Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 8 (1962)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: TRANSFORMATIONS DES VARIÉTÉS A CONNEXION LINÉAIRE ET

DES VARIÉTÉS RIEMANNIENNES

Autor: Lichnerowicz, André

Kapitel: III. Espaces homogènes réductifs. Cas riemannien.

DOI: https://doi.org/10.5169/seals-37948

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Théorème. — Si V_m est une variété riemannienne compacte, $I^0(V_m)$ son plus grand groupe connexe d'isométries (non nécessairement transitif), J_x le sous-groupe d'isotropie en x, on a

$$(9-4) K_x(I^0(V_m)) \subset \Psi_x^0$$

et

$$(9-5) \qquad \qquad \tilde{J}_x \subset \Psi_x .$$

En particulier pour tout espace homogène riemannien compact, l'holonomie est normale.

III. Espaces homogènes réductifs. Cas riemannien.

10. Notion d'espace homogène réductif (Nomizu].

Sur un espace homogène $V_m=G/H$ une structure réductive (ou d'espace homogène réductif) est définie par la donnée d'une décomposition en somme directe de l'algèbre de Lie G de G

$$(10-1) \underline{G} = \underline{H} + M (\underline{H} \cap M = 0)$$

telle que le sous-espace M vérifie

$$(10-2) adj(H) M \subset M,$$

adj (H) est ici la restriction à H de la représentation adjointe de G. Tout élément λ de G s'écrit d'une manière et d'une seule $\lambda = \lambda_{\underline{H}} + \lambda_{\underline{M}} \ (\lambda_{\underline{H}} \in \underline{H}; \ \lambda_{\underline{M}} \in M)$. Par la projection naturelle p de G sur V_m , on peut identifier M avec l'espace vectoriel Tx_0 tangent en $x_0 = pe$ à V_m et adj (H) avec le groupe linéaire d'iso-

tropie \tilde{H} . Les cas où H est compact ou connexe réductif dans G fournissent des exemples de structure réductive.

D'après (10-2), M définit sur l'espace fibré principal G de base V_m une connexion infinitésimale invariante par G. Si $P(V_m)$ est l'espace de repères défini par les repères de V_m déduits de l'un d'entre eux par l'action de G, le fibré $P(V_m)$ est isomorphe au fibré G. De la connexion invariante obtenue sur

 $P(V_m)$, on déduit une connexion linéaire invariante pour $V_m = G/H$. Cette connexion ω est dite la connexion canonique de la structure.

A tout élément λ de \underline{G} correspond un sous-groupe à un paramètre noté $\exp[sX(\lambda)]$ où $X(\lambda)$ est la t.i. correspondante. Si $\lambda \in M$, le transport le long de $x(s) = \exp[sX(\lambda)] x_0$ relativement à ω coïncide avec l'action correspondante de $\exp[sX(\lambda)]$; x(s) est ainsi une géodésique de ω rapportée à un paramètre affine. L'espace homogène réductif $V_m = G/H$ est complet pour sa connexion canonique.

Sans entrer dans le détail de la théorie, je me bornerai à indiquer des résultats liés à la considération du groupe de Kostant. On voit sur (3-1) que pour $\lambda \in M$

$$A_{X(\lambda)}(x_0) = 0.$$

Le groupe de Kostant relatif à ω ne provient que des éléments de \underline{H} et si $\tilde{H}{}^0$ est le groupe linéaire connexe d'isotropie en x_0 :

(10-3)
$$K_{x_0}(G) = H^0$$

Ainsi, d'après le § 6, tout tenseur invariant par G est invariant par transport relativement à ω. En particulier les tenseurs de courbure et de torsion de la connexion canonique sont à dérivée covariante nulle. Les espaces homogènes réductifs constituent une généralisation naturelle des espaces homogènes symétriques d'Elie Cartan.

11. Connexion de Cartan d'un espace réductif.

A partir de la connexion canonique, les connexions linéaires invariantes de l'espace correspondent biunivoquement aux tenseurs invariants de type (1, 2). Il existe une connexion invariante et une seule sans torsion telle que les géodésiques issues de x_0 et rapportées à un paramètre affine coïncident avec celles de la connexion canonique. J'appelle cette connexion la connexion de Cartan de l'espace; celui-ci est toujours complet pour sa connexion de Cartan.

