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DIE BEHANDLUNG DES HAUPTSATZES
DER INTEGRALRECHNUNG IN DER SCHULE 1ty

von L. N. H. BunT

1. Die Integralrechnung ist ein Punkt des Mathematikpro-
gramms der holldindischen hoheren Schulen vom mathematisch-
naturwissenschaftlichen Typus. Sie wird in der hochsten Klasse
unterrichtet und stellt den zweiten Teil des Unterrichts in der
Infinitesimalrechnung dar. Der erste Teil umfasst die Elemente
der Differentialrechnung. |

Obwohl man nicht sagen kann dass es in der Natur der Dinge
liegt das Studium der Infinitesimalrechnung mit der Differential-
rechnung anzufangen, scheint diese Anordnung des Stoffes in der
hoheren Schule doch wohl allgemein iiblich zu sein. Auf jeden
Fall geschieht es auf diese Weise in den holléndischen Schulen.
Man behandelt bei der Differentialrechnung folgende Themen:
Grenzwerte von Folgen und Funktionen, Stetigkeit und Diffe-
renzierbarkeit; Ableitung von ganzen rationalen Funktionen,
von trigonometrischen Funktionen, von Wurzelfunktionen, von
Produkten und Quotienten differenzierbarer Funktionen; die
Kettenregel; die Berechnung von Extremwerten und was weiter
zur sog. Kurvendiskussion gehort, einschliesslich der geome-
trischen Deutung des Vorzeichens der zweiten Ableitung.

Und dann, ganz am Ende dieser Kursus, kommt die Behand-
lung der Elemente der Integralrechnung. Diese umfasst: das
unbestimmte Integral, dargestellt als Flache deren Inhalt sich
mit z verdndert; die grundlegende Beziehung zwischen einem
unbestimmten Integral und der zu integrierenden Funktion, das
heisst: die Ableitung eines unbestimmten Integrals ergibt die
zu integrierende Funktion; einige elementare unbestimmte In-
tegrale; das bestimmte Integral und sein Zusammenhang mit
dem unbestimmten; die Berechnung des bestimmten Integrals;
und einige praktische Anwendungen, wie die Arbeit als Integral,

1) Am 27. Juni 1961 als Vortrag beim Seminar der C.I.E.M. in Lausanne gehalten.
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das elektrische Potential, und die Berechnung des Volumens
eines Korpers.

2. Bevor wir zur nidheren Besprechung des Unterrichts in der
Integralrechnung iibergehen, mochte ich etwas iiber die Veran-
schaulichung des Differentialquotients und der abgeleiteten
Funktion sagen.

Fig. 1.

Die Ableitung y," = f'(x,) der Funktion y = f(z) fir einen
gewissen Wert von z wird in der Figur gedeutet als der Tangens
des Winkels zwischen der Tangenten im Punkte P mit Abszisse
xy an der Kurve y = f(x) und der positiven z-Achse (Fig. 1). Man
bekommt diesen Tangens als Limes des Tangens. .des Winkels
welchen eine um P drehende Sekante der Kurve mit der posi-
tiven z-Richtung bildet. Wegen des Auftretens so vieler Tan-
genten liegt es auf der Hand den Einheitskreis um P mit der
ihn rechtsseitig berithrenden vertikalen Tangente zu zeichnen.
Hiervon wird von der bewegenden Sekante ein Stiick abge-
schnitten gleich dem Tangens des Winkels zwischen dieser
Sekante und der z-Achse; so ist z. B. AQ’ = tg = APQ. Lisst

man nun im Differenzenquotient A—y den Nenner nach null
X
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streben, dann bewegt sich der Punkt Q lings der Kurve nach P,
wihrend die Projektion Q’ von Q auf der Tangentenlinie im all-
gemeinen einem Grenzstand zustrebt. Wir betrachten weiter
einen Punkt R, an der anderen Seite von P auf der Kurve
gelegen, und auch diesen Punkt lassen wir beliebig nahe an P
heranriicken und projizieren wir auf die vertikale Tangente. Der
normale Fall ist, dass Q" und R’ demselben Grenzstand zu-
streben. Nennt man diesen Punkt §, dann ist AS der Limes des
Differenzenquotients, das heisst die Ableitung.

~4 oYy vy

Fig. 2.

