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Example 3. Let X be a space on which 0 operates trivially.
Then an A-structure on V is just a prefered homotopy class of

maps F->A. As cases of particular interest X might be an

Eilenberg-MacLane space or the classifying space of a group.
How does one compute he groups Nk(X)

The above définitions can be modified slightly by admitting
only oriented manifolds. Thus one obtains groups Elk (A) where

X is any space on which the rotation group SO acts. Again
I do not know how to compute these groups. (Added in proof:
See Conner and Floyd [21].)

Example 4. Let P denote the infinite real projective space,
with the infinite rotation group SO acting in the natural way.
The cobordism groups Ylk (P) for oriented manifolds with
P-structure can be called the spinor cobordism groups. This
name is appropriate since a P-structure is roughly a " lifting "

of the structural group of the tangent bundle to the infinite
spinor group. A manifold admits a P-structure if and only if
its Stiefel-Whitney class w2 is zero. The groups Qk (P) have no
odd torsion, but otherwise I do not know much about them.

3. Miscellaneous cobordism theories.
So far we have concentrated on differentiable manifolds.

However one could equally well define a cobordism group based
on the class IT of all compact topological manifolds. (Compare
Brown [3, Theorem 3].) The natural correspondence Q) -> FT

induces a homomorphism from the differentiable cobordism
group Nk — Hk (@) to the topological cobordism group Hk (Sr).

Since Thorn [16] has shown that Stiefel-Whitney classes can
be defined topologically, we have:

Theorem 3 (Thorn). — The homomorphism Nk^Hk(ST) has
kernel zero.

Problem: Is this homomorphism onto
Another possibility would be to consider the class c0 of all

compact, oriented, combinatorial manifolds. Whitehead [20]
has shown that each differentiable manifold has a preferred class
of triangulations. Hence there is a natural homomorphism from



22 J. MILNOR

Qk Hk (<30) to Hk (^0). Thorn, Rohlin and Svarc have shown
that Pontrjagin classes can be defined for combinatorial manifolds.

Therefore we have:

Theorem 3'. — The homomorphism Qk-> Hk (^0) has kernel
zero.

However examples show that this homomorphism is not
onto. The reader is referred to [13, 18].

Another interesting possibility would be to look at the class

of compact homology manifolds.
Returning to the differentiable case, interesting cobordism

groups can be obtained by restricting the connectivities of the
manifolds involved. As an extreme case we can consider only
differentiable manifolds which are either homotopy spheres or
homotopy cells. The resulting cobordism groups are closely
related to the problem of classifying differentiable structures on
spheres. The reader is referred to Milnor [8] and Smale [14].

As a final, quite different, example consider differentiable
imbeddings of the circle S1 in the 3-sphere S3. Such an object
(a knot) is said to bound if it can be extended to a differentiable
imbedding of the disk D2 in the disk Z)4. The resulting cobordism

group has been studied by Fox and Milnor [5]. This group
is not finitely generated.
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