Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 8 (1962)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: DIE EINFUHRUNG DES STETIGKEITS- UND
GRENZWERTBEGRIFFS IN DER SCHULE.

Autor: Pickert, Gunter

DOl: https://doi.org/10.5169/seals-37971

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-37971
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

DIE EINFUHRUNG DES STETIGKEITS- UND
GRENZWERTBEGRIFFS IN DER SCHULE?) ..

von Giinter PICKERT

Zuerst mochte ich ein Verfahren auf seine Vor- und Nach-
teile hin untersuchen, das vielfach der Einfithrung des Grenz-
wertbegriffs in der Schule zugrunde liegt. Zur Beschreibung
dieses Verfahrens benutze ich im folgenden nicht die der
jeweiligen Unterrichtsstufe angepassten Formulierungen sondern
die nach wissenschaftlichen Gesichtspunkten zweckméssigen;
die Zeichen A, V , A, = stehen fiir « alle », «es gibt », « und »,
« wenn ..., so ».

Man definiert als erstes den Grenzwert ¢ = lim a, einer

Folge (a,)pen (d.h. einer Abbildung der Menge /N der natiirlichen
Zahlen in die Menge der reellen Zahlen) durch die Aussage

As>0 VnoeN AneN n>ng = Ig—anl <e. (1)

- Der Grenzwert g = lim f () der Funktion f an der Stelle a (die

Héaufungspunkt des Definitionsbereiches D, von f sein, d.h. in
der abgeschlossenen Hiille D, —{a} von D, —{a} liegen muss)

wird erst unter Riickgriff auf den Folgengrenzwert definiert
durch

A(xn)neN (a = lim Xy A Apeny @ # anDf) = limf(x,,) =g . (2)

B Gages) n— o

Mit Hilfe dieses Grenzwertbegriffes ldsst sich dann die
Stetigkeit der Funktion f an der Stelle a € D, definieren durch

lim f(x) = f(a), ()

xX—a

1) Am 27. Juni 1961 als Vortrag beim Seminar der C.I.E.M. in Lausanne gehalten.
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wobei in dieser Gleichung die Existenz des Grenzwertes, also
inshesondere auch a € D, —{ a} eingeschlossen sein soll.

Dieses Verfahren hat gewisse Vorteile:

(A) Von den Dezimalbriichen und Naherungsberechnungen
her kommt man zwangslaufig zuerst zum Folgengrenzwert-
begriff. . ' |
(B) Die Implikation in (2) geht « von z zu f (z) », also « gleich-
sinnig » mit der Abbildung f, und dies wird nicht durch eine
« gegenlaufige » Quantorenreihenfolge « gestort » (wie in (1), wo
sich der erste Quantor auf die Abschitzung der Folgenglieder,
der zweite dagegen auf die der Folgenindizes bezieht).

(C) Fir (2) bietet sich die kinematisch interpretierbare
Formulierung an « Wenn z gegen a strebt, so strebt f (x) gegen g».

Diesen Vorteilen gegeniiber scheinen mir aber die Nachteile
zu iiberwiegen: | |

(D) Die Definition durch (2) ist logisch zu kompliziert, einmal
wegen der Quantifizierung iiber alle Folgen, zum zweiten durch
eine Haufung von Quantoren, was man erst deutlich sieht, wenn
man die Folgengrenzwertaussagen in (2) geméss (1) durch ihre
expliziten Bedeutungen ersetzt. Diese Kompliziertheit ist un-
notig, da es bekanntlich die zu (1) vollig analoge, mit (2) gleich-
wertige Formulierung (6) gibt. '

(E) Die Formulierung (2) verfiihrt érfahrungsgeméss den
Lernenden dazu, den Nachweis von lim f(z,) =g fir nur

eine einzige Folge (x,),y (mit den in (2) genannten Kigen-
schaften) bereits fiir ausreichend zu halten.

