
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 8 (1962)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: BERECHNUNG VON  DURCH INTERPOLATION

Autor: Krafft, Maximilian

DOI: https://doi.org/10.5169/seals-37975

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-37975
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


BERECHNUNG VON n DURCH INTERPOLATION

von Maximilian Krafft

(Reçu le 15 janvier 1962)

Herrn J. E. Hofmann zum 7. März 1960 gewidmet.

1. Zur numerischen Berechnung von 7r benutzt man, wenn

man von den elementargeometrischen Verfahren absieht, so gut
wie ausschliesslich Darstellungen der Funktion arctg x, also

entweder das diese Funktion definierende Integral für spezielle
Werte der oberen Grenze, verbunden mit numerischer Integration,

oder die aus dem Integral folgenden Reihenentwicklungen
von Leibniz und Johann Bernoulli. Hier soll ein ganz andersartiges

Verfahren zur Berechnung von 7u mitgeteilt werden, bei
dem die numerische Rechnung auf ein Minimum zusammenschrumpft,

sobald man nicht mehr als etwa zehn Dezimalen von
7c ermitteln will. Die Hilfsmittel sind ganz elementar. Wichtig
ist, dass bei diesem Verfahren ein spezieller Fall einer allgemeinen
für die Praktische Analysis nicht unwichtigen Frage auftritt, der
anders wie der allgemeine Fall wirklich angreifbar ist und zu
einer befriedigenden Antwort führt. Dies soll im Schlussabschnitt
gezeigt werden.

2. Grundlegend für die weiteren Ausführungen ist, dass man
die Werte von sin x für gewisse x (0°, 30°, 45°, 60°, 90°) von
vornherein kennt und die Werte für weitere x entweder durch
Anwendung des Additionstheorems der Sinusfunktion (z.B. für
15° und 75°) oder durch Auflösen einfacher quadratischer oder
kubischer Gleichungen erhält. So sind z.B. die Lösungen von
y* — 3 y + 1 - 0 gleich 2 sin 10°, 2 sin 50°, — 2 sin 70°, die

Lösungen von yz — 3 y + ^/3 0 aber 2 sin 20°, 2 sin 40°,
— 2 sin 80°. Man kann sich also mit geringer Mühe die Aus-
gangsdaten auch dann mit der erforderlichen Genauigkeit
verschaffen, wenn die zugänglichen Tafeln nicht ausreichen.
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Die Argumente der Sinusfunktion sind hier in Gradmass
gegeben. Es kann statt dessen auch jedes andere Winkelmass
benutzt werden, das die Kenntnis des Zahlenwertes von tc nicht
erfordert. Ausgeschlossen ist jedes Winkelmass, das diese Kenntnis

voraussetzt, also vor allem das analytische Bogenmass. Man
kann nämlich das Folgende auch auffassen als ein Verfahren,
das Bogenmass eines Winkels zu berechnen, der in einem der
zugelassenen Masse gegeben ist.

Es sei n eine natürliche Zahl und 0 < a, aber na^ 90°.
Dabei sei a so gewählt, dass man die Werte aller sin ja (/ 1,

2, n) kennt oder sich die Werte leicht verschaffen kann.
Dies ist z.B. der Fall, wenn man sin a (und damit auch cos a)

kennt, doch ist das nicht der günstigste Fall. Wir interpolieren
nun sin a mit den 2^ + 1 Stellen ja (/ — 0, ±1, ±2, ±n).
Der Einfachheit halber soll alles hergeleitet werden ohne Rückgriff

auf die Theorie der Interpolation. Bemerkt sei nur, dass für
uns die Lagrangesche Form des Interpolationspolynoms sich als

zweckmässiger erweist als die anderen gebräuchlichen Formen.
Die Voraussetzung not ^ 90° ist eingeführt, weil damit die
Abschätzung des Fehlergliedes erleichtert wird. Eine Verallgemeinerung

unserer Grundannahmen erhält man, wenn man statt
der Stellen ja (0 ^ j % n) irgendwelche otj wählt mit 0 a0 <
< a1 < a2 < < an ^ 90°. Das bietet weiter keine

Schwierigkeiten, ist aber für die numerische Anwendung kaum zu

empfehlen.
Wir beschränken uns bei unseren Darlegungen auf den Fall

n 3; die Verallgemeinerung auf beliebiges n ist trivial. Da für
uns x in der Umgebung von x 0 besonders wichtig sind, folgen
wir den Gewohnheiten der Interpolationsrechnung und führen
eine neue Veränderliche t ein durch

(2, 1) x at.