Diese Veranschaulichung des Differentialquotients wollen wir
jetzt benutzen um die. Ableitung einer gegebenen Funktion gra-
phisch darzustellen. Man braucht dabei nicht die analytische
Form der gegebenen Funktion zu kennen; es geniigt wenn die
Funktionskurve gezeichnet vorliegt. Eine praktische Methode
die abgeleitete Kurve Punktweise zu zeichnen ist folgende. Im
oberen. Teil von Fig. 2 ist die Funktion y = f(x) graphisch dar-

s
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gestellt, und im unteren Teil wollen wir die abgeleitete Kurve
zeichnen. Um die Ableitung im Punkte P zu zeichnen, konnte man
4 PAS von Fig. 1 benutzen. Es ist aber praktischer diesen und

alle solche Dreiecke parallel zu verschieben nach dem Punkt .

mit Abszisse —1 auf der unteren z-Achse. Die Konstruktion
des Punktes P’ ist dann wie folgt: man zieht die Tangente in P
und bringt durch den Punkt —1 der unteren z-Achse die Paral-
lele; durch den Schnittpunkt mit der y’-Achse zieht man 'eine
Parallele zur z-Achse; der Schnittpunkt mit der Vertikalen
durch P ergibt den Punkt P’. Wenn man die Handgriffe einmal
kennt, kann man sehr rasch eine grosse Anzahl Punkte der ab-
geleiteten Kurve konstruieren. Dabei braucht man nicht einmal
die Tangenten an der Urkurve tatsichlich zu zeichnen; es geniigt
wenn man das Zeichendreieck in der guten Richtung anlegt, es
parallel verschiebt nach dem Punkte —1, den Schnittpunkt mit
der y'-Achse angibt, usw. Arbeitet man auf graphischem Papier,
dann braucht man gar keine Linien zu ziehen.

Der Effekt ist am grossten wenn man einige Ableitungskurven
schon beim Anfangder Behandlung der Differentialrechnung zeich-
nen lagst. Es ist fiir viele Schiiler eine Ueberraschung beider Funk-
tion % 22 als abgeleitete Kurve eine gerade Linie zum Vorschein zu
bringen, bei {22 eine Parabel und bei sin z und cos x Kurven, die
kongruent sind mit den Urkurven. In dieser Weise werden induktiv
~ schon die Gleichungen von einigen Ableitungen gefunden, was das
Interesse erregtfiir den spéter zu erbringenden Beweis.

3. Jetzt wollen wir uns niher beschaftigen mit dem Beweis
des Hauptsatzes der Integralrechnung, das heisst des Satzes

[fx)dx = f(b)—f(a).

Der in der Schule iibliche Beweis besteht aus den folgenden
Teilen: '

a) Ist f(x) eine primitive Funktion von f'(z), dann hat jede
primitive Funktion von f'(z) die Form f(z)+ C;

b) der von der Kurve y = f'(x), den zu den Abszissen a und
x gehorigen Ordinaten und der z-Achse begrenzte Flacheninhalt
F7 ist eine primitive Funktion von f'(z);
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¢) aus ¢ und b ergibt sich: F; kann geschrieben werden in
der Form f(z)+ C,;

d) C = — fla);
e) aus ¢ und d ergibt sich: F; = f(x)—f(a);

b
f) F2= lim X f'(x)dx = [ f'(x)dx;

Ax—0

b
g) aus e und [ ergibt sich: [ f'(x) dx = f(b)—f(a).

4. Ein solcher Beweis ist langatmig und verwickelt. Die
Schiiler finden es schwierig die zahlreichen Teile dieses Beweises
auseinander zu behalten und das Ganze zu tibersehen. Wenn man
den Beweis also in dieser Weise erbringen will, ist es zum wenig-
sten von Bedeutung, dass die verschiedenen Unterteile so viel
wie moglich graphisch illustriert werden. Ich habe nicht die
Absicht, fiir den vorhin angefiihrten Beweis Propaganda zu
machen; ich mochte gleich einen ganz anderen Beweis vor-
schlagen. Zuvor ist es aber interessant nachzugehen inwieweit
die Teile des erwidhnten Beweises anschaulich zu deuten sind
und wo unsere Anschauung uns im Stich l&sst.

a) Ist f(z) eine primitive Funktion von f'(x), dann hat jede
primitive Funktion von f'(z) die Form f(z)+ C.