(F) Der anschaulich so naheliegende Stetigkeitsbegriff er-
scheint auf diese Weise erst als Schlussglied einer Reihe von
garnicht einfachen Begriffsbildungen, weshalb wohl vielfach
auf seine exakte Formulierung verzichtet wird.

(G) Der in (C) genannte Vorteil ist nur ein scheinbarer und
im Grunde sogar ein Nachteil, weil dadurch die mathematische
Variable z (Leerstelle!) mit einer variablen Grosse der Kine-
matik, d.i. mit einer auf einem Zeitintervall definierten Funktion
o, verwechselt wird; mit z als Leerstelle hat namlich «x strebt
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gegen a » gar keine Bedeutung. Die in (C) erwihnte Formulierung

lasst sich exakt wohl nur so interpretieren: Wenn lim ¢ (1) = a
t=t,

(und Asep, @ # ¢ (1) € D), so lim f (¢ (1)) = g. Das kann aber

t—t,
nicht zur Definition des Grenzwertes g benutzt werden, da der

Grenzwertbegriff selber hierin vorkommt.

(H) Die psychologische Problematik, mit der die Ausdrucks-
weise « n strebt gegen oo » verkniipft ist, belastet unnotigerweise
von vornherein die Grenzwertdefinition.

Alle die Nachteile (D-H) werden nun m.E. vermieden, wenn
man zuerst die Stetigkeit einer Funktion f an der Stelle a er-
klart, dann den Grenzwert an der Stelle a als denjenigen Zahlen-
wert definiert, den man als neuen Funktionswert an der Stelle a
nehmen muss, damit die so abgednderte Funktion bei a stetig
wird, und schliesslich den Grenzwertbegriff sinngemaéss auf die
Stelle oo iibertragt, womit auch der Grenzwertbegriff fiir Folgen
eingefithrt ist. Ich denke dabei an die Behandlung dieser Be-
griffe in den letzten zwei oder drei Jahren der hoheren Schule,
muss aber natiirlich das Urteil dariiber, in welchem Masse sich
das Folgende fiir die Behandlung im Schulunterricht wirklich
eignet, den mit der Praxis dieses Unterrichts Vertrauten iber-
lassen.

Zur Stetigkeitsdefinition wird man zwangslaufig gefiihrt,
wenn man daran denkt, dass bei physikalischen oder tech-
nischen Anwendungen die Argumentwerte stets nur nidherungs-
welse bekannt sind, andererseits aber an die Funktionswerte aus
der Aufgabenstellung heraus oft gewisse Genauigkeitsforde-
rungen gestellt werden. Es erscheint daher sinnvoll, von der
Funktion f zu verlangen, dass der Funktionswert f (a) mit vor-
geschriebener Genauigkeit, d.h. bis auf einen Fehler von einem
Betrag kleiner als eine vorgegebene Zahl ¢ (> 0) berechnet
werden kann, sobald nur der Argumentwert ¢ mit hinreichender
Genauigkeit, d.h. bis auf einen Fehler von einem Betrag kleiner
als eine geeignet (in Abhéngigkeit von ¢) zu wihlende Zahl
6 (>0) bekannt ist. In mathematischer Formelsprache ge-
schrieben wird das zu ’

Neso Veso AxepplX—al| <6 =[fx)—f(@)] <e. (4)

L’Enseignement mathém., t. VIII, fasc. 3-4. 20
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Vermutlich wird dem Schiiler diese Eigenschaft von den Anwen-
dungen her als ganz selbstverstindlich vorkommen, so dass man
erst an einfachen Gegenbeispielen (etwa f () =0firx <0,f(x) =1
fiir x > 0) zeigen muss, dass (4) auch falsch sein kann. (4) wird
nun als Stetigkeit von f an der Stelle a bezeichnet. Bei dieser Ein-
fiihrung wird die viel beklagte und vom Lernenden so oft ver-
gessene « Gegenlaufigkeit » der Quantorenreihenfolge in (4) (der
erste Quantor bezieht sich auf die Funktionswertabschitzung,
der zweite auf die der Argumentwerte) von der Anwendung her
- verstdndlich gemacht: Bendtigt wird mit vorgeschriebener
Genauigkeit der Funktionswert, was durch geeignete Ge-
nauigkeit des Argumentwertes erreicht wird. Dadurch scheint
mir der Vorteil (B) des zuerst geschilderten Verfahrens etwas
an Wert zu verlieren. Man beachte auch, dass sich (4) mit
Vorteil in der graphischen Darstellung von f veranschaulichen
lasst wihrend man das von (3) nicht sagen kann.

