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A SURVEY OF COBORDISM THEORY?!
. by J. MiLNor

This paper will start out with a discussion of known results
and then will taper off into a discussion of unsolved problems.

The theory of cobordism was initiated by L. Pontrjagin and
V. A. Rohlin [10, 12]. It came of age with the work of R. Thom
[17].  The basic question in this theory is the following. Let ./#
be some class of compact manifolds. Given V € .# how can
one decide whether or not ¥V is the boundary of some other
manifold in .4 ? Of course a necessary condition is that V itself
must be a closed manifold: that is the boundary 0V must be
vacuous.

1. THE CLASSICAL COBORDISM GROUPS [V, AND ().

. As a first 1llustration of this problem let & denote the class

of all compact differentiable manifolds. The manifolds V € &
need not be connected or orientable, and are allowed to have
boundaries.

Tueorem 1 (Pontrjagin, Thom). — A closed k-dimensional
manifold V € @ is the boundary of some (k + 1) -dimensional
manifold in 2 if and only if the Stiefel-Whitney nuinbers
W, ... Wy, [V] are all zero.

(Explanation: The Stiefel-Whitney cohomology -classes 2)

w; e H (V; J,) are defined for example in Steenrcd [15]. If

i;, + ... + 1, = k 1s any partition of % then the cup product

w;, ... w;, is a top dimensional cohomology class. Applying the

canonical “integration ” homomorphism

[VI:H(V;J) > J,
e [V]edy)

we obtain a “ Stiefel-Whitney number ” Wi,

1) Talk delivered at the Zurich Colloquium on Differential Greorhetry and Topology,

June 1960.
2) The notation J will be used for the integers and J, for the integers modulo 2.
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The non-oriented cobordism group N, = H, (2) is constructed
as follows. Given two k-manifolds V, V' € & thé sum V + V'
will mean the (disjoint) topological sum, provided with a diffe-
rentiable structure in the obvious way.

Definition. Two closed manifolds V, V' € 9 are congrient
modulo 22 if V + V' is the boundary of some manifold in 2.
The set of all congruence classes of closed A-manifolds, under the
composition operation -, forms the required group N,. We
will also use the notation H, (2) for this group since it is some-
thing like a homology group. (The Russian term for “ cobor-
dism ” is “ intrinsic homology ”.)

It follows from Theorem 1 that each NV, is a finite abelian
group of the form J, ® ... ® J,.

The cartesian product operation between differentiable
manifolds gives rise to a bilinear pairing

N, @N; = Niyy .

Thus the graded group N, = (N,, Ny, ...) has the structure of
a graded ring.

THEOREM 2 (Thom). — T'he non-oriented cobordism ring N, has
the structure of a polynomial algebra

Ty [X,, X4, Xs, X, Xg, Xo, -..]

with one generator X, € Ny for each dimension which is not of
the form 2™ —1.

If k£ 1s even then the real projective k-space can be taken as
generator. For k£ odd generators have been constructed by
Dold [4].

Thom’s proof of Theorems 1 and 2 involves a brilliant mixture
of algebra and geometry. A key step in the argument is his
proof that IV, is isomorphic to a certain homotopy group. I will
not try to give details.

Next consider the class 2, consisting of all oriented compact
differentiable manifolds.

Tueorem 1. — A closed manifold in @, is the boundary of a

mantfold in 9, if and only if both its Stiefel-W hitney numbers
and its Pontrjagin numbers are zero.
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This result is due to Pontrjagin, Thom, Milnor, Averbuh,
and Wall. (See[2, 9, 19].) For the definition of the Pontrjagin
numbers p; ... p; [V] € J the reader is refered to Hirzebruch [6].
These numbers are defined only if the dimension % is a multiple
of 4.

The oriented cobordism ring Q, = H, (2,) is defined as
follows. For V e 9,let — V denote the same manifold V with
the opposite orientation. We will say that o

V=V (modd2,)

1if (— V) 4+ V' is the boundary of some manifold in 2,. As an

example, for any closed manifold V we have V = V (mod 3 92,)
since | ‘

(= V)+ VoV xI
where [ denotes the unit interval. The set of all such congruence
classes form the required group €,. Again the cartesian product
operation makes Q, = (Q,, Q,, ...) iInto a graded ring.
It follows from Theorem 1’ that €, is a finitely generated
group of the form -

J®..0Jd),d...0J,
where infinite cyclic summands can occur only if £ = 0 (mod 4). -

TueoreEM 2'. — The ring Q,, modulo the ideal consisting of 2-tor-
sion elements, is a polynomial ring J[Y,, Yg, Yi, -..] with one
generalor in each dimension divisible by 4.

The complex projective space of real dimension 4m can be

- taken as generator for m = 1,2,3. However a different

generator is needed in dimension 16.
For a description of the 2-torsion in Q. the reader is referred

to Wall’s paper.

2. MANIFOLDS WITH X-STRUCTURE.

In this section we will define the concept of an “ X-structure ”
on the tangent bundle of a differentiable manifold; and study
the ecorresponding cobordism theory.
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