3. Interpolationspolynom für sin x sin at mit den
Interpolationsstellen ja (j — 0, ±1, ±2, +3) nennt man jedes Polynom,

das für x — ja, d.h. für alle t — /, mit sin at wertegleich
ist. Ein spezielles solches Polynom P(t) erhält man durch den
Ansatz
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(3,1) P (f) t{A± (t2 - 4) (t2 -9) + A2 (t2 - 9) (t2 - 1)

+ A3 (t2 — 1) (t2 — 4)},

wobei AA2, M3 noch zu bestimmende Konstanten sind. Setzt

man t — 1, 2, 3, so erhält man die Gleichungen
^

'

(3, 2) s/u a 24 Al9 sin 2a — 30À2,
sin 3a — 120 A3.

Damit ist P{t) bekannt. Nun ist P(t) nicht das einzige

Interpolationspolynom für sin at, das zu den gegebenen
Interpolationsstellen gehört. Es sei Q(t) irgend ein anderes solches

Interpolationspolynom. Dann ist Q(t) — P(t) ein Polynom, das

an allen Interpolationsstellen verschwindet, also die Gestalt
t (t2 — 1) (t2 — 4) (t2 — 9) p(t) haben muss, wobei p(t) irgendein

Polynom sein muss. Das heisst alle Interpolationspolynome
haben notwendig die Gestalt

(3, 3) Q(t) P(t)+t(t2-l)(t2-4)(t2-9)p

und umgekehrt ist jedes solche Polynom Q(t) auch ein
Interpolationspolynom. Wir benutzen das für den Fall, dass p(t)

const t= p ist, wobei wir über p später verfügen.
Die Funktion

(3, 4) F (t) sin at — P (t) — t (t2 — 1) (t2 — 4) (t2 — 9) p

ist für alle t erklärt, ungerade, unbeschränkt differenzierbar und
verschwindet an allen Interpolationsstellen. Da die Gewohnheit
besteht, sin x und cos x zu schreiben, gleichgültig in welchem
Mass das x gemessen wird, die bekannten Ableitungsformeln für
beide Funktionen aber nur gelten, wenn das x in Bogenmass
gemessen wird, erhalten wir durch Anwendung der Kettenregel

d sin at an d cos at an
(3, 5) cos at, sin at.

dt 180 dt 180

Wir legen nun p fest durch die Forderung, dass .F'(O) 0

sein soll. So erhalten wir aus (3,4)

(3, 6) Ff (0) — - 36^-9^-4^ + 36p 0
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und

(3, 7) Fvn(t)cosott-7\p.

Da F(t) ungerade ist, sind auch alle seine Ableitungen gerader
Ordnung ungerade. Da weiter F(t) für 0 < t S 3 mindestens drei
Nullstellen besitzt und gemäss (3,6) jF(0) — F'(0) F"(0)

FIV(0) FVI(0) Oist, kann der Rollesche Satz auf F(t) und
seine Ableitungen für 0 ^ t ^ 3 angewendet werden. Folglich
hat FVII(t) mindestens und daher, wie (3,7) zeigt, genau eine
Nullstelle für diese t. Sie sei t t. Also ist

1 / an \7
(3, 8) — p — cos at.V H 7!\180;

Eingesetzt in (3,6), ergibt sich unter Verwendung der abkürzenden

Bezeichnungen

180 6
{1} (36^! +9Ä2 +4A3) -(45 sin a -a a

— 9 sin 2a + sin 3a),

r ^
180*36 / a7c\7 9 / an\7 7i / an \6

' *
7!a \Ï80y ~ 7a\Î80y _ I40\l80/

(3, 9)

für tu die Darstellung

(3, 10) n {1} + {II} cos at.

