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DIE BEHANDLUNG DES HAUPTSATZES

DER INTEGRALRECHNUNG IN DER SCHULE Q'

von L. N. H. Bunt

1. Die Integralrechnung ist ein Punkt des Mathematikprogramms

der holländischen höheren Schulen vom
mathematischnaturwissenschaftlichen Typus. Sie wird in der höchsten Klasse
unterrichtet und stellt den zweiten Teil des Unterrichts in der

Infinitesimalrechnung dar. Der erste Teil umfasst die Elemente
der Differentialrechnung.

Obwohl man nicht sagen kann dass es in der Natur der Dinge
liegt das Studium der Infinitesimalrechnung mit der Differentialrechnung

anzufangen, scheint diese Anordnung des Stoffes in der
höheren Schule doch wohl allgemein üblich zu sein. Auf jeden
Fall geschieht es auf diese Weise in den holländischen Schulen.
Man behandelt bei der Differentialrechnung folgende Themen:
Grenzwerte von Folgen und Funktionen, Stetigkeit und Diffe-
renzierbarkeit ; Ableitung von ganzen rationalen Funktionen,
von trigonometrischen Funktionen, von Wurzelfunktionen, von
Produkten und Quotienten differenzierbarer Funktionen; die
Kettenregel ; die Berechnung von Extremwerten und was weiter
zur sog. Kurvendiskussion gehört, einschliesslich der
geometrischen Deutung des Vorzeichens der zweiten Ableitung.

Und dann, ganz am Ende dieser Kursus, kommt die Behandlung

der Elemente der Integralrechnung. Diese umfasst: das
unbestimmte Integral, dargestellt als Fläche deren Inhalt sich
mit x verändert; die grundlegende Beziehung zwischen einem
unbestimmten Integral und der zu integrierenden Funktion, das
heisst: die Ableitung eines unbestimmten Integrals ergibt die
zu integrierende Funktion; einige elementare unbestimmte
Integrale; das bestimmte Integral und sein Zusammenhang mit
dem unbestimmten; die Berechnung des bestimmten Integrals;
und einige praktische Anwendungen, wie die Arbeit als Integral,

i) Am 27. Juni 1961 als Vortrag beim Seminar der C.I.E.M. in Lausanne gehalten.
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das elektrische Potential, und die Berechnung des Volumens
eines Körpers.

2. Bevor wir zur näheren Besprechung des Unterrichts in der
Integralrechnung übergehen, möchte ich etwas über die
Veranschaulichung des Differentialquotients und der abgeleiteten
Funktion sagen.

Fig. 1.

Die Ableitung yQ' f(x0) der Funktion y w j(x) für einen

gewissen Wert von x wird in der Figur gedeutet als der Tangens
des Winkels zwischen der Tangenten im Punkte P mit Abszisse

x0 an der Kurve y f(x) und der positiven x-Achse (Fig. i). Man
bekommt diesen Tangens als Limes des Tangens des Winkels
welchen eine um P drehende Sekante der Kurve mit der
positiven x-Richtung bildet. Wegen des Auftretens so vieler
Tangenten liegt es auf der Hand den Einheitskreis um P mit der
ihn rechtsseitig berührenden vertikalen Tangente zu zeichnen.
Hiervon wird von der bewegenden Sekante ein Stück
abgeschnitten gleich dem Tangens des Winkels zwischen dieser
Sekante und der ^r-Achse; so ist z. B. AQ' tg ^ APQ. Lässt

Ay
man nun im Differenzenquotient — den Nenner nach null

Ax
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streben, dann bewegt sich der Punkt Q längs der Kurve nach P,
während die Projektion Q' von Q auf der Tangentenlinie im
allgemeinen einem Grenzstand zustrebt. Wir betrachten weiter
einen Punkt i?, an der anderen Seite von P auf der Kurve
gelegen, und auch diesen Punkt lassen wir beliebig nahe an P
heranrücken und projizieren wir auf die vertikale Tangente. Der
normale Fall ist, dass Q' und R' demselben Grenzstand
zustreben. Nennt man diesen Punkt N, dann ist AS der Limes des

Differenzenquotients, das heisst die Ableitung.