Mit diesem Satz und ihrem Beweis wird in den Schulbiichern
auf allerhand Weise umgesprungen. Manchmal wird der Satz
gar nicht genannt aber wohl stillschweigend benutzt; oder er
wird genannt und es wird bemerkt, dass er nicht bewiesen werden
wird; bald wird er genannt und iiberdies bewiesen, aber dann
wird entweder der unbewiesene Hilfssatz verwendet, dass nur
von einer konstanten Funktion die Ableitung identisch gleich
null ist, oder derselbe Hilfssatz wird verwendet und auch be-
wiesen, unter Benutzung von anschaulichen Hilfsmitteln.

Nach meiner Meinung kann man diesen Satz am besten vor-
bereiten indem man den Schiilern die graphische Darstellung
einer Funktion /'(x) gibt und sie auffordert dazu die graphische
Darstellung einer primitiven Funktion zu zeichnen. Es zeigt
sich, dass die primitive Kurve in willkiirlicher Hhe angefangen
werden kann, und ebenso an welcher Klippe die Konstruktion
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scheitern wird. Man kann nédmlich wohl damit anfangen (Fig. 2)
auf der gegebenen Kurve einen Punkt P’ zu wihlen, dann durch
P’ eine Parallele zur z-Achse ziehen bis zum Schnittpunkt
mit der y'-Achse, diesen Punkt mit dem Punkte —1 verbinden,
und die Verbindungslinie parallel verschieben bis sie durch P
geht, wobei P irgendwo senkrecht iiber P’ angenommen ist;
damit hat man in der Tat die Tangente in P an der primitiven
Kurve durch P konstruiert. Wahlt man aber sodann einen
zweiten Punkt, Q’, auf der gegebenen Kurve und in der Néahe
‘von P’, und versucht man dieselbe Konstruktion fiir Q' auszu-
- fithren, dann findet man jetzt wohl die Richtung der Tangente
in @, aber nicht diese Tangente oder den Punkt Q selbst. Und
es ist also ebensowenig moglich den Schnittpunkt der Tangenten

in P und Q zu finden. Trotzdem kann man doch wohl eine ziem-

lich gute Annéherung der gesuchten primitiven Kurve bekom-
men, wenn man wie folgt den Knoten zerhaut: man wihlt
einfach als Abszisse des gesuchten Schnittpunktes das Mittel der
(bekannten) Abszissen der Berithrungspunkte P und Q, und
handelt in allen folgenden Féllen in derselben Weise.

Intuitiv ist der Satz sehr plausibel: betrachtet man zwei
primitive Kurven, dann kann man sich einfach nicht vorstellen,
- dass wohl immer die Tangenten in zwei vertikal iiber einander
liegenden Punkten parallel sind, aber dass die Entfernung solcher
* Punkte nicht konstant ist. Nun wird dem Beweis, wie vorhin
schon angedeutet, wohl folgende Form gegeben. Sind f(x) und
g(x) zwel primitive Funktionen von f'(z), dann ist die Ableitung
von g(x)—f(x) tberall null. Thr Bild hat also in jedem ihrer
- Punkte eine Tangente die parallel zur z-Achse ist. Daraus folgt,
dass das Kurvenbild selbst eine Gerade, parallel zur z-Achse ist.
Also g(z)—f(z) = C, und also g(x) = f(z)+ C. Man betrachtet
dann den Hilfssatz, dass eine Kurve deren Tangenten alle
parallel zur z-Achse sind, selbst eine Gerade, parallel zur z-Achse
- ist, als selbstverstidndlich. Dieser Hilfssatz ist in der Tat intuitiv
ganz klar, ebenso wie der Satz den wir mit dessen Hilfe beweisen
wollen. Es ist mir aber unmdéglich zu sagen, welchen von den
Zweien ich den selbstverstandlichsten finde, den Satz selbst oder
den Hilfssatz, und deswegen kommt es mir vor, dass man den
angefithrten Beweis ohne Nachteil weglassen kann.
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Bekanntlich kann man einen einfachen analytischen Beweis
des genannten Hilfssatzes geben unter Benutzung des Mittel-
wertsatzes der Differentialrechnung. Dieser Satz steht aber nicht

" auf dem mathematischen Programm der holléndischen Schulen.

Y-i“’\x

l” il . y

Fig. 3.

