ensemble
stratifié E’ sera dite stratifiée, si: |

10 F est continue;
20 L’image par F de toute strate de £ est une strate de E';

30 La restriction de F & toute strate X de E est une application
différentiable de rang maximum de la strate X sur la strate
image X' = F (X).

Par exemple, si E est 'image réciproque d’un ensemble £
par une application transversale F: R"— R? > E’, alors I'appli-
cation F restreinte & I est stratifiée.

THEOREME 2 DE TRIVIALITE. — Si F est une application stra-
tifiée de ’ensemble E dans le segment I (muni de sa stratifica-
tion banale), et si F est propre, alors F est localement triviale
sur tout segment intérieur a I.

Esquisse de la démonstration. — On construit dans E un champ
de vecteurs (H) tel que: 1° En tout point =z de E, H (x) est un
vecteur de la strate contenant x; 20 Dans chaque strate Y de E,

H est différentiable; 3° L’'image par I'application F de H (x) est
le vecteur unitaire de I; 4° Bien que non nécessairement continu
dans 'espace ambiant contenant E, le champ (H) donne par
intégration des homéomorphismes de toute image réciproque
F~1(a) sur F~1 (), a,be L

La construction se fait par induction sur la dimension des
strates. On obtient la continuité requise pour l'intégration de H
en imposant au champ (/) d’admettre des intégrales premiéres
locales (notamment les fonctions tapissantes, dont c’est 1a la
fonction).
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