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A SURVEY OF GOBORDISM THEORY1

by J. Milnor

This paper will start out with a discussion of known results
and then will taper off into a discussion of unsolved problems.

The theory of cobordism was initiated by L. Pontrjagin and
V. A. Rohlin [10, 12]. It came of age with the work of R. Thorn
[17]. The basic question in this theory is the following. Let Jt
be some class of compact manifolds. Given V e Ji how can
one decide whether or not V is the boundary of some other
manifold in M Of course a necessary condition is that V itself
must be a closed manifold: that is the boundary dV must be

vacuous.

1. The classical cobordism groups Nk and Qk.

As a first illustration of this problem let Q) denote the class

of all compact differentiable manifolds. The manifolds V e Q)

need not be connected or orientable, and are allowed to have
boundaries.

Theorem 1 (Pontrjagin, Thorn). — A closed k-dimensional
manifold V e Q) is the boundary of some (k + 1) -dimensional
manifold in Q} if and only if the Stiefel-Whitney numbers

wi± win [V] are all zero.

(Explanation: The StiefehWhitney cohomology classes2)

WiEffiV; J2) are defined for example in Steenrcfd [15]. If

\ + ••• + 4 7c is any partition of k then the cup product
wi± win is a top dimensional cohomology class. Applying the
canonical " integration " homomorphism

[ Vl.Hk(V;J2)->J2

we obtain a " Stiefel-Whitney number " win [V] e J2.)

1) Talk delivered at the Zurich Colloquium on Differential Geometry and Topology,
June 1960.

2) The notation J will be used for the integers and J2 for the integers modulo 2.
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The non-oriented cobordism group Nfc Hk{Viï) is constructed
as follows. Given two /c-manifolds V, V' e 2 the sum V + V'
will mean the (disjoint) topological sum, provided with a diffe-
rentiable structure in the obvious way.

Definition. Two closed manifolds V, V' e Q) are congruent
modulo if V + V' is the boundary of some manifold in St.

The set of all congruence classes of closed A-manifolds, under the

composition operation + forms the required group Nk. We
will also use the notation Hk (Sj) for this group since it is something

like a homology group. (The Russian term for " cobordism

" is " intrinsic homology ".)
It follows from Theorem 1 that each Nk is a finite abelian

group of the form J2 © © /2.
The cartesian product operation between differentiable

manifolds gives rise to a bilinear pairing

Nk © -> Nk+l

Thus the graded group N* (iV0, iV1? has the structure of
a graded ring.

Theorem 2 (Thorn). — The non-oriented cobordism ring N* has
the structure of a polynomial algebra

J2 \_x2, X4, X5, x6, x8, x9,...]
with one generator Xk e Nfe for each dimension which is not of
the form 2m —1.

If k is even then the real projective /c-space can be taken as

generator. For k odd generators have been constructed by
DoJd [4].

Thorn's proof of Theorems 1 and 2 involves a brilliant mixture
of algebra and geometry. A key step in the argument is his
proof that Nk is isomorphic to a certain homotopy group. I will
not try to give details.

Next consider the class Q)0 consisting of all oriented compact
differentiable manifolds.

Theorem 1'. — A closed manifold in Qi0 is the boundary of a
manifold in <30 if and only if both its Stiefel-Whitney numbers
and its Pontrjagin numbers are zero.
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This result is due to Pontrjagin, Thom, Milnor, Averbuh,
and Wall. (See [2, 9, 19].) For the definition of the Pontrjagin
numbers pi± pin [V] e J the reader is refered to Hirzebruch [6].
These numbers are defined only if the dimension k is a multiple
of 4.

The oriented eobordism ring £2* =* H* (@0) is defined as

follows. For V e Q)0 let — V denote the same manifold V with
the opposite orientation. We will say that

V V' (mod d@0)

if — V) + V' is the boundary of some manifold in Q)0. As an
example, for any closed manifold F we have V V (mod 7)@0)

since

- V) + V « ô (V x /)

where I denotes the unit interval. The set of ah such congruence
classes form the required group Qk. Again the cartesian product
operation makes (Q0, D1? into a graded ring.

It follows from Theorem 1' that Q,k is a finitely generated
group of the form

J ©...©«/ ® J2 ® " - ® d2

where infinite cyclic summands can occur only if k 0 (mod 4).

Theorem 2'. — The ring Q*, modulo the ideal consisting of 2-tor-
sion elements, is a polynomial ring J [Y4, Y8, Y12, ...] with one

generator in each dimension divisible by 4.

The complex projective space of real dimension 4m can be
taken as generator for m 1, 2, 3. However a different
generator is needed in dimension 16.

For a description of the 2-torsion in Q* the reader is referred
to Wall's paper.

2. Manifolds with Z-structure.

.In this section we will define the concept of an " Z-structure "

on the tangent bundle of a differentiable manifold; and study
the corresponding eobordism theory.
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