Diese Veranschaulichung des Differentialquotients wollen wir
jetzt benutzen um die. Ableitung einer gegebenen Funktion
graphisch darzustellen. Man braucht dabei nicht die analytische
Form der gegebenen Funktion zu kennen; es genügt wenn die
Funktionskurve gezeichnet vorliegt. Eine praktische Methode
die abgeleitete Kurve Punktweise zu zeichnen ist folgende. Im
oberen Teil von Fig. 2 ist die Funktion y f(x) graphisch dar-
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gestellt, und im unteren Teil wollen wir die abgeleitete Kurve
zeichnen. Um die Ableitung im Punkte P zu zeichnen, könnte man
A PAS von Fig. 1 benutzen. Es ist aber praktischer diesen und
alle solche Dreiecke parallel zu verschieben nach dem Punkt
mit Abszisse —1 auf der unteren x-Achse. Die Konstruktion
des Punktes P' ist dann wie folgt: man zieht die Tangente inP
und bringt durch den Punkt — 1 der unteren ^r-Achse die Parallele;

durch den Schnittpunkt mit der 2/'-Achse zieht man eine
Parallele zur x-Achse; der Schnittpunkt mit der Vertikalen
durch P ergibt den Punkt P'. Wenn man die Handgriffe einmal
kennt, kann man sehr rasch eine grosse Anzahl Punkte der
abgeleiteten Kurve konstruieren. Dabei braucht man nicht einmal
die Tangenten an der Urkurve tatsächlich zu zeichnen; es genügt
wenn man das Zeichendreieck in der guten Richtung anlegt, es

parallel verschiebt nach dem Punkte —1, den Schnittpunkt mit
der ^/'-Achse angibt, usw. Arbeitet man auf graphischem Papier,
dann braucht man gar keine Linien zu ziehen.

Der Effekt ist am grössten wenn man einige Ableitungskurven
schon beim Anfang der Behandlung der Differentialrechnung zeichnen

lässt. Es ist für viele Schüler eine Ueberraschung bei der Funktion

\ x2 als abgeleitete Kurve eine gerade Linie zum Vorschein zu

bringen, bei ^x3 eine Parabel und bei sin x und cos x Kurven, die

kongruent sind mit den Urkurven. In dieserWeise werden induktiv
schon die Gleichungen von einigen Ableitungen gefunden, was das

Interesse erregtfür den später zu erbringenden Beweis.

3. Jetzt wollen wir uns näher beschäftigen mit dem Beweis
des Hauptsatzes der Integralrechnung, das heisst des Satzes

]f'(x)dx f(b) —f(a).
a

Der in der Schule übliche Beweis besteht aus den folgenden
Teilen:

a) Ist f(x) eine primitive Funktion von /'(#), dann hat jede

primitive Funktion von f'(x) die Form f(x) + C;

b) der von der Kurve y /'(#), den zu den Abszissen a und

x gehörigen Ordinaten und der x-Achse begrenzte Flächeninhalt
Fxa ist eine primitive Funktion von f(x);
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c) aus a und b ergibt sich: Fxa kann geschrieben werden in
der Form f(x) + C;

d) C /(a)-
e) aus c und d ergibt sich: F* =f(x)—f(a);

b

f) Fba= lim If'(x)Ax \f'(x)
Ax-*0 a

b

g) aus e und / ergibt sich: J/'C*) dx f(h)—f(a).
a

4. Ein solcher Beweis ist langatmig und verwickelt. Die
Schüler finden es schwierig die zahlreichen Teile dieses Beweises

auseinander zu behalten und das Ganze zu übersehen. Wenn man
den Beweis also in dieser Weise erbringen will, ist es zum wenigsten

von Bedeutung, dass die verschiedenen Unterteile so viel
wie möglich graphisch illustriert werden. Ich habe nicht die

Absicht, für den vorhin angeführten Beweis Propaganda zu
machen; ich möchte gleich einen ganz anderen Beweis
vorschlagen. Zuvor ist es aber interessant nachzugehen inwieweit
die Teile des erwähnten Beweises anschaulich zu deuten sind
und wo unsere Anschauung uns im Stich lässt.

a) Ist f(x) eine primitive Funktion von f'(x), dann hat jede
primitive Funktion von f'(x) die Form f(x) + C.

