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BERECHNUNG VON = DURCH INTERPOLATION

von Maximilian KRAFFT

(Recu le 15 janpier 1962)

Herrn J. E. Hofmann zum 7. Mdrz 1960 gewidmet.

1. Zur numerischen Berechnung von w benutzt man, wenn
man von den elementargeometrischen Verfahren absieht, so gut
wie ausschliesslich Darstellungen der Funktion arctg z, also
entweder das diese Funktion definierende Integral fiir spezielle
Werte der oberen Grenze, verbunden mit numerischer Integra-
tion, oder die aus dem Integral folgenden Reihenentwicklungen
von Leibniz und Johann Bernoulli. Hier soll ein ganz anders-
artiges Verfahren zur Berechnung von 7 mitgeteilt werden, bei
dem die numerische Rechnung auf ein Minimum zusammen-
schrumpft, sobald man nicht mehr als etwa zehn Dezimalen von
7 ermitteln will. Die Hilfsmittel sind ganz elementar. Wichtig
ist, dass bei diesem Verfahren ein spezieller Fall einer allgemeinen
fiir die Praktische Analysis nicht unwichtigen Frage auftritt, der
anders wie der allgemeine Fall wirklich angreifbar ist und zu
einer befriedigenden Antwort fithrt. Dies soll im Schlussabschnitt
gezeigt werden.

2. Grundlegend fiir die weiteren Ausfiihrungen ist, dass man
die Werte von sin z fir gewisse z (0°, 30°, 45° 60°, 90°) von
vornherein kennt und die Werte fiir weitere x entweder durch
Anwendung des Additionstheorems der Sinusfunktion (z.B. fiir
15° und 75°) oder durch Auflésen einfacher quadratischer oder
kubischer Gleichungen erhélt. So sind z.B. die Lésungen von
y> —3 y + 1 = 0 gleich 2 sin 10°, 2 sin 50°, — 2 sin 70°, die
Losungen von y® —3 y + \/3 = 0 aber 2 sin 20°, 2 sin 40°,
— 2 sin 80°. Man kann sich also mit geringer Miihe die Aus-
gangsdaten auch dann mit der erforderlichen Genauigkeit ver-
schaffen, wenn die zugénglichen Tafeln nicht ausreichen.
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Die Argumente der Sinusfunktion sind hier in Gradmass ge-
geben. Es kann statt dessen auch jedes andere Winkelmass
benutzt werden, das die Kenntnis des Zahlenwertes von = nicht
erfordert. Ausgeschlossen ist jedes Winkelmass, das diese Kennt-
'nis voraussetzt, also vor allem das analytische Bogenmass. Man
kann némlich das Folgende auch auffassen als ein Verfahren,
das Bogenmass eines Winkels zu berechnen, der in einem der
zugelassenen Masse gegeben ist.

Es sei n eine natiirliche Zahl und 0 < «, aber na=< 90°.
Dabei sei o so gewéhlt, dass man die Werte aller sin ju (j = 1,
2, ..., n) kennt oder sich die Werte leicht verschaffen kann.
Dies 1st z.B. der Fall, wenn man sin « (und damit auch cos «)
kennt, doch ist das nicht der giinstigste Fall. Wir interpolieren
nun sin o mit den 2n + 1 Stellen jou (j =0, +1, £2, ..., +n).
Der Einfachheit halber soll alles hergeleitet werden okne Riick-
griff auf die Theorie der Interpolation. Bemerkt sei nur, dass fir
‘uns die Lagrangesche Form des Interpolationspolynoms sich als
zweckmaéssiger erweist als die anderen gebréduchlichen Formen.
Die Voraussetzung na < 90° ist eingefiithrt, weil damit die Ab-
schitzung des Fehlergliedes erleichtert wird. Eine Verallgemei-
nerung unserer Grundannahmen erhélt man, wenn man statt
der Stellen ja (0 =] = n) irgendwelche o; wahlt mit 0 = «, <

<oy <oy < ... <o = 90° Das bietet weiter keine Schwie-
rigkeiten, ist aber fiir die numerische Anwendung kaum zu
empfehlen."