Da 0 < t < 3 ist, haben wir weiter

(3, 11) {II} cos 3a < {II} cos ax < {II}.
4. Es scheint zunächst mit (3,10) und (3,11) nicht viel

gewonnen, da ja in {II} das zu bestimmende tc vorkommt. Der
Vergleich der Fläche des Einheitskreises mit der des ihm
umbeschriebenen Quadrats ergibt sofort n < 4. Ersetzt man in den
beiden in (3,9) gegebenen Formen von {II } das n durch eine

Veränderliche Ç, so ist die so entstehende Funktion von a und %

bei festem a monoton wachsend in £, bei festem £ monoton
wachsend in a. Das heisst unter Berücksichtigung von

0 < a ^ 30°
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9 /4a V 9 /4.30V 3 /2\7
(4.1) {//)<— < =— - < 0,00251.} W la \180/ - 7-30V180y 70 \3/

Wir können daher aus { I }, gleichgültig welchen Wert oc hat,
sofort die beiden ersten Stellen von iz entnehmen. Setzt- man
aber oc < 15° voraus, so erhält man mit iz « 3,2 sofort { II} <
< 8,3 10" 6. Wir können daher bereits einen neuen Näherungswert

für 7z aus { I } entnehmen, der mit einem Fehler von kleiner
als 1.10"5 behaftet ist. Dabei ist dieser Fehler für die Genauigkeit,

die wir erzielen können, unerheblich. Denn wenden wir die
bekannten Regeln der Fehlerrechnung auf die oben eingeführte
Funktion von oc und | an und setzen wir hintennach Ç 7i, so

finden wir, unter A den Fehler des benutzten Näherungswertes
für iz verstanden, für A {II} nämlich den Fehler von {II },

(4.2) A {II} =-{II}A.
n

Da in unserem Fall, wie schon die grobe Abschätzung von
{11} zeigt, {II} < 10"5 und \ A\ < 10"5 ist, ist \A{II}\ <
< 2,4- 10~10. Die Ungenauigkeit des zur Berechnung von {II}
benutzten Wertes von n ist somit unerheblich, wenn wir nur
auf acht Dezimalen rechnen.

Rechnet man mit a 15°, so findet man aus

1 1 1
sin 15° -(^6 ~V2)> sin 30° -, sin 45° - ^2

leicht auf neun Stellen genau

{/} 3,141585524.

Mit Benutzung des oben ermittelten rohen Näherungswertes
für {II} und der Fehlerrechnung sehen wir, dass man {II}
mit tu x 3,14159 hinreichend genau berechnen kann. Dies
ergibt {II} KT6 7,225. Nach (3,11) ist daher

KT6 • 5,108 {II} cos 45° < {II} cos ca < {II} 10~6 • 7,225

und
3,141590632 < n <3,141592749.

L'Enseignement mathém., t. VIII, fasc. 3-4. 24
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Aus diesem Ergebnis sieht man sofort, welch ungünstigen
Einfluss die unzureichende Bekanntschaft mit dem wahren Wert
von t hat. Darüber wird noch ausführlicher zu handeln sein.
Bemerken wir nur vorgreifend, dass, wie wir zeigen werden,

t « 0,62 ist und dass damit cos oct « 0,9874, also { II } cos oct «
« 10"6 • 7,134 ist. Das ergibt dann n « 3,141592658 — einen
Wert, von dem acht Dezimalen richtig sind.

5. Besitzt man das erwähnte Ergebnis nicht, so bleiben
folgende Möglichkeiten, n genauer zu ermitteln: Einmal kann
man bei n 3 bleiben, aber von oc 15° zu einem kleineren oc,

etwa oc 10° oder oc 5°, übergehen. Dann wird nicht nur
{II} erheblich kleiner, sondern auch die Schranken zwischen
denen cos oct liegt, werden enger. Dem aber steht gegenüber, dass

die Zahlenkoeffizienten der Sinuswerte in { I } wegen des oc im
Nenner erheblich grösser werden, so dass man, um den Einfluss
der Abrundungsfehler zu kompensieren, die drei Sinuswerte mit
einer angemessenen Zahl von Stellen über die erstrebte Genauigkeit