Mit diesem Satz und ihrem Beweis wird in den Schulbüchern
auf allerhand Weise umgesprungen. Manchmal wird der Satz

gar nicht genannt aber wohl stillschweigend benutzt; oder er
wird genannt und es wird bemerkt, dass er nicht bewiesen werden
wird; bald wird er genannt und überdies bewiesen, aber dann
wird entweder der unbewiesene Hilfssatz verwendet, dass nur
von einer konstanten Funktion die Ableitung identisch gleich
null ist, oder derselbe Hilfssatz wird verwendet und auch
bewiesen, unter Benutzung von anschaulichen Hilfsmitteln.

Nach meiner Meinung kann man diesen Satz am besten
vorbereiten indem man den Schülern die graphische Darstellung
einer Funktion f'(x) gibt und sie auffordert dazu die graphische
Darstellung einer primitiven Funktion zu zeichnen. Es zeigt
sich, dass die primitive Kurve in willkürlicher Höhe angefangen
werden kann, und ebenso an welcher Klippe die Konstruktion
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scheitern wird. Man kann nämlich wohl damit anfangen (Fig. 2)
auf der gegebenen Kurve einen Punkt P' zu wählen, dann durch
P' eine Parallele zur ^-Achse ziehen bis zum Schnittpunkt
mit der -Achse, diesen Punkt mit dem Punkte — 1 verbinden,
und die Verbindungslinie parallel verschieben bis sie durch P
geht, wobei P irgendwo senkrecht über P' angenommen ist;
damit hat man in der Tat die Tangente in P an der primitiven
Kurve durch P konstruiert. Wählt man aber sodann einen
zweiten Punkt, auf der gegebenen Kurve und in der Nähe

von P', und versucht man dieselbe Konstruktion für Q'
auszuführen, dann findet man jetzt wohl die Richtung der Tangente
in Ç, aber nicht diese Tangente oder den Punkt Q selbst. Und
es ist also ebensowenig möglich den Schnittpunkt der Tangenten
in P und Q zu finden. Trotzdem kann man doch wohl eine ziemlich

gute Annäherung der gesuchten primitiven Kurve bekommen,

wenn man wie folgt den Knoten zerhaut: man wählt
einfach als Abszisse des gesuchten Schnittpunktes das Mittel der

(bekannten) Abszissen der Berührungspunkte P und Q, und
handelt in allen folgenden Fällen in derselben Weise.

Intuitiv ist der Satz sehr plausibel: betrachtet man zwei

primitive Kurven, dann kann man sich einfach nicht vorstellen,
dass wohl immer die Tangenten in zwei vertikal über einander
liegenden Punkten parallel sind, aber dass die Entfernung solcher
Punkte nicht konstant ist. Nun wird dem Beweis, wie vorhin
schon angedeutet, wohl folgende Form gegeben. Sind f(x) und
g(x) zwei primitive Funktionen von /'(#), dann ist die Ableitung
von g(x)—f(x) überall null. Ihr Bild hat also in jedem ihrer
Punkte eine Tangente die parallel zur x-Achse ist. Daraus folgt,
dass das Kurvenbild selbst eine Gerade, parallel zur x-Achse ist.
Also g(x)—f(x) C1 und also g(x) =f(x) + C. Man betrachtet
dann den Hilfssatz, dass eine Kurve deren Tangenten alle

parallel zur x-Achse sind, selbst eine Gerade, parallel zur ^r-Achse

ist, als selbstverständlich. Dieser Hilfssatz ist in der Tat intuitiv
ganz klar, ebenso wie der Satz den wir mit dessen Hilfe beweisen
wollen. Es ist mir aber unmöglich zu sagen, welchen von den
Zweien ich den selbstverständlichsten finde, den Satz selbst oder
den Hilfssatz, und deswegen kommt es mir vor, dass man den

angeführten Beweis ohne Nachteil weglassen kann.
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Bekanntlich kann man einen einfachen analytischen Beweis

des genannten Hilfssatzes geben unter Benutzung des Mittel-

wertsatzes der Differentialrechnung. Dieser Satz steht aber nicht
auf dem mathematischen Programm der holländischen Schulen.