Wir beschrdnken uns bei unseren Darlegungen auf den Fall
n = 3; die Verallgemeinerung auf beliebiges » ist trivial. Da fiir
uns z in der Umgebung von 2 = 0 besonders wichtig sind, folgen
wir den Gewohnheiten der Interpolationsrechnung und fiithren
eine neue Verdnderliche ¢ ein durch

(29 1) | : X =' ot.

3. Interpolationspolynom fir sin x = sin «f mit den Interpo-
lationsstellen jx (j = 0, £ 1, £+ 2, + 3) nennt man jedes Poly-
nom, das fir x = j«, d.h. fir alle t = j, mit sin at wertegleich
ist. Ein spezielles solches Polynem P(t) erhdlt man durch den
Ansatz - o " | :
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(3, 1) P@ = t{4, (=D =N+ A4, -9 —1)
+ Aj (tz—l)(t2—4) }

wobei A,, A,, A noch zu bestimmende Konstanten sind. Setzt
man t =1, 2, 3, so erhilt man die Gleichungen

sin 3o = 120 A;.

Damit ist P(t) bekannt. Nun ist P(¢) nicht das einzige Inter-
polationspolynom fiir sin of, das zu den gegebenen Interpola-
tionsstellen gehort. Es sei Q(t) irgend ein anderes solches Inter-
polationspolynom. Dann ist Q(f) — P({) ein Polynom, das
an allen Interpolationsstellen verschwindet, also die Gestalt
t (12— 1) (2 —4) (2 — 9) p(¢) haben muss, wobei p(t) irgendein
Polynom sein muss. Das heisst alle Interpolationspolynome
haben notwendig die Gestalt

(3, 3) Q) = PO+t~ (*=H(E* =9 p O,

und umgekehrt ist jedes solche Polynom Q(¢) auch ein Interpo-
lationspolynom. Wir benutzen das fiir den Fall, dass p(f) =
= const = p ist, wobei wir iiber p spéter verfiigen.

Die Funktion
(3,4 F(@) =sinat—PH—t(-1)E -4 —-9)p

ist fiir alle ¢ erklédrt, ungerade, unbeschréankt differenzierbar und

verschwindet an allen Interpolationsstellen. Da die Gewohnheit

besteht, sin z und cos x zu schreiben, gleichgiiltig in welchem

Mass das z gemessen wird, die bekannten Ableitungsformeln fiir

beide Funktionen aber nur gelten, wenn das x in Bogenmass

gemessen wird, erhalten wir durch Anwendung der Kettenregel
d sin at  on d cos al on

3, 5 = t’ S ey e . )
( ) i 180 ‘cos o T 130 sin ot

Wir legen nun p fest durch die Forderung, dass F'(0) = 0
sein' soll. So erhalten wir aus (3,4)

o7
(3,6 F'(0) = or —364, ~94;,~44,+36p = 0
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und

o7t

. ; .
3, 7 FY @) = —(Téﬁ> cos at —7!p.

- Da F(t) ungerade ist, sind auch alle seine Ableitungen gerader
Ordnung ungerade. Da weiter F(¢) fiir 0 < ¢t £ 3 mindestens drei
Nullstellen besitzt und geméss (3,6) F(0) = F'(0) = F''(0) =
= F(0) = F"'(0) = Oist, kann der Rollesche Satz auf F(t) und
seine Ableitungen fiir 0 <t < 3 angewendet werden. Folglich
hat F"™(3) mindestens und daher, wie (3,7) zeigt, genau eine
Nullstelle fiir diese . Sie seit = 7. Also ist

3. 8) 1l fan T
, p—?—! T cos oT.

Eingesetzt in (3,6), ergibt sich unter Verwendung der abkiirzen-
den Bezeichnungen '

180 6 ,
{I} =—(364; +9A4, +4A4;) = —(45 sin o —
o o
(3, 9) —9 sin 20+ sin 3a),
18036/ an\? 9 /an\? @ [am\°®
{II} —_ = — — = | — .
7la \180 T\ 180 140\ 180

fir = die Darstellung

(3,7 10) = {I} + {II} cos az.

Da 0 < 7 < 3 ist, haben wir weiter

(3, 11) {IT} cos 3a < {II} cos ar < {II}.

