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VARIETES A CONNEXION LINEAIRE 11

THEOREME. — Si V,, est une variélé riemannienne compacie,
19 (V,,) son plus grand groupe connexe d’isoméiries (non neéces-
sairement transitif), I, le sous-groupe d’isolropie en X,.on a

(9-4) : K.(I°(Vw) = o
et
9-5) T e ¥,

| En particulier pour tout espace homogéne riemannien com-
pact, Uholonomie est normale.

I1I. ESPACES HOMOGENES REDUCTIFS.
CAS RIEMANNIEN.

10. Notion d’eépace homogéne réductif (Nomizu].

Sur un espace homogéne V,, = G/H une structure réductive
(ou d’espace homogéne réductif) est définie par la donnée d’une
décomposition en somme directe de Ualgébre de Lie G de G

(10-1) G=H+M (Hn M = 0)

telle que le sous-espace M vérifie
(10-2) adj(H)M < M ,

adj (H) est ici la restriction a I de la représentation adjointe
de G. Tout élément A de G s’écrit d’une maniere et d’une seule
A= 2Ag + My (Ag € H; My € M). Par la projection naturelle p
de G sur V,, on peut identifier M avec I’espace vectoriel Tx,
tangent en z, = pe & V,, et ad] (H) avec le groupe linéaire d’iso-

tropie H. Les cas ou H est compact ou connexe réductif dans G
fournissent des exemples de structure réductive.

D’apres (10-2), M définit sur l'espace fibré principal G de
base V, une connexion infinitésimale invariante par G. Si
P (V,) est l'espace de repeéres défini par les reperes de V,,
déduits de I'un d’entre eux par ’action de G, le fibré P (V,,) est

isomorphe au fibré G. De la connexion invariante obtenue sur

v e e R S
=
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P(V,), on déduit une connexion linéaire invariante pour
V.= G[H. Cette connexion « est dite la connexion canonique
de la structure. | |

A tout élément A de G correspond un sous-groupe & un para-
métre noté exp[sX (A)] ou X (A) est la t.i. correspondante.
Si A € M, le transport le long de z (s) = exp [sX (M)] z, relative-
ment & » coincide avec I’action correspondante de exp [sX (M)];
z (s) est ainsi une géodésique de w rapportée & un parameétre
afline. L’espace homogene réductif V,, = G/H est complet pour
sa connexion canonique.

Sans entrer dans le détail de la théorie, je me bornerai &
indiquer des résultats liés & la considération du groupe de Kos-
tant. On voit sur (3-1) que pour A € M

AX(/I) (x0) = 0.
Le groupe de Kostant relatif & o ne provient que des éléments

de H et si H° est le groupe linéaire connexe d’isotropie en z;:

~

(10-3) K,,(G) =

Ainsi, d’apres le § 6, tout tenseur invariant par G est invariant par
transport relativement d . En particulier les tenseurs de cour-
bure et de torsion de la connexion canonique sont a dérivée:
covariante nulle. Les espaces homogénes réductifs constituent
une généralisation naturelle des espaces homogenes symétriques
d’Elie Cartan.

11. Connexion de Cartan d’un espace réductif. .

A partir de la connexion canonique, les connexions linéaires
invariantes de I'espace correspondent biunivoquement aux ten-
seurs invariants de type (1, 2). Il existe une connexion invariante
et une seule sans torsion telle que les géodésiques issues de =z,
et rapportées & un paramétre affine coincident avec celles de la
connexion canonique. J’appelle cette connexion la connexion de
Cartan de Pespace; celui-ci est toujours complet pour sa connexion
de Cartan.

Si A € G, 'endomorphisme 4 x( 1) (%) relatlf & la connexion de
Cartan est tel que: | )
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1
11-1) Ay (Xo) " pr = —P(E [Aaes iy + [/129#:0 (ne M) .

Considérons les endomorphismes B, de M définis par:
(11-2) Byu = [4ulu - (LeG, ue M) .

Le groupe de Kostant K, (G) relatif a la connexion de Cartan
peut éire identifié par p avec le groupe connexe K (G) d’automor-
phismes de M admeitant pour algébre de Lie I'algébre d’endomor-
phismes engendrée par les B,.

12. Espace homogéne riemannien naturellement réductif.
Soit V,, = G/H (G effectif) un espace homogeéne muni

10 d’une métrique riemannienne invariante ds?;
20 d’une structure réductive G = H + M

telles que la connexion riemannienne de la métrique coincide
avec la connexion de Cartan de la structure réductive. Pour qu’il
~ en soit ainsi, il faut et il suffit que le tenseur métrique soit inva-
riant par transport relativement & la connexion de Cartan, ¢’est-
a-dire que la forme quadratique correspondante sur M soit
invariante par le groupe K (G). Nous dirons que G/H est muni
d’une structure d’espace homogéne riemannien naturellement
réductif. Si H est compact ou connexe, pour qu’a une structure
réductive corresponde une structure d’espace homogéne rieman-
nien naturellement réductif, il suffit que K (G) soit compact.

Soit [, un lacet en x, = pe. Lia variété riemannienne V,, étant
complete, il existe sur son revétement universel une géodésique
joignant deux points arbitraires. Par suite, par projection, il
existe sur V, un lacet /, en z,, homotope & [, et qui est un arc
géodésique de la connexion de Cartan de la structure réductive;
un tel arc peut étre défini par

x() =exp[tX(D]xo, (Ae M)
avec 0 <t < u et pour ¢t = u, exp[uX (A)] € H.

Soit w une connexion linéaire invariante arbitraire et étudions
son holonomie. Si r; (resp ry) est I'élément de son groupe d’holo-
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nomie V', obtenu par tfamport le long de I; (resp. ly), on a:

ryEr, ‘Pgo .

Mais d’apres (3-1) |
r, = exp (uX) exp [udyy (xo)] € H- K, (G)

ou K, (G) est le groupe de Kostant relatif & w. Comme ¥3 < K,
(G), on voit que pour toute connexion invariante sur un tel espace

(12-'1) Y., <H-K,.(G).

13. Cas ou G est compact.

Soit V,, = G[/H un espace homogéne ou G effectif est com-
pact. Un tel espace admet certainement une structure d’espace
homogeéne riemannien naturellement réductif. En effet, soit M
I'orthocomplément de A dans G par rapport au produit scalaire
défini par une forme quadratique définie positive de G inva-
riante par G. D’aprés Pinvariance de ce produit scalaire

[l vu[hv] =0  (humveG).
En particulier si p, veM

Doty v+ 0 [vle =0 (AeGsp,ve M)

et le produit scalaire w . v de M est invariant par le groupe K (G)
correspondant a la structure réductive Q‘= H+4- M.
Considérons sur l'espace V,, = G/H & G compacte une
métrique riemannienne invariante arbitraire. L’holonomie est
normale: pour la connexion riemannienne correspondante

(13-1) P =K, (6.
D’autre part, d’apres (9-5): |
I-} < ¥, .
De (12-1) on déduit que pour toute métrique invariagte
¥, = H.K, (G), soit: |

% v ¥ ’ ~ 0
(132 W, = H- ¥, .
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