5. b) DerFlächeninhalt Fl ist eine primitive Funktion von f'(x).
Zuerst soll klargemacht werden, dass Fl eine Funktion von. x

ist. Dazu kann man z. B. von der Funktion y mx ausgehen,
(Fig. 3), und die schraffierte Fläche als Funktion von x, die
Abszisse des Punktes A, berechnen und graphisch darstellen.

Der Inhalt von A OAA' ist 1l2mx2, d. h. es entsteht eine Funktion

welche den Schülern schon bekannt ist. In dieser Weise wird
nicht nur gezeigt, dass Fl eine Funktion von x darstellt, sondern
die Schüler sehen jetzt auch wie einfach die Art einer solchen
Funktion sein kann; überdies werden sie induktiv mit der
Tatsache bekannt gemacht, dass eine solche Funktion gerade eine

primitive Funktion von f'(x) ist.

Y

Y

Fig. 3,
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Auch der Beweis des allgemeinen Falles, nämlich dass Fxa

eine primitive Funktion von f(x) darstellt, kann man noch aus
einer Figur ablesen. Bezeichnen wir F* mit F(x), dann soll die

wandt werden. Diese Limesannäherung kann man jetzt nicht in
der üblichen Weise in einer Figur deuten, nämlich mittels einer
Sekante, die gedreht wird bis sie ihren Limesstand erreicht. Eine
Zunahme der Funktion F(x) wird jetzt veranschaulicht durch
ein Flächenstück. Etwas ähnliches ist den Schülern nicht vorher
begegnet und, soweit ich sehen kann, ist es auch nicht
vorzubereiten durch die Lösung von praktisch tauglichen Uebungs-
aufgaben, wie das der Fall ist bei der Behandlung des Differen-
tialquotienten als des Tangenten eines Winkels. Aber auch in
diesem neuen Falle gibt es jedenfalls eine geometrische Interpretation

der Zunahme der Funktion, welche überdies eine
geometrische Interpretation des Differenzenquotienten gestattet.
Wenn man nämlich kein Bedenken hat gegen die stillschweigende
Anwendung des Satzes von Weierstrass dass eine kontinuierliche
Funktion jeden Wert zwischen dem kleinsten und grössten Wert
annimmt, wird dieser Differenzenquotient dargestellt durch die
Ordinate eines Punktes des krummlinigen oberen Randes des

schmalen Streifens, der AF darstellt. Und dann kann man
weiter in der Figur unmittelbar sehen, dass der Limes dieser
Ordinate gleich f(x) ist, wenn Ax nach null strebt. Ich glaube,
dass es sehr wichtig ist diesen Teil des Beweises in einer solchen
konkreten Form zu erbringen. Es ist merkwürdig, dass die
meisten Schulbücher den Beweis nicht in dieser Form geben,
und ich kann das nur erklären aus einer gewissen Abneigung
gegen die Anwendung eines in der Schule nicht bewiesenen

Satzes, wie des Weierstrass'schen Satzes. Man beweist nämlich
den Satz, dass

meistens in folgender Weise (Fig. 4):
Inhalt Rechteck PQRS < AF < Inhalt Rechteck PQR'S',

/' (v) - Ax < AF <f (x +Ax) • Ax,

Definition der Ableitung von F(x), lim
h->0

F(x + h) — F(x)
7 t ange-

A„ ~
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Natürlich ist es gar nicht schwierig einzusehen, dass die letzte

Regel eine logische Konsequenz der ersten ist; aber die,Einsicht
dass der Satz völlig selbstverständlich ist, braucht nicht an¬

wesend zu sein. Die geometrische Deutung hat im Anfang eine

gewisse Rolle gespielt, nämlich wo man zu einem "unteren" und
einem "oberen" Rechteck gelangt, aber das intuitive Verständnis

wird gerade in dem entscheidenden Moment ausgeschaltet
und durch einen mechanischen algebraischen Prozess ersetzt:
die Glieder von zwei Ungleichungen durch eine Zahl Ax teilen,
Ax nach null streben lassen und den Differentialquotienten
auffangen, der aus dem Automaten rollt. Wir sollten uns nicht
beklagen wenn die Schüler uns hier "schwierig" finden.

