

Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de l'Enseignement Mathématique
Band: 8 (1962)
Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SURVEY OF COBORDISM THEORY
Autor: Milnor, J.
Kapitel: 1. The classical cobordism groups N_k and Ω_k .
DOI: <https://doi.org/10.5169/seals-37949>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 24.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

A SURVEY OF COBORDISM THEORY¹

by J. MILNOR

This paper will start out with a discussion of known results and then will taper off into a discussion of unsolved problems.

The theory of cobordism was initiated by L. Pontrjagin and V. A. Rohlin [10, 12]. It came of age with the work of R. Thom [17]. The basic question in this theory is the following. Let \mathcal{M} be some class of compact manifolds. Given $V \in \mathcal{M}$ how can one decide whether or not V is the boundary of some other manifold in \mathcal{M} ? Of course a necessary condition is that V itself must be a *closed* manifold: that is the boundary ∂V must be vacuous.

1. THE CLASSICAL COBORDISM GROUPS N_k AND Ω_k .

As a first illustration of this problem let \mathcal{D} denote the class of all compact differentiable manifolds. The manifolds $V \in \mathcal{D}$ need not be connected or orientable, and are allowed to have boundaries.

THEOREM 1 (Pontrjagin, Thom). — *A closed k -dimensional manifold $V \in \mathcal{D}$ is the boundary of some $(k + 1)$ -dimensional manifold in \mathcal{D} if and only if the Stiefel-Whitney numbers $w_{i_1} \dots w_{i_n} [V]$ are all zero.*

(Explanation: The Stiefel-Whitney cohomology classes²) $w_i \in H^i(V; J_2)$ are defined for example in Steenrod [15]. If $i_{i_1} + \dots + i_n = k$ is any partition of k then the cup product $w_{i_1} \dots w_{i_n}$ is a top dimensional cohomology class. Applying the canonical “integration” homomorphism

$$[V]: H^k(V; J_2) \rightarrow J_2$$

we obtain a “Stiefel-Whitney number” $w_{i_1} \dots w_{i_n} [V] \in J_2$.)

¹) Talk delivered at the Zurich Colloquium on Differential Geometry and Topology, June 1960.

²) The notation J will be used for the integers and J_2 for the integers modulo 2.

The *non-oriented cobordism group* $N_k = H_k(\mathcal{D})$ is constructed as follows. Given two k -manifolds $V, V' \in \mathcal{D}$ the *sum* $V + V'$ will mean the (disjoint) topological sum, provided with a differentiable structure in the obvious way.

Definition. Two closed manifolds $V, V' \in \mathcal{D}$ are *congruent modulo* $\partial\mathcal{D}$ if $V + V'$ is the boundary of some manifold in \mathcal{D} . The set of all congruence classes of closed k -manifolds, under the composition operation $+$, forms the required group N_k . We will also use the notation $H_k(\mathcal{D})$ for this group since it is something like a homology group. (The Russian term for "cobordism" is "intrinsic homology".)

It follows from Theorem 1 that each N_k is a finite abelian group of the form $J_2 \oplus \dots \oplus J_2$.

The cartesian product operation between differentiable manifolds gives rise to a bilinear pairing

$$N_k \oplus N_l \rightarrow N_{k+l}.$$

Thus the graded group $N_* = (N_0, N_1, \dots)$ has the structure of a graded ring.

THEOREM 2 (Thom). — *The non-oriented cobordism ring N_* has the structure of a polynomial algebra*

$$J_2 [X_2, X_4, X_5, X_6, X_8, X_9, \dots]$$

with one generator $X_k \in N_k$ for each dimension which is not of the form $2^m - 1$.

If k is even then the real projective k -space can be taken as generator. For k odd generators have been constructed by Dold [4].

Thom's proof of Theorems 1 and 2 involves a brilliant mixture of algebra and geometry. A key step in the argument is his proof that N_k is isomorphic to a certain homotopy group. I will not try to give details.

Next consider the class \mathcal{D}_o consisting of all *oriented* compact differentiable manifolds.

THEOREM 1'. — *A closed manifold in \mathcal{D}_o is the boundary of a manifold in \mathcal{D}_o if and only if both its Stiefel-Whitney numbers and its Pontrjagin numbers are zero.*

This result is due to Pontrjagin, Thom, Milnor, Averbuh, and Wall. (See [2, 9, 19].) For the definition of the Pontrjagin numbers $p_{i_1} \dots p_{i_n} [V] \in J$ the reader is referred to Hirzebruch [6]. These numbers are defined only if the dimension k is a multiple of 4.

The *oriented cobordism ring* $\Omega_* = H_*(\mathcal{D}_o)$ is defined as follows. For $V \in \mathcal{D}_o$ let $-V$ denote the same manifold V with the opposite orientation. We will say that

$$V \equiv V' \pmod{\partial \mathcal{D}_o}$$

if $(-V) + V'$ is the boundary of some manifold in \mathcal{D}_o . As an example, for any closed manifold V we have $V \equiv V \pmod{\partial \mathcal{D}_o}$ since

$$(-V) + V \approx \partial(V \times I)$$

where I denotes the unit interval. The set of all such congruence classes form the required group Ω_k . Again the cartesian product operation makes $\Omega_* = (\Omega_0, \Omega_1, \dots)$ into a graded ring.

It follows from Theorem 1' that Ω_k is a finitely generated group of the form

$$J \oplus \dots \oplus J \oplus J_2 \oplus \dots \oplus J_2$$

where infinite cyclic summands can occur only if $k \equiv 0 \pmod{4}$.

THEOREM 2'. — *The ring Ω_* , modulo the ideal consisting of 2-torsion elements, is a polynomial ring $J[Y_4, Y_8, Y_{12}, \dots]$ with one generator in each dimension divisible by 4.*

The complex projective space of real dimension $4m$ can be taken as generator for $m = 1, 2, 3$. However a different generator is needed in dimension 16.

For a description of the 2-torsion in Ω_* the reader is referred to Wall's paper.

2. MANIFOLDS WITH X -STRUCTURE.

In this section we will define the concept of an " X -structure" on the tangent bundle of a differentiable manifold; and study the corresponding cobordism theory.