4. Es scheint zunéchst mit (3,10) und (3,11) nicht viel ge-
wonnen, da ja in {II} das zu bestimmende = vorkommt. Der
Vergleich der Flache des Einheitskreises mit der des ihm umbe-
schriebenen Quadrats ergibt sofort = < 4. Ersetzt man in den
beiden in (3,9) gegebenen Formen von { II } das = durch eine
Veranderliche &, so ist die so entstehende Funktion von o und §
bei festem « monoton wachsend in &, bei festem £ monoton
wachsend in «. Das heisst unter Beriicksichtigung von

0 <a£30°
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o /4a\? 9 [430\7 3 [2V
m<—(—) =2 () ==(Z) <0,00251.
4D A <7oc<180> —7-30<180) 70(3)

Wir kénnen daher aus { I }, gleichgiiltig welchen Wert « hat,
sofort die beiden ersten Stellen von w entnehmen. Setzt. man
aber « < 15° voraus, so erhilt man mit = = 3,2 sofort { II } <
< 8,3 . 107° Wir kénnen daher bereits einen neuen Ndherungs-
wert fiir = aus { I } entnehmen, der mit einem Fehler von kleiner
als 1.107° behaftet ist. Dabei ist dieser Fehler fiir die Genauig-
keit, die wir erzielen konnen, unerheblich. Denn wenden wir die
bekannten Regeln der Fehlerrechnung auf die oben eingefiihrte
Funktion von « und & an und setzen wir hintennach & = =, so
finden wir, unter 4 den Fehler des benutzten Néherungswertes
fir = verstanden, fiir 4 { II } n&dmlich den Fehler von {II },

(4, 2) A{II} = %{H}A.

Da in unserem Fall, wie schon die grobe Abschéitzung von
{II'} zeigt, {II} < 107> und |4 | < 107% ist, ist [A{II}]| <
< 2,4 107*°. Die Ungenauigkeit des zur Berechnung von { IT }
benutzten Wertes von w ist somit unerheblich, wenn wir nur
auf acht Dezimalen rechnen.

Rechnet man mit « = 15°, so findet man aus

, Sin 45° =

NG

N =
N[

| 1, _ _
sin 15° = 4_1(\/6 —/2), sin 30° =
leicht auf neun Stellen genau
(I} = 3,141585524.

Mit Benutzung des oben ermittelten rohen Néherungswertes
far {II} und der Fehlerrechnung sehen wir, dass man { II }
mit 7w ~ 3,14159 hinreichend genau berechnen kann. Dies
ergibt { I } = 107° . 7,225. Nach (3,11) ist daher

107°-5,108 = {II} cos 45° < {II} cos ar < {II} = 1076-7225

und
3,141590632 < 7 < 3,141592749.

L’Enseignement mathém., t. VIII, fasc. 3-4. 2%
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Aus diesem Ergebnis sieht man sofort, welch ungiinstigen
Einfluss die unzureichende Bekanntschaft mit dem wahren Wert
von t hat. Dartiber wird noch ausfiihrlicher zu handeln sein.
Bemerken wir nur vorgreifend, dass, wie wir zeigen werden,
v &~ 0,62 ist und dass damit cos at &~ 0,9874, also { IT } cos ar ~

~ 107°- 7,134 ist. Das ergibt dann = ~ 3,141592658 — einen
Wert, von dem acht Dezimalen richtig sind.

5. Besitzt man das erwihnte Ergebnis nicht, so bleiben
folgende Mdoglichkeiten, = genauer zu ermitteln: Einmal kann
man bei n = 3 bleiben, aber von « = 15° zu einem kleineren «,
etwa o = 10° oder « = 5°, iibergehen. Dann wird nicht nur
{ II } erheblich kleiner, sondern auch die Schranken zwischen
denen cos ot liegt, werden enger. Dem aber steht gegeniiber, dass
die Zahlenkoeffizienten der Sinuswerte in { I} wegen des « im
Nenner erheblich grosser werden, so dass man, um den Einfluss
der Abrundungsfehler zu kompensieren, die drei Sinuswerte mit
einer angemessenen Zahl von Stellen tiber die erstrebte Genauig-
keit hinaus berechnen muss. Eine andere Mdoglichkeit ist, dass
man bei « = 15° bleibt, aber n = 3 durch n = 4 ersetzt, also
die neun Interpolationsstellen 0°, +15°, +30°, +45° +60° be-
nutzt. Dass.in dem { II } entsprechenden Ausdruck der Expo-
nent dann nicht mehr sieben, sondern neun ist, wird teilweise
dadurch kompensiert, dass jetzt 0 < v < 4 ist. Bei der nume-
rischen Rechnung liefert-der { I } entsprechende Ausdruck sofort
sechs richtige Stellen, da das Analogon von { IT } ungefihr gleich
1077 ist. Zusammen erhélt man wieder bei Abrundung = auf
sieben Stellen. _