Ich übergehe die mögliche Veranschaulichung der übrigen
Glieder des üblichen Beweises des Hauptsatzes. Nur möchte ich
noch hinzufügen, dass das Glied /):

Y

Y-

Fig. 4
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b

Fba '= lim If (x)Ax J f(x)dx
Ax-+0 a

in der Schule nicht streng behandelt werden kann. Wir nehmen

an, dass intuitiv klar ist was man unter den Flächeninhalt einer
krummlinigen Figur verstehen soll, und dass es keinen Unterschied

macht in welcher Weise man die Rechtecke wählt, deren
Summe diesen Flächeninhalt approximieren soll, wenn man nur
dafür Sorge trägt, dass sie sich der Kurve anschliessen und ihre
maximale Breite nach null strebt.

6. Jetzt möchte ich zeigen, dass es möglich ist einen Beweis

zu erbringen, den die Schüler nicht nur leicht verstehen können
weil er viel weniger Glieder umfasst und sich ihrer intuitiven
Einsicht völlig anschliesst, sondern auch beinahe von ihnen
selbst gefunden werden kann. Dabei wollen wir voraussetzen dass

die vorhin erwähnten Elemente der Differentialrechnung
behandelt worden sind, inklusive der Bedeutung der zweiten
Ableitung, dass die Definition des bestimmten Integrals als Limes
einer Summe von Rechtecken gegeben worden ist, und die

Begriffe "kontinuierlich" und "differenzierbar", auch in ihrer
geometrischen Bedeutung, behandelt worden sind. Insbesondere
wollen wir annehmen, dass die Schüler recht gründlich geübt
worden sind in dem Zeichnen der abgeleiteten Kurve in der
Weise die ich schon auseinandergesetzt habe, und z. B. auch
schnell die abgeleitete Kurve zu zeichnen wissen, wenn die
Urkurve eine Gerade ist oder aus einer endlichen Anzahl
Liniensegmenten besteht.

Wir stellen uns jetzt vor, dass wir damit anfangen den
Schülern eine Reihe von Aufgaben vorzulegen die selbständig
zu lösen sie aufgefordert werden. Die erste Aufgabe ist'folgende.

Aufgabe 1. a) Kontrolliere in Fig. 5 die Konstruktion der

Abgeleiteten Kurve y' f'(x) von der Kurve y — f(x).

b) Beweise: F htg a p f(b)—f(a) (das heisst : die
Anzahl der Flächeneinheiten der schraffierten Fläche ist gleich
der Anzahl der Längeneinheiten des Segmentes BC.

In den Aufgaben 2 und 3 wollen wir voraussetzen, dass die
Funktione f(x) definiert sind für die Werte von x die zum
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Interval (a, b) der x-Achse gehören, und dass die Funktionskurven

Linienketten sind; im oberen Teil der zugehörigen

Figuren 6 und 7 sind diese Kurven gezeichnet. Wählt man in

Fig. 6 einen Punkt irgendwo zwischen A und P, dann ist die

Steigung der Kurve, das heisst die Funktion y' /'(#), in
diesem Punkt gleich dem Tangenten des Winkels zwischen AP und
der positiven ^-Richtung. Analog für einen Punkt zwischen P
und B. Im Punkte P aber gibt es keine Ableitung. Ebenfalls
gibt es keine Ableitung in den Punkten P, Ç, R und S von Fig. 7.