hinaus berechnen muss. Eine andere Möglichkeit ist, dass

man bei oc 15° bleibt, aber n 3 durch n — 4 ersetzt, also
die neun Interpolationsstellen 0°, ±15°, ±30°, ±45°, ±60°
benutzt. Dass in dem {II} entsprechenden Ausdruck der Exponent

dann nicht mehr sieben, sondern neun ist, wird teilweise
dadurch kompensiert, dass jetzt 0 < t < 4 ist. Bei der
numerischen Rechnung liefert der { I } entsprechende Ausdruck sofort
sechs richtige Stellen, da das Analogon von {II } ungefähr gleich
10"7 ist. Zusammen erhält man wieder bei Abrundung n auf
sieben Stellen.

Es gibt in der Analysis Darstellungen von Korrekturgliedern,
denen gemeinsam ist, dass sie letzten Endes Abkömmlinge des
Rolleschen Satzes sind. Dahin gehören die verschiedenen Formen
des Restglieds der Taylorformel, das Cauchysche Restglied bei
der Interpolation, die Korrekturglieder bei den Quadraturformeln

wie der Simpsonschen Regel und auch das Glied {II} cos oct

in (3,10). In allen diesen Darstellungen tritt eine Zahl, die wir t
nennen wollen, auf, von der nur feststeht, dass sie existiert und
einem bekannten Intervall angehört. Will man nun eine solche

Darstellung eines Korrekturgliedes beim praktischen Rechnen
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verwenden, so bleibt nichts übrig, als für das Glied eine obere

und eine untere Schranke zu ermitteln. Die Differenz dieser

Schranken ist im allgemeinen unangenehm gross; eine Verbesserung

wäre nur möglich, wenn es gelänge, das Intervall, in
dem t liegen muss, ohne Abänderung der anderen Daten erheblich

zu verkürzen. Der Versuch, eine solche Verkürzung wenigstens

in einem oder anderem wichtigen Fall anzugeben, scheint
noch nicht ernsthaft unternommen zu sein. Er kann natürlich
nur gelingen unter zusätzlichen Voraussetzungen über die

Funktion, in deren Argument t auftritt. Darunter wird wohl
immer die Forderung enthalten sein, dass diese Funktion monoton

im strengen Sinn ist, da dann gesichert ist, dass es nur ein
einziges brauchbares t gibt (i. a. wird es mehrere geben). Unter
diesen Umständen ist es wohl nützlich, dass wir zeigen können,
wie sich mit ganz einfachen Mitteln das t unserer Formel (3,8)
ohne zusätzliche Annahmen ziemlich scharf eingrenzen lässt.

6. Hilfsmittel ist neben den zu den elementaren Vorkenntnissen

gehörenden Potenzreihen für sin x und cos x, die wir nur
für kleine Argumente gebrauchen, und der aus den früheren
Ergebnissen zu entnehmenden Ungleichung -k < 3,15, die
tu2 < 10 ergibt, eine triviale Aussage über unendliche Reihen:

Sind in der konvergenten Reihe

oo

(5? 1) s V( 1) dv a0 $^+$2—Ö3 +
0

alle av > 0 und ist weiter av — av+1 > 0 für v ^ 2, so ist

(b? 2) üq < s < Uq —a1 +02»

Wir schreiben jetzt (3,10) unter Benutzung der Abkürzung
ß Oct in der Gestalt

(6, 3) cos ocz cos ß -——.

Statt des Gradmasses für a führen wir das Bogenmass ein. Es
ist wohl kein Irrtum zu befürchten, wenn wir auch dieses mit
oc bezeichnen. Dann lässt sich die Gleichung für cos ß so schreiben :
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14

140a — 210 sin a + 42 sin 2a sin 3a
3

(6, 4) cos ai cos ß

Hier entwickeln wir rechts den Zähler unter Benutzung der
Sinusreihe nach Potenzen von a. Diese Entwicklung beginnt
notwendig mit l*a7 + weil.aus 0<ß<3a folgt: lim cos ß=l.

a->0

Man kann dies natürlich auch durch Ausrechnen der ersten
Koeffizienten der Zählerreihe bestätigen. Da auf der rechten
Seite von (6,4) eine gerade Funktion von a steht, kann man (6,4)

jetzt in der Form schreiben

(6, 5) COSOCT cos ß£ -1)" oc2".