Zweckmissig diirfte es auch im Schulunterricht sein, bei
der Stetigkeitsdefinition den Umgebungsbegriff zu verwenden:
Jede Menge {z; | z—a | < 3} mit einer Zahl § > 0 wird als Umge-
bung von a bezeichnet. (4) lasst sich dann so aussprechen: Zu
jeder Umgebung von f(a) gibt es eine Umgebung von a, die
durch f in die Umgebung von f (a) abgebildet wird. Damit hat
man den letzten der drei Quantoren in (4) “versteckt” und zwar
mittels einer mengentheoretischen Redeweise. Fiir den Schulun-
terricht wohl noch nicht brauchbar scheint mir die folgende
Fortsetzung dieser « Quantorenbeseitigung ». Man bezeichnet
auch jede Obermenge einer Menge {z; | z—a | < 8} (mit 3 > 0)
als Umgebung von a und kann dann (4) mit nur einem Quantor
so aussprechen: Das Urbild (bei f) jeder Umgebung von f (a)
ist eine Umgebung von a. Auch dieser eine Quantor kann noch
“versteckt“ werden, wenn man die Menge der Umgebungen
einer Stelle als deren Umgebungsfilter bezeichnet; (4) lautet
jetzt: Das Urbild (bei f) des Umgebungsfilters von f (a) ist Teil-
menge des Umgebungsfilters von a.

Die durch (4) definierte Stetigkeit kann bei einfachen ra-
tionalen Funktionen nachgewiesen werden, ohne dass man vor-
her allgemeine Siitze (Stetigkeit der Summe stetiger Funktionen
-z.B.) herleitet. Man sollte das m.E. im Unterricht nicht ver-
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saumen; nur dadurch priigt sich der Sachverhalt (4) deutlich
genug sein. Man darf dabei durchaus das scheinbar im Wider-
spruch zur Quantorenreihenfolge in (4) stehende Verfahren ver-
wenden lassen: Zu gegebenem 3 > 0 bestimmt man ein ¢ ()
mit A eny | z—al <3d=]f(x) —f(a)| < ¢ (3) (was bei den
rationalen Funktionen wegen der stiickweisen Monotonie ein-
fach ist); nur muss dann anschliessend gezeigt werden, dass es
zu jedem € > Oein d > O mit ¢ (3) < ¢ gibt (was im gilinstigsten
Fall sogar mit dem Gleichheitszeichen gilt). Abzulehnen dagegen
ist der Versuch, entsprechend der Quantorenreihenfolge in (4)
zu gegebenem eein d mit | f(x) — f(a)| <e= |z —al| <9
zu bestimmen, also sozusagen die geforderte Ungleichung
[f(x) — f(a)| < € nach |z — a | aufzulosen; denn das dabei
gelibte « Umformen » von Ungleichungen ist i.allg. durchaus nicht
umkehrbar, so dass sehr wohl dann die eigentlich bendtigte Impli-
kation |z —a | <38 = | f(x) — f(a)] < & verletzt sein kann. Be-
merkt sei noch, dass derartige Stetigkeitsbeweise bei rationalen
Funktionen durchaus schon im Bereich der rationalen Zahlen
durchgefithrt werden konnen. ' :