Es ergibt sich, dass bei einer solchen Funktion y /(#), dargestellt

von einer Linienkette, die Ableitung y' f'(x) für einige
Werte von x nicht definiert ist; die abgeleitete Kurve wird jetzt
aus zwei oder mehreren wagerechten Liniensegmenten bestehen,
wozu nicht alle Endpunkte gerechnet werden sollen.

Aufgabe 2. a) Kontrolliere in Fig. 6, dass die abgeleitete
Kurve y' f(x) der Urkurve y f(x) aus den zwei
Liniensegmenten CD und EF (ohne die Endpunkte D und E) besteht.

b) Beweise: IF p f(b) — f(a). (IF ist die Summe der
Inhalte der schraffierten Rechtecke.)

L'Enseignement mathém., t. VIII, fasc. 3-4. 21
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Aufgabe 3. Die analogen Fragen für Fig. 7.

In jeder der Figuren 8 bis 11 ist immer der zwischen den
Punkten A und B liegende Teil derselben Kurve y — f(x) ge¬

zeichnet, samt dem entsprechenden Teil A'B' der abgeleiteten
Kurve y' ff(x). Wir setzen voraus, dass der betrachtete Teil
der Funktion positiv ist und monoton wächst, und dass die
zweite Ableitung positiv ist.

Aufgabe 4 (Fig. 8). In A und 5-sind die Tangenten AP und
BP an die Kurve y f(x) gezogen. Diese bilden zusam.rn.en den

Linienzug APB, die wir als die Bildkurve der Funktion y gx(x)
betrachten wollen. Beweise:

a) Die abgeleitete Kurve y' g-^ix) der Kurve y — g-^fx)
besteht aus dem horizontalen oberen Rand der schraffierten
Figur (ohne die Punkte C und D).

b) ZF=f(b)-f(a).
Frage. Wenn im unteren Teil; von Fig. 8 die Bildkurve der

Funktion y' =/'(#) gezeichnet vorliegt, aber nicht die Bild-
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kurve von y'=gi(%), kann man dann die zuletztgenannte

Kurve auch zeichnen unter Benutzung des Bildes der Funktion

if f'{x) und ohne den Punkt -1 der x-Achse zu benutzen

Antwort. Ja Der Anstieg des Liniensegmentes AP ist ja
gleich dem Anstieg des Bogens AB im Punkte A, d. h. gleich der

Ableitung von y f(x) für x a, und diese wird dargestellt
durch die Ordinate aA' des Punktes A' im unteren Teile der

Figur. Also gehört zum Teil AP des Bildes der Funktion
y g^x) das horizontale Liniensegment A'C des Bildes der
Ableitung y' — gi(x). In derselben Weise findet man, durch
Benutzung des Punktes B' auf dem Bilde von y' — f'{x), das

Liniensegment DB' als Bild der Ableitung des durch PB
dargestellten Teiles.

Aufgabe 5 (Fig. 9). An der Kurve y f(x) der Aufgabe 4
sind die drei Tangenten AP, PQ und QB gezogen (c ist die Mitte
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von ab), Diese bilden zusammen den Linienzug APQB, den wir
als das Bild der Funktion y — g2(x) betrachten.

Beweise: a) Die Ableitung yf — g2'(x) der Funktion y g2(x)
hat zum Bild den horizontalen oberen Rand der schraffierten
Figur (mit Ausnahme von einigen Endpunkten).

b) IF f(b)—f(a).

Aufgabe 6 (Fig. 10). An derselben Kurve y f(x) wie in
den Aufgaben 4 und 5 sind jetzt die fünf Tangenten AP, PQ,
QR, RS und SB so gezogen, dass das Stück ab von den Punkten
c, d und e in vier gleiche Teile zerlegt wird. Wir betrachten den

Linienzug APQRSB als das Bild der Funktion y g^x).
Beweise: a) Die Ableitung y' =g3'(x) der Funktion y =g3(x)

hat zum Bild den horizontalen oberen Rand der schraffierten

Figur (mit Ausnahme von einigen Endpunkten).
b) IF =f(b)-f(a).
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Wir betrachten die Figuren 8, 9 und 10. Hierin wird die