5. b) DerFliacheninhalt /7 ist eine primitive Funktion von f'(z).
- Zuerst soll klargemacht werden, dass F; eine Funktion von z
ist. Dazu kann man z. B. von der Funktion ¥y = mz ausgehen,
(Fig. 3), und die schraffierte Flache als Funktion von =z, die
Abszisse des Punktes A, berechnen und graphisch darstellen.
Der Inhalt von A OAA' ist Y/,ma?, d. h. es entsteht eine Funk-
tion welche den Schiilern schon bekannt ist. In dieser Weise wird
nicht nur gezeigt, dass F'; eine Funktion von x darstellt, sondern
die Schiiler sehen jetzt auch wie einfach die Art einer solchen
Funktion sein kann; iiberdies werden sie induktiv mit der Tat-
sache bekannt gemacht, dass eine solche Funktion gerade eine
primitive Funktion von f'(x) ist.

e A S s e o
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Auch der Beweis des allgemeinen Falles, namlich dass F3
eine primitive Funktion von f'(x) darstellt, kann man noch aus
einer Figur ablesen. Bezeichnen wir F; mit F(z), dann soll die
Definition der Ableitung von F(z), lim (“h]z_F ()

h—0
wandt werden. Diese Limesanndherung kann man jetzt nicht in
der iblichen Weise in einer Figur deuten, namlich mittels einer
Sekante, die gedreht wird bis sie ihren Limesstand erreicht. Eine
Zunahme der Funktion F(z) wird jetzt veranschaulicht durch
ein Flachenstiick. Etwas dhnliches ist den Schiilern nicht vorher
begegnet und, soweit ich sehen kann, ist es auch nicht vorzu-
bereiten durch die Losung von praktisch tauglichen Uebungs-
aufgaben, wie das der Fall ist bei der Behandlung des Differen-
tialquotienten als des Tangenten eines Winkels. Aber auch in
diesem neuen Falle gibt es jedenfalls eine geometrische Interpre-
tation der Zunahme der Funktion, welche iiberdies eine geo-
metrische Interpretation des Differenzenquotienten gestattet.
Wenn man namlich kein Bedenken hat gegen die stillschweigende
Anwendung des Satzes von Weierstrass dass eine kontinuierliche
Funktion jeden Wert zwischen dem kleinsten und grossten Wert
annimmt, wird dieser Differenzenquotient dargestellt durch die
Ordinate eines Punktes des krummlinigen oberen Randes des
schmalen Streifens, der AF darstellt. Und dann kann man
weiter in der Figur unmittelbar sehen, dass der Limes dieser
Ordinate gleich f(x) ist, wenn Az nach null strebt. Ich glaube,
dass es sehr wichtig ist diesen Teil des Beweises in einer solchen
konkreten Form zu erbringen. Es ist merkwiirdig, dass die
meisten Schulbiicher den Beweis nicht in dieser Form geben,
und ich kann das nur erkldren aus einer gewissen Abneigung
gegen die Anwendung eines in der Schule nicht bewiesenen
Satzes, wie des Weierstrass’schen Satzes. Man beweist ndmlich
den Satz, dass

, ange-

fim F (x +4x) —F (x) — (%),

Ax—0 Ax

meistens in folgender Weise (Fig. 4):
Inhalt Rechteck PQRS < AF < Inhalt Rechteck PQR'S’,

(%) 4Ax < AF < f'(x +4x) - 4x,
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f(x) < A—Ii <f"(x + Ax),
Ax

Natiirlich ist es gar nicht schwierig einzusehen, dass die letzte
Regel eine logische Konsequenz der ersten ist; aber die Einsicht
dass der Satz vollig selbstverstiandlich ist, braucht nicht an-

Y

Y= %(X)

s ______/
r
|
| :
{

s

- — — 4R

L Q

(=3 — AX -—

Fig. 4.

wesend zu sein. Die geometrische Deutung hat im Anfang eine
gewisse Rolle gespielt, namlich wo man zu einem “unteren® und
einem “oberen“ Rechteck gelangt, aber das intuitive Versténd-
nis wird gerade in dem entscheidenden Moment ausgeschaltet
und durch einen mechanischen algebraischen Prozess ersetzt:
die Glieder von zwei Ungleichungen durch eine Zahl Az teilen,
Az nach null streben lassen und den Differentialquotienten auf-
fangen, der aus dem Automaten rollt. Wir sollten uns nicht
beklagen wenn die Schiiler uns hier “schwierig® finden.