Es gibt in der Analysis Darstellungen von Korrekturgliedern,
denen gemeinsam ist, dass sie letzten Endes Abkommlinge des
Rolleschen Satzes sind. Dahin gehéren die verschiedenen Formen
des Restglieds der Taylorformel, das Cauchysche Restglied bei
der Interpolation, die Korrekturglieder bei den Quadraturfor-
meln wie der Simpsonschen Regel und auch das Glied { II } cos ar
in (3,10). In allen diesen Darstellungen tritt eine Zahl, die wir =
nennen wollen, auf, von der nur feststeht, dass sie existiert und
einem bekannten Intervall angehort. Will man nun eine solche
Darstellung eines Korrekturgliedes beim praktischen Rechnen
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verwenden, so bleibt nichts iibrig, als fiir das Glied eine obere
und eine untere Schranke zu ermitteln. Die Differenz dieser
Schranken ist im allgemeinen unangenehm gross; eine Verbes-
serung wire nur moglich, wenn es geldnge, das Intervall, in

dem 7 liegen muss, ohne Abédnderung der anderen Daten erheb-

lich zu verkiirzen. Der Versuch, eine solche Verkiirzung wenig-
stens in einem oder anderem wichtigen Fall anzugeben, scheint
noch nicht ernsthaft unternommen zu sein. Er kann natiirlich
nur gelingen unter zusétzlichen Voraussetzungen iiber die
Funktion, in deren Argument t auftritt. Darunter wird wohl

immer die Forderung enthalten sein, dass diese Funktion mono-

ton im strengen Sinn ist, da dann gesichert ist, dass es nur ein
einziges brauchbares v gibt (i. a. wird es mehrere geben). Unter
diesen Umsténden ist es wohl niitzlich, dass wir zeigen konnen,
wie sich mit ganz einfachen Mitteln das © unserer Formel (3,8)
ohne zusétzliche Annahmen ziemlich scharf eingrenzen lasst.

6. Hilfsmittel ist neben den zu den elementaren Vorkennt-
nissen gehorenden Potenzreihen fiir sin # und cos z, die wir nur
fir kleine Argumente gebrauchen, und der aus den fritheren
Ergebnissen zu entnehmenden Ungleichung = < 3,15, die
72 < 10 ergibt, eine triviale Aussage iiber unendliche Reihen:

Sind in der konvergenten Reihe

(69 1) § = Z(_l)vav = ao_a1 +a2“a3+...
0

alle a, > 0 und ist weiter a, — a,,; > 0 fiir ¢ = 2, s0 ist
(6, 2) ag—a; <s§ <ayg—aq+a,.

Wir schreiben jetzt (3,10) unter Benutzung der Abkiirzung
B = ar In der Gestalt

(6, 3) Cos ot = cos fi = r—{}

ary

Statt des Gradmasses fiir « fithren wir das Bogenmass ein. Es
18t wohl kein Irrtum zu befiirchten, wenn wir auch dieses mit
« bezeichnen. Dann lisst sich die Gleichung fiir cos B so schreiben
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, 14
1400 — 210 sin a+42 sin 2a——§sin 3a |

(6, 4 cosat = cosf = 7
~ o

Hier entwickeln wir rechts den Zéihler unter Benutzung der

Sinusreihe nach Potenzen von «. Diese Entwicklung beginnt

notwendig mit 1-a7+..., weil aus 0 <f <3 folgt: lim cos p=1.

a—>0

Man kann dies natiirlich auch durch Ausrechnen der ersten
Koeffizienten der Zihlerreihe bestédtigen. Da auf der rechten
Seite von (6,4) eine gerade Funktion von « steht, kann man (6,4)
jetzt in der Form schreiben