Die durch A, f(2) = (> — 1)/(x — 1) erkliarte Funktion f
und die durch A, f* (z) = z + 1 erkldarte Funktion f* stimmen
in ihren Funktionswerten dort iiberein, wo beide Funktionen
definiert sind: A,.q /() = f* (z). Dabei ist f* stetig an der
Stelle 1. Dieses und #hnlich gebildete Beispiele fithren zu der
folgenden Aufgabe: Aus der Funktion f soll mit einer vorgege-
benen Zahl a und einer passend zu wihlenden Zahl g eine durch

f*(x) = f(x) fir a # xe Dy, J*(@) =g (5)

definierte Funktion f* so gebildet werden, dass diese an der
Stelle a stetig ist. Dabei spielt es keine Rolle, ob a € D, gilt oder

nicht. Genau im Falle ae D, — { a} zeigt sich, dass es hiochstens
eine derartige Zahl g gibt; denn erfiillen ;f, } an Stelle von g, f*
ebenfalls (5) und ist f bei a stetig, so hat die bei a stetige Funktion

J—1* den Wert 0 an allen Stellen # a von Dy, bei a dagegen den
Wert ¢ —g, woraus g = g oder aber a ¢ D, —{ a} folgt. Im Falle
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‘ae D; —{a} wird daher die Zahl g, sofern eine solche iiberhaupt
existiert, durch f und «. eindeutig bestimmt. Aus der Stetig-
keitsdefinition (4) folgt, dass g sogar schon durch die Funktions-
werte von f in einer beliebig kleinen Umgebung von « festgelegt
wird. Das motiviert die Bezeichnung von g als Grenzwert von f
-an der Stelle @ und die Schreibweise g = lim f (x). Dass (3) fiir

a€D;n D, —{a} wieder die Stetigkeit von f bei a besagt, ist
sofort zu sehen; an einer Stelle ¢ von D, dagegen, die nicht
Haufungspunkt von Dj ist, existiert lim f(x) natirlich nicht,

X —a

wéhrend f dort nach Definition (4) stetig ist. Insofern weicht
die Definition (4) von der frither gegebenen Definition (3) ab.
Fiir die Infinitesimalrechnung, sei es im Schulunterricht oder in
den ersten Hochschulsemestern, diirfte das ohne Belang sein,
da hier die Frage nach der Stetigkeit einer Funktion an iso-
lierten Stellen ihres 'Definitionsbereiches gar nicht auftaucht.
Vom Standpunkt der allgemeinen Topologie dagegen ist die
Definition (4) durchaus vorzuziehen.

Natiirlich kann man jetzt leicht fur g = lim f (z) die vom

xX—a

Stetigkeitsbegriff freie Kennzeichnung
Neso Voso Nxep; 0 <lx—a| <d=|f(x)~gl<e (6

herleiten, indem man (4) fur f* (statt f) anschreibt und (b)
beachtet. Doch braucht man nicht erst auf (6) zuriickzugehen,
wenn man allgemeine Grenzwertsdtze beweisen will, sofern man
die entsprechenden Sitze fiir stetige Funktionen bereits herge-
leitet hat. So folgt z.B. aus lim f; () = g; (¢ = 1,2) mit den

xX—a

entsprechend (D) gebildeteh, bei a stetigén Funktionen f; fiir die
Summenfunktionen f = f; + f,, /* = fi. -+ f> sofort (5) mit
g =g, +g,, 50 dass die Existenz von lim f (z) und die Uberein-

x—a

stimmung dieses Grenzwertes mit der Summe der lim f; (z)

‘eine einfache Folge des Satzes iiber die Stetigkeit einer Summe
stetiger Funktionen ist.