Ich iibergehe die mogliche Veranschaulichung der iibrigen

Glieder des iiblichen Beweises des Hauptsatzes. Nur mochte ich
noch hinzufiigen, dass das Glied f):

P se— 5
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y
Fb'= lim Xf' (x)4x = [ f'(x)dx
4x—-0 a
in der Schule nicht streng behandelt werden kann. Wir nehmen
an, dass intuitiv klar ist was man unter den Flacheninhalt einer
krummlinigen Figur verstehen soll, und dass es keinen Unter-
schied macht in welcher Weise man die Rechtecke wéhlt, deren
Summe diesen Flacheninhalt approximieren soll, wenn man nur
dafiir Sorge tragt, dass sie sich der Kurve anschliessen und ihre

maximale Breite nach null strebt.

6. Jetzt mochte ich zeigen, dass es moglich ist einen Beweis
zu erbringen, den die Schiiler nicht nur leicht verstehen kénnen
weill er viel weniger Glieder umfasst und sich ihrer intuitiven
Einsicht vollig anschliesst, sondern auch beinahe von ihnen
selbst gefunden werden kann. Dabei wollen wir voraussetzen dass
die vorhin erwihnten Elemente der Differentialrechnung be-
handelt worden sind, inklusive der Bedeutung der zweiten Ab-
leitung, dass die Definition des bestimmten Integrals als Limes
einer Summe von Rechtecken gegeben worden ist, und die
Begriffe “kontinuierlich® und “differenzierbar®, auch in ihrer
geometrischen Bedeutung, behandelt worden sind. Insbesondere
wollen wir annehmen, dass die Schiiler recht griindlich geiibt
worden sind in dem Zeichnen der abgeleiteten Kurve in der
Weise die ich schon auseinandergesetzt habe, und z. B. auch
schnell die -abgeleitete Kurve zu zeichnen wissen, wenn die
Urkurve eine Gerade ist oder aus einer endlichen Anzahl Linien-
segmenten besteht. &

Wir stellen uns jetzt vor, dass wir damit anfangen den
Schiilern eine Reihe von Aufgaben vorzulegen die selbstdndig
zu losen sie aufgefordert werden. Die erste Aufgabe ist’ folgende.

Aufgabe 1. a) Kontrolliere in Fig. 5 die Konstruktion der
Abgeleiteten Kurve y' = f'(z) von der Kurve y = f(x).

b) Beweise: F = htga = p = f(b)—f(a) (das heisst: die
Anzahl der Flicheneinheiten der schraffierten Flache ist gleich
der Anzahl der Lingeneinheiten des Segmentes BC. .

In den Aufgaben 2 und 3 wollen wir voraussetzen, dass die
Funktione f(x) definiert sind fiir die Werte von z die zum
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Interval (a, b) der z-Achse gehéren, und dass die Funktif)ns-
kurven Linienketten sind; im oberen Teil der zugeh'(')mge?n
Figuren 6 und 7 sind diese Kurven gezeichnet. Wihlt man 1n

Y

Fig. 5.

Fig. 6 einen Punkt irgendwo zwischen A und P, dann 1st die
Steigung der Kurve, das heisst die Funktion y’ = f'(z), in die-
sem Punkt gleich dem Tangenten des Winkels zwischen 4P und
der positiven z-Richtung. Analog fiir einen Punkt zwischen P
und B. Im Punkte P aber gibt es keine Ableitung. Ebenfalls
gibt es keine Ableitung in den Punkten P, Q, R und § von Fig. 7.
Es ergibt sich, dass bei einer solchen Funktion y = f(z), darge-
stellt von einer Linienkette, die Ableitung y' = f'(x) fiir einige
Werte von z nicht definiert ist; die abgeleitete Kurve wird jetzt
aus zwel oder mehreren wagerechten Liniensegmenten bestehen,
wozu nicht alle Endpunkte gerechnet werden sollen.

Aufgabe 2. a) Kontrolliere in Fig. 6, dass die abgeleitete
Kurve y' = f'(z) der Urkurve y = f(z) aus den zwei Linien-
segmenten CD und EF (ohne die Endpunkte D und E) besteht.

b) Beweise: ZF = p = f(b)—f(a). (ZF ist die Summe der
Inhalte der schraffierten Rechtecke.)