Kurve der Reihe nach approximiert von den Linienzügen APB,
APQB und APQRSB. Demzufolge zeigt die Figur der abge¬

leiteten Kurve erst 2 Rechtecke, dann 3 und danach 5. Diesen
Prozess können wir uns fortgesetzt denken: in Fig. 9 zerlegte
der Punkt c das Interval ab in zwei gleiche Teile, wodurch
3 Rechtecke entstanden, in Fig. 10 zerlegten die Punkte c, d

und e das Interval ab in 4 gleiche Teile, mit 5 Rechtecken;
sodann können wir ab in 8 gleiche Teile zerlegen, mit 9 Rechtecken,

dann in 16 Teile mit 17 Rechtecken, usw. Auf jeder Stufe
der Zerlegung des Intervals ab gilt

TF =m~f(a),
das heisst der totale Inhalt der Rechtecke ist immer derselbe, Dessen
Limes ist aber der Inhalt Fba der Fläche, die begrenzt wird von
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der Kurve yf f (x), den zu den Abszissen a und b gehörigen
Ordinaten und der x-Achse. Also ist auch

Fha=f{b)-f(a),
und damit der Hauptsatz bewiesen.

Fig. 10.

7. Dass tatsächlich die Breite unserer Rechtecke na,ch null
strebt, zeigt sich wie folgt.

Die Tangenten die man in zwei aufeinander folgenden Punkten

der Kurve y f(x) zieht, z. B. in den Punkten C und D
von Figur 10, schneiden sich innerhalb des vertikalen Streifens,
der durch Cc und Dd begrenzt wird. Sollte jemand dagegen
Bedenken tragen, dieses als selbstverständlich anzunehmen, so

kann er es wie folgt beweisen. Dabei ist es praktischer Fig. 8

(oberen Teil) zu betrachten, in welcher der Bogen AB dieselbe
Rolle spielt wie der Bogen CD in Fig. 10.
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Voraussetzungsgemäss ist längs dem Bogen AB die zweite

Ableitung positiv; die erste Ableitung ist also eine monoton
zunehmende Funktion und kann somit in den Punkten A und B
nicht denselben Wert annehmen. Hieraus ergibt sich, dass die

Tangenten in A und B nicht parallel sind; es sei P ihr Schnittpunkt.

Da sowohl in A wie in B die Ableitung der Funktion
y — f(x) existiert (und zwar von der Grösse A'a und B'b im
unteren Teile der Figur), ist keine der Tangenten in A und B
vertikal, so dass wir bei der Tangente in A vom rechten Teil,
und bei der Tangente in B vom linken Teil sprechen können.
Wir müssen jetzt beweisen, dass der Punkt P auf diesen zwei
Teilen der Tangenten liegt. Da die zweite Ableitung überall
positiv ist, kehrt der Bogen AB seine konvexe Seite nach unten
und befindet sich (mit Ausnahme des Tangentenpunktes) oberhalb

jedes seiner Tangenten. Der Bogen AB liegt also, mit
Ausnahme von A, ganz oberhalb der Tangente AP; insbesondere

liegt J? oberhalb AP. Aber dann kann die Gerade AP den rechten
Teil der Tangente in B nicht schneiden. Denn sonst würde der
Anstieg der letzteren kleiner als derjenige der ersteren (was
unmittelbar aus einfachen planimetrischen Erwägungen folgt), im
Widerspruch zu dem monoton Zunehmen dieses Anstiegs. Die
Gerade AP schneidet also den linken Teil der Tangente in B.
Ebenso zeigt man, dass die Gerade BP den rechten Teil der
Tangente in A schneidet. Der Schnittpunkt P befindet sich also
in der Tat zwischen den Geraden A a und Bb.