B
(6, 5) cos oT = cosﬁ = Z(—l)“(2 T a2k,
Dabei 1st
' (2w! 2u+7 | A2p+ 5y
(6, 6) p _(2ﬂ+7)! 42(5,_2 Rl g 3207,
- Insbesondere wird
7 49
(6, 7) BO - 1, B1 = e BZ = —

187 110
Es sind notwendig alle B, > 0; denn
(6, 8) 5—22#FT7 4323 5 32ﬂ+5—324-27 = 324(35-27) > 0.
Ferner ist, wenn C, eine von o und p abhéngige positive Zahl

™
bedeutet, deren Wert weiter nicht von Belang ist, und a < s
10 S |
also a2 < 36 < 1 benutzt wird

B o** Bwloc?““’2
Qu!  Qu+2)! |
(5_22p+7+>3,2u+5)_a2 (5_22,i+9+32;;+7))

(6, 9) — C,(2u+8) (2u+9).

> Cu(8°9(5—22ﬂ+7+32u+5)—(5*22”+9+32“+7))
> C,(1.3%77=17.2247%) > C,(7.3°~17.2°%) . 2% > 0.
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Der oben angegebene Reihensatz (6,2) ist somit verwendbar

und ergibt
B, o? ' Bya* Bydt
< <1- + .
cos p 2 24

(6, 10) 1—

10 :
gfolgt B2 < 50 S0 kann man auch auf die
Potenzreihe fiir cos 8 unseren Reihensatz anwenden. Dies ergibt
32 B> B

6, 11 1P < <12 P2
(6, 11) 5y <cosh 2 T

Da aus B < 3a =

Damit haben wir die beiden Ungleichungen erhalten

1 2< B <1 Bla2+B2a4
11— — < cos — )
2 2 24
6, 12)
o Bl 062 ﬂZ ﬁ4
1-—- < <l——4+—,
| cos 5 + 24
das heisst
B, o* ' g
6, 13 2>B>—2—, Ba®>p-—"_.
( ) B 1 1 1 & B 12
, _m 10 : |
Wegen « ggg < Y- ergibt sich mit den bekannten Werten

von B; und B, aus der ersten Ungleichung (6,13)

7 7-18:10 7 7 1799
6, 14) p>>—[(1—-— Vo2 =— (1= — |o? = 22 &2
(6,14 5 18( 12-110-36>°C 18( 264>°C 4752
und damit

(6, 15) B > 0,6152a.

10 5

. . A
Da bis jetzt nur f < 30 < 7> also p? < 75 bekannt ist,

kann man der zweiten Ungleichung (6,13)

p? 7
69 16 : 2 1'———— B 2 = — 2
( ) B ( 5 Lo T
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zundchst nur

19 7 . 724 28

6, 17) —p*<—a?, d.h. B2 < 2 = —o?
© 1D 5 P < 15" P <z ~57°

. T ) 10 5
entnehmen. Zusammen mit o §g, also « <3—6 =1—g, folgt

, 0 L . .
weiter g% < 313" Benutzen wir das in der zweiten Ungleichung

(6,13), so erhalten .wir

- 35\ 7
6, 18 2(1 -2 )< o2
(6, 19) | A( 3078) 18"
oder
7 3078 , 1197
(6, 19) e g g

< 18°3043 % — 303 %"
" Nochmalige Anwendung dieser Schlussweise ergibt dann
(6, 20) B < 0,62418a.
Das Endergebnis ° | |
(6, 21) 0,6152 .< 7 < 0,6242
kann man mit gentigender Annéhefung auch ‘formulieren: _
(6, 22) T ~ 0,62,
Die ermittelten Séhranken kann man verengen, wenn man

T
die Voraussetzung o < 30° (in Bogenmass o < E)’ durch eine

T
schérfere Vorschrift iiber «, z.B.a < 15° (oc < 1—2—> ersetzt. Wich-

tig wire es auch, die Abhéngigkeit des v von der Zahl 2n + 1
der Interpolationsstellen zu untersuchen oder andere angreifbare
Fragen aus dem gleichen Problemkreis zu betrachten.

Prof. Dr. M. Krafft
Kaftweg 9a.
Marburg/Lahn
Deutschland.
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