L’Enseignement mathém,, t. VIII, fasc. 3-4. 21
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Aufgabe 3. Die analogen Fragen fiir Fig. 7.
In jeder der Figuren 8 bis 11 ist immer der-zwischen den
Punkten A und B liegende Teil derselben Kurve y = f(x) ge-

Y B Y= Yoo
i
I
|
|
|
v
|
l
|
|
i
l
'
l l
S S
| :
= i o X
[ | [
I | N
vi | | .
! [ - ,
- = v'= Yo
/ |
/ |
/ |
/ | ' |
C D
/ Pus
.c///’/ % //{\\ X
-1 a -3
Fig. 6.

zeichnet, samt dem entsprechenden Teil A’B’ der abgeleiteten
Kurve y' = f'(x). Wir setzen voraus, dass der betrachtete Teil
der Funktion positiv ist und monoton wichst, und dass die
zweite Ableitung positiv ist.

Aufgabe 4 (Fig. 8). In A und B sind die Tangenten AP und
BP an die Kurve y = f(z) gezogen. Diese bilden zusammgen den
Linienzug A PB, die wir als die Bildkurve der Funktion y = g,(z)
betrachten wollen. Beweise:

a) Die abgeleitete: Kurve y' = g,'(z) der Kurve y = g;(x)
besteht aus dem horizontalen oberen Rand der schraffierten
Figur (ohne die Punkte C und D).

b) ZF = f(b) —f(a).

Frage. Wenn im unteren Teil von Fig. 8 die Bildkurve der
Funktion y’ = f'(x) gezeichnet wvorliegt, aber nicht die Bild-
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kurve von y'= g,'(z), kann man dann die zuletztgenannte
Kurve auch zeichnen unter Benutzung des Bildes der Funktion
y’" = f'(z) und ohne den Punkt —1 der xz-Achse zu benutzen ?

Y

py=§e0
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|
|
|
| r
i [
| {
| |
| [
| |
| v
I [ l
| i I i | l .
I l | 1 " X
oy i [ | 'l ;b
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/ | | | |
/ | | | |
/ | I ! !
// I l | {
/ | l | |
y o | l | .
/ | | f |
/ | | | |
/ P : ; ‘
/ s | | ‘
A |
Pl NS
et/ /\ /
—EE T N 7\ //ﬁ, %
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Fig. 7.

Antwort. Ja! Der Anstieg des Liniensegmentes AP ist ja
gleich dem Anstieg des Bogens AB im Punkte A4, d. h. gleich der
Ableitung von y = f(x) fiir x = a, und diese wird dargestellt
durch die Ordinate aA’ des Punktes A’ im unteren Teile der
Figur. Also gehort zum Teil AP des Bildes der Funktion
y = g,(z) das horizontale Liniensegment A’C des Bildes der Ab-
leitung 3" = g,"(z). In derselben Weise findet man, durch Be-
nutzung des Punktes B’ auf dem Bilde von y' = f'(z), das

Liniensegment DB’ als Bild der Ableitung des durch PB dar-
gestellten Teiles.

Aufgabe 5 (Fig. 9). ‘An der Kurve y = f(x) der Aufg‘abe\ 4
sind die drel Tangenten AP, PQ und QB gezogen (c ist die Mitte
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- von ab). Diese bilden zusammen den Linienzug A PQB, den wir
als das Bild der Funktion y = g,(x) betrachten.

Yy B Y= S'CX)‘

+

— — — — | —— e e e e e e

/d

>~
\
\
\
\
\
]
|
l
b3
Ny

Fig. 8.

Beweise: a) Die Ableitung y’' = g,'(x) der Funktion y = g,(x)
hat zum Bild den horizontalen oberen Rand der schraffierten
Figur (mit Ausnahme von einigen Endpunkten).

b) IF = f(b)~f(a). | |

Aufgabe 6 (Fig. 10). An derselben Kurve y = f(x) wie in
den Aufgaben 4 und. 5 sind jetzt die fiinf Tangenten AP, PQ,
QR, RS und SB so gezogen, dass das Stiick ab von den Punkten
¢, d und e in vier gleiche Teile zerlegt wird. Wir betrachten den
Linienzug APQRSPE als das Bild der Funktion y = g4(x).