Also wird auch in Fig. 10 der Schnittpunkt der Tangenten
in C und D zwischen den Vertikalen Cc und Dd liegen, und der
Schnittpunkt R der Tangenten in D und E zwischen den
Vertikalen Dd und Ee. Also liegen die Punkte Q und R beide
zwischen Cc und Ee, was zur Folge hat, dass im unteren Teil der
Figur die Breite des mittleren Rechtecks kleiner ist als das

2
Interval ce der ^-Achse, also kleiner als - vom Interval ab.

4

Wird ab in n gleiche Teile zerlegt, statt in 4 Teile, dann wird
die Breite jedes Rechtecks, mit einer kleinen Abänderung für

2
das erste und das letzte Rechteck, kleiner als der - Teil von ab.

n
Mit zunehmenden Werten von n strebt diese Breite gegen null.
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8. Es ist verführerisch die Beweisführung des Paragraphen 6

zu kürzen und nach der Behandlung der Aufgabe 3 (Fig. 7) die

Argumentation wie folgt fortzusetzen.
Es sei y f(x) eine Funktion mit kontinuierlicher Ableitung

y' f{x), welche zwei Funktionen für das Interval ab der
x-Achse wieder in der üblichen Weise graphisch dargestellt seien.
Man kann dann die Kurve y f(x) durch die Bilder der
Funktionen g^#), g2(%)r m solcher Weise approximieren, dass

jedes Exemplar dieser letzgenannten Bilder eine Tangentenkette
an der Kurve y — f(x) ist und dass lim gn(x) f(x). Zu jeder Kurve
x ~ gn(%) denken wir uns die abgeleitete Kurve yn — gn'(x)
konstruiert, die aus einer Menge von horizontalen Liniensegmenten

besteht (exklusive einer Anzahl von Endpunkten).
(Wir machen keinen Gebrauch davon, dass die Kurve y' f{x)
mit den Segmenten der Kurve y' — gn'(x) Punkte gemein hat.)
Betrachten wir wieder zu jeder Kurve y' — gn'(x) die zugehörigen

Rechtecke mit der Inhaltssumme Tn, dann gilt für jedes n:

9n(b)-gn(a)

Lässt man n unbeschränkt zunehmen, dann strebt die Funktion

y — gn(x) nach der Funktion y f(x). Dann wird auch die

Ableitung yn gn'(x) der ersteren nach der Ableitung y' — f'(x)
der zweiten streben. Aber dann approximiert auch die Inhaltssumme

In unbeschränkt den Flächeninhalt Fba. Und da In
konstant und gleich f(b)—f(a) ist, ergibt sich:

Fba =lim
n-+ oo

Hiermit wäre der vorher erwähnte Beweis in der Tat gekürzt.
Jedoch, auch bei einer genaueren Formulierung als der hier
gegebenen, kann diese Beweisführung nicht als befriedigend
betrachtet werden. Dass die Funktion y gn(x) nach der Funktion

y f(x) strebt, kann man wohl an der Figur ablesen ;

ebenfalls, dass die Fläche In die Fläche Fb zum Limes hat. Aus

y 9n(x) -+y =/(*)
folgt aber nicht

y 9n'(x) ->y' =*/' (*)•



DER HAUPTSATZ DER INTEGRALRECHNUNG 329

Um dies einzusehen, betrachte man z. B. die Funktion
y sin x mit ihrer Ableitung y' cos x. Man kann die Bildkurve
der ersteren homothetisch verkleinern und dadurch die x-Achse

approximieren lassen (d. h. mittels der Funktionen

g„(x) — sin rix),
n

Die abgeleitete Kurve wird dann aber nicht die abgeleitete Kurve
y' f'[x) 0 approximieren, denn die Ableitung (g„{x) cos nx)
bleibt immer dieselbe Skala von Funktionswerten bestreichen.

Wir wollen auf diese Frage nicht weiter eingehen, sondern

nur den folgenden Satz beiläufig erwähnen: wird die Funktion
f(x) approximiert von der Funktion gn(x), und wird eine Funktion

h(x) gleichmässig approximiert von der Ableitung gn'(x),
dann ist h(x) die Ableitung von f(x). (Der genannte Satz erwähnt
eine Bedingung die hinreichend, aber nicht notwendig ist.)

Es ist also nicht erlaubt den angegebenen Beweis in dieser
Weise zu kürzen.
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