Um nun schliesslich zum Grenzwertbegriff bei Folgen zu
gelangen, wird man zweckmaissigerweise erst das Verhalten
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rationaler Funktionen wie z.B. x — z~! fiir sehr grosse Argu-
mentwerte untersuchen und in Analogie setzen zur Unter-
suchung des Verhaltens solcher Funktionen in grosser Néahe
einer Stelle . Um die Analogie vollkommen zu machen, wird der
Menge der reellen Zahlen eine uneigentliche Zahl oo hinzugefiigt
mit der einzigen Festsetzung

A, X< 0 ; (7)

X

dagegen ist ausdriicklich co als Argumentwert bei den Rechen-
operationen abzulehnen. Nun lisst sich die umgebungsbeschrei-
bende Ungleichung |z — a| < & auch durch ¢ <z <d fiir ge-
eignete Zahlen ¢ (<a) und d (> a) wiedergeben. Der rechte Teil
dieser Ungleichung ist fiir @ = oo wegen (7) unmdoglich. Somit
erscheint es sinnvoll, jede Menge { z; ¢ < z } als Umgebung von
o zu bezeichnen. Damit erhélt man die (6) entsprechende
Kennzeichnung

/\8>0 vc /\xeDfC <X = lf(x)_'gl <é (8)

fir den Grenzwert g = limf(x)'der Funktion f an der (un-

eigentlichen) Stelle co. Um die Eindeutigkeit des Grenzwerts zu
sichern, ist natiirlich wieder co als Hé&éufungspunkt von D,
vorauszusetzen, d.h. D, darf nicht nach oben beschrankt sein.
Spezialisiert auf Folgen, d.h. auf Funktionen mit D, = N, er-
gibt (8) gerade die Kennzeichnung (1) des Folgengrenzwerts,
wenn man noch beachtet, dass in (8) ¢ wegen der archimedischen
Eigenschaft der Anordnung sogar als natuirliche Zahl gefordert
werden kann.

Zur Veranschaulichung der Einfithrung von oo empfiehlt sich
die Projektion der Zahlengeraden auf einen die Gerade beriih-

renden Halbkreis von dessen Mittelpunkt aus, wobei der Durch-

messer durch die Halbkreisendpunkte natiirlich parallel zur
Zahlengeraden gewihlt sei; gerade den Halbkreisendpunkten
entspricht jetzt keine Zahl, so dass es naheliegt, diesen zwei neue
“uneigentliche Zahlen“ oo und — oo zuzuordnen. Natiirlich ist
darauf hinzuweisen, dass keine logische Notwendigkeit dafiir
besteht, die Menge der reellen Zahlen so und nicht anders zu




310 G. PICKERT

erweitern und dass daher kein Widerspruch zu der Einzigkeit
des uneigentlichen Punktes ( = Fernpunkt) einer Geraden (bei
~ Uebergang zur projektiven Geometrie) und der Stelle oo in der
komplexen Funktionentheorie vorliegt.

Von den Vorteilen (A-C) des zuerst beschriebenen Verfahrens
hat sich (C) als Nachteil herausgestellt, wihrend (B) durch die
Motivierung der Stetigkeitsdefinition (4) ausgeglichen erscheint.
Es bleibt also allein noch (A) als Vorzug bestehen, den das
zweite Verfahren nicht besitzt. Nun wird zwar bei diesem die
exakte Behandlung des Folgengrenzwertbegriffes weit nach
hinten geriickt; doch ist damit nicht gesagt, dass eine pro-
padeutische Behandlung dieses Begriffs nicht schon vorher
unabhéngig vom Stetigkeitsbegriff erfolgen darf. Auf dieser
propadeutischen Stufe handelt es sich aber wohl immer nur um
- monotone Folgen: Man sollte sich daher iiberlegen, ob man hier
(also etwa bei unendlichen Dezimalbriichen, unendlichen geo-
metrischen Reihen, Kreisberechnung) nicht besser den Grenz-
wert durch obere bzw. untere Grenze (definiert als kleinste obere
bzw. grosste untere Schranke) ersetzt. Dadurch wiirde dann auch
die Gefahr einer unverstandenen oder falsch verstandenen
oo-Symbolik vermieden. Bei solchem Vorgehen, fiir das mir
manches zu sprechen scheint, wiirde dann auch noch (A) als
Grund fiir die Wahl des ersten Verfahrens wegfallen.

Mathematisches Institut der Universitat
Tibingen.
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