Beweise: a) Die Ableitung y' = g5'(z) der Funktion y = g4(x)
hat zum Bild den horizontalen oberen Rand der schraffierten
Figur (mit Ausnahme von einigen Endpunkten).

b) IF = f(b)—f(a). |
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Wir betrachten die Figuren 8, 9 und 10. Hierin wird die
Kurve der Reihe nach approximiert von den Linienziigen APB,
APQB und APQRSB. Demzufolge zeigt die Figur der abge-

Y

Y-y

X

|
|
|
|
|
I
|

|
|
l
{
l
|
|
l ;
|
l
|
!
I
I
|

b L o
Ya§x) -

Q C

4

i
i
|
|
:
|
|
i
|

l
[
|
|
|
|
I
I
l
l
I
|
[
|
|

Fig. 9.

leiteten Kurve erst 2 Rechtecke, dann 3 und danach 5. Diesen
Prozess konnen wir uns fortgesetzt denken: in Fig. 9 zerlegte
der Punkt ¢ das Interval ab in zwel gleiche Teile, wodurch
3 Rechtecke entstanden, in Fig. 10 zerlegten die Punkte ¢, d
und e das Interval ab in 4 gleiche Teile, mit 5 Rechtecken;
sodann konnen wir ab in 8 gleiche Teile zerlegen, mit 9 Recht-
ecken, dann in 16 Teile mit 17 Rechtecken, usw. Auf jeder Stufe
der Zerlegung des Intervals ab gilt

2F = f(b)—f(a),
das heisst der totale Inhalt der Rechtecke ist immer derselbe, Dessen
Limes ist aber der Inhalt F} der Fliche, die begrenzt wird von
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der Kurve y’ = f'(z), den zu den Abszissen a und b gehorigen
Ordinaten und der z-Achse. Also ist auch

Fo = f(b)~f(a),
und damit der Hauptsatz bewiesen.
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Fig. 10.

- 7. Dass tatsdchlich die Breite unserer Rechtecke nach null
strebt, zeigt sich wie folgt. |
Die Tangenten die man in zwel aufeinander folgenden Punk-
ten der Kurve y = f(x) zieht, z. B. in den Punkten C und D
~ von Figur 10, schneiden sich innerhalb des vertikalen Streifens,
der durch Cc¢ und Dd begrenzt wird. Sollte jemand dagegen
Bedenken tragen, dieses als selbstverstiandlich anzunehmen, so,
kann er es wie folgt beweisen. Dabei ist es praktischer Fig. 8
(oberen Teil) zu betrachten, in welcher der Bogen AB dieselbe
Rolle spielt wie der Bogen CD in Fig. 10. |
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Voraussetzungsgemiss ist lings dem Bogen AB die zweite
Ableitung positiv; die erste Ableitung ist also eine monoton
zunehmende Funktion und kann somit in den Punkten A und B
nicht denselben Wert annehmen. Hieraus ergibt sich, dass die
Tangenten in A und B nicht parallel sind; es sei P ihr Sc¢hnitt-
punkt. Da sowohl in A wie in B die Ableitung der Funktion
y = f(x) existiert (und zwar von der Grosse A'a und B’d im
unteren Teile der Figur), ist keine der Tangenten in 4 und B
vertikal, so dass wir bei der Tangente in A vom rechten Telil,
und bei der Tangente in B vom linken Teil sprechen konnen.
Wir miissen jetzt beweisen, dass der Punkt P auf diesen zwel
Teilen der Tangenten liegt. Da die zweite Ableitung tiberall
positiv ist, kehrt der Bogen A B seine konvexe Seite nach unten
und befindet sich (mit Ausnahme des Tangentenpunktes) ober-
halb jedes seiner Tangenten. Der Bogen AB liegt also, mit Aus-
nahme von A, ganz oberhalb der Tangente AP; insbesondere
liegt.B oberhalb AP. Aber dann kann die Gerade AP den rechten
Teil der Tangente in B nicht schneiden. Denn sonst wiirde der
Anstieg der letzteren kleiner als derjenige der ersteren (was un-
mittelbar aus einfachen planimetrischen Erwégungen folgt), im
Widerspruch zu dem monoton Zunehmen dieses Anstiegs. Die
Gerade AP schneidet also den linken Teil der Tangente in B.
Ebenso zeigt man, dass die Gerade BP den rechten Teil der
Tangente in A schneidet. Der Schnittpunkt P befindet sich also
in der Tat zwischen den Geraden Aa und Bb.