0 (2ju)!

Dabei ist

<6> 6> Bx =7^h-42(5-22"+7 + 32"+5).
(2/7 + 7)!

Insbesondere wird
7 49

(6, 7) B0 1, B1 —, B2 —•v > y o 1 18' 2
110

Es sind notwendig alle Bß >0; denn

(6, 8) 5—22fi+1 + 32^+5 > 32^+5 _32M.27 32^35 _27) > g.

Ferner ist, wenn Cß eine von a und \i abhängige positive Zahl
7T

bedeutet, deren Wert weiter nicht von Belang ist, und -
6

10 :

also oc2 < — < 1 benutzt wird
36

73 r/2fl R r/2^ + 2

(6, 9) — — CJ2yU+ 8) (2/1 + 9).V' ' (2M)! (2M+2)!"VV^

(5 —22"+7 + 32"+s) -a2 (5-22"+32"+7))
> C„(8.9 (5 -22"+7 + 32"+s) —(5 -22"+9 + 32"+7)

> C„(7.32"+7-17.22"+9) > C„(7.36-17.28). 22"+1 > 0.
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Der oben angegebene Reihensatz (6,2) ist somit verwendbar
und ergibt Bja2 a2 B2 a4
(6,10) 1- -î— < cosß< 1- -i— +

2 2 24

7T 10
Da aus ß < 3a ^ — folgt ß2 <—, so kann man auch auf die

2 4

Potenzreihe für cos ß unseren Reihensatz anwenden. Dies ergibt

ß2 ß2 ß4
(6, 11) 1 - — < cosß <1 - — + —.2 H 2 24

Damit haben wir die beiden Ungleichungen erhalten

32t

(6, 12)

ß2 R, a2 R2a4
1 — — < cos ß< 1 h

2 2 24

«
Bia2 ß2 4

1 — < cos ß1 1

2 H 224

R2 a4

12 '
ß4

Bl a2>ß2-P—
1 F 12

das heisst

(6,13) ß2>Btot2-

2
7l2 10

Wegen a ^ergibt sich mit den bekannten Werten
DO DO

von Bx und B2aus der ersten Ungleichung (6,13)

o2
7 / 7-18-10 \ 7 /7(6, 14) ß > — 1 a — I 1

18 V 12-110-36/ 181 264
a2

1799

4752
'

und damit

(6, 15) ß > 0,6152a.

Da bis jetzt nur ß<3a g also <^ - bekannt ist,2 4 2 '

kann man der zweiten Ungleichung (6,13)

(6, 16) ß2 1 - ß~
< R, a2

18
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zunächst nur

19 7 7*94 98
(6,17) —ß2<—a2, d.h. ß2 <-^-a2 —a2

24P 18 18-19 57

entnehmen. Zusammen mit oc also a2 < — —, folgt
6 36 18

70
weiter ß < Benutzen wir das in der zweiten Ungleichung

(6,13), so erhalten >wir

»•18)

oder

21, 35 \ 7
22/1 1 ^ _ a2

18

„ ^ ol 7 3078
1

1197
(6, 19) /? < —. a av

18 3043 3043

Nochmalige Anwendung dieser Schlussweise ergibt dann

(6, 20) ß < 0,62418a.

Das Endergebnis

(6, 21) 0,6152 < t < 0,6242

kann man mit genügender Annäherung auch formulieren:

(6, 22) t Ä/ 0,62.

Die ermittelten Schranken kann man verengen, wenn man

die Voraussetzung a ^ 30° ^in Bögenmass a ^ ^, durch eine

71 \schärfere Vorschrift über oc, z.B. a < 15° a < — ersetzt. Wich-
V

tig wäre es auch, die Abhängigkeit des r von der Zahl 2^ -f- 1

der Interpolationsstellen zu untersuchen oder andere angreifbare
Fragen aus dem gleichen Problemkreis zu betrachten.

Prof. Dr. M. Krafft
Kaffweg 9 a.

Marburg/Lahn
Deutschland.


	BERECHNUNG VON π DURCH INTERPOLATION