Also wird auch in Fig. 10 der Schnittpunkt der Tangenten
in C und D zwischen den Vertikalen Cc und Dd liegen, und der
Schnittpunkt R der Tangenten in D und E zwischen den Ver-
tikalen Dd und Ee. Also liegen die Punkte Q und R beide zwi-
schen Cc und Ee, was zur Folge hat, dass im unteren Teil der
Figur die Breite des mittleren Rechtecks kleiner ist als das

: 2
Interval ce der x-Achse, also kleiner als m vom Interval ab.

Wird ab in n gleiche Teile zerlegt, statt in 4 Teile, dann wird
die Breite jedes Rechtecks, mit einer kleinen Abanderung fiir

das erste und das letzte Rechteck, kleiner als der %Teil von ab.
n

Mit zunehmenden Werten von 7 strebt diese Breite gegen null.
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8. Es ist verfithrerisch die Beweisfithrung des Paragraphen 6
zu kiirzen und nach der Behandlung der Aufgabe 3 (Fig. 7) die
Argumentation wie folgt fortzusetzen.

Es sel y = f(x) eine Funktion mit kontinuierlicher Ableitung
y' = f'(z), welche zwei Funktionen fiir das Interval ab der
x-Achse wieder in der iiblichen Weise graphisch dargestellt seien.
Man kann dann die Kurve y = f(x) durch die Bilder der Funk-
tionen gy(x), go(x), ... in solcher Weise approximieren, dass
jedes Exemplar dieser letzgenannten Bilder eine Tangentenkette
an der Kurve y = f(z) ist und dass lim g,(z) = f(x). Zu jeder Kurve
X = g,(x) denken wir uns die abgeleitete Kurve y, = g,'(x)
konstruiert, die aus einer Menge von horizontalen Linienseg-
menten besteht (exklusive einer Anzahl von Endpunkten).
(Wir machen keinen Gebrauch davon, dass die Kurve y’ = f'(x)
mit den Segmenten der Kurve y' = g,'(x) Punkte gemein hat.)
Betrachten wir wieder zu jeder Kurve y’ = g,'(z) die zugehori-
gen Rechtecke mit der Inhaltssumme 2, dann gilt fir jedes n:

%, = g, (b)—ga(a) = f(b)—f(a).

Léasst man n unbeschrinkt zunehmen, dann strebt die Funk-
tion y = g,(z) nach der Funktion y = f(z). Dann wird auch die
Ableitung y, = g,’(x) der ersteren nach der Ableitung ¥y’ = f'(z)
der zweiten streben. Aber dann approximiert auch die Inhalts-
summe 2, unbeschriankt den Fliacheninhalt 2. Und da X, kon-
stant und gleich f(b) —f(a) ist, ergibt sich:

Fy =lim %, = f(b)~f(a).

Hiermit wire der vorher erwithnte Beweis in der Tat gekiirzt.
Jedoch, aueh bei einer genaueren Formulierung als der hier ge-
gebenen, kann diese Beweisfithrung nicht als befriedigend be-
~ trachtet werden. Dass die Funktion y = g,(x) nach der Funk-
tion y = f(x) strebt, kann man wohl an der Figur ablesen;
ebenfalls, dass die Fliche X, die Flache F® zum Limes hat. Aus

y=6¢,(x) >y =f(x)
folgt aber nicht '
vy o=4¢,x) >y =fx.
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Um dies einzusehen, betrachte man z.B. die Funktion
y = sin z mit ihrer Ableitung ¥’ = cos . Man kann die Bildkurve
der ersteren homothetisch verkleinern und dadurch die z-Achse
approximieren lassen (d. h. mittels der Funktionen

1
g.(x) = — sin nx).
n

Die abgeleitete Kurve wird dann aber nicht die abgeleitete Kurve
y' = f'(z) = 0 approximieren, denn die Ableitung (g,(x) = cos nx)
bleibt immer dieselbe Skala von Funktionswerten bestreichen.

Wir wollen auf diese Frage nicht weiter eingehen, sondern
nur den folgenden Satz beildufig erwéhnen: wird die Funktion
f(z) approximiert von der Funktion g,(z), und wird eine Funk-
tion h(r) gleichméssig approximiert von der Ableitung g,'(z),
dann 1st 2(x) die Ableitung von f(z). (Der genannte Satz erwihnt
eine Bedingung die hinreichend, aber nicht notwendig ist.)

Es 1st also nicht erlaubt den angegebenen Beweis in dieser
Weise zu kiirzen.
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Nederland.
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