Si $\lambda \in \underline{G}$, l'endomorphisme $A_{X(\lambda)}$ (x_0) relatif à la connexion de Cartan est tel que:

11-1)
$$A_{X(\lambda)}(x_0) \cdot p\mu = -p\left(\frac{1}{2} \left[\lambda_M, \mu\right]_M + \left[\lambda_{\underline{H}}, \mu\right]\right) (\mu \in M) .$$

Considérons les endomorphismes B_{λ} de M définis par:

$$(11-2) B_{\lambda} \mu = [\lambda, \mu]_{M} (\lambda \in \underline{G}, \mu \in M).$$

Le groupe de Kostant K_{x_0} (G) relatif à la connexion de Cartan peut être identifié par p avec le groupe connexe K (G) d'automorphismes de M admettant pour algèbre de Lie l'algèbre d'endomorphismes engendrée par les B_{λ} .

12. Espace homogène riemannien naturellement réductif.

Soit $V_m = G/H$ (G effectif) un espace homogène muni

- 1º d'une métrique riemannienne invariante ds^2 ;
- 2º d'une structure réductive $\underline{G} = \underline{H} + M$

telles que la connexion riemannienne de la métrique coïncide avec la connexion de Cartan de la structure réductive. Pour qu'il en soit ainsi, il faut et il suffit que le tenseur métrique soit invariant par transport relativement à la connexion de Cartan, c'est-à-dire que la forme quadratique correspondante sur M soit invariante par le groupe K(G). Nous dirons que G/H est muni d'une structure d'espace homogène riemannien naturellement réductif. Si H est compact ou connexe, pour qu'à une structure réductive corresponde une structure d'espace homogène riemannien naturellement réductif, il suffit que K(G) soit compact.

Soit l_1 un lacet en $x_0 = pe$. La variété riemannienne V_m étant complète, il existe sur son revêtement universel une géodésique joignant deux points arbitraires. Par suite, par projection, il existe sur V_m un lacet l_2 en x_0 , homotope à l_1 et qui est un arc géodésique de la connexion de Cartan de la structure réductive; un tel arc peut être défini par

$$x(t) = \exp[tX(\lambda)]x_0 \qquad (\lambda \in M)$$

avec $0 \le t \le u$ et pour t = u, $\exp[uX(\lambda)] \in H$.

Soit ω une connexion linéaire invariante arbitraire et étudions son holonomie. Si r_1 (resp r_2) est l'élément de son groupe d'holo-

nomie Ψ_{x_0} obtenu par transport le long de l_1 (resp. l_2), on a:

$$r_1 \in r_2 \ \Psi^0_{x_0}$$
.

Mais d'après (3-1)

$$r_2 = \exp(uX)' \exp\left[uA_{X(\lambda)}(x_0)\right] \in \tilde{H} \cdot K_{x_0}(G)$$

où $K_{x_0}(G)$ est le groupe de Kostant relatif à ω. Comme $\Psi_{x_0}^0 \subset K_{x_0}(G)$, on voit que pour toute connexion invariante sur un tel espace

$$(12-1) \Psi_{x_0} \subset \tilde{H} \cdot K_{x_0}(G) .$$

13. Cas où G est compact.

Soit $V_m = G/H$ un espace homogène où G effectif est compact. Un tel espace admet certainement une structure d'espace homogène riemannien naturellement réductif. En effet, soit M l'orthocomplément de H dans G par rapport au produit scalaire défini par une forme quadratique définie positive de G invariante par G. D'après l'invariance de ce produit scalaire

$$[\lambda, \mu] \cdot v + \mu \cdot [\lambda, \nu] = 0 \qquad (\lambda, \mu, \nu \in G) .$$

En particulier si μ , $\nu \in M$

$$[\lambda, \mu]_{M} \cdot \nu + \mu \cdot [\lambda, \nu]_{M} = 0 \qquad (\lambda \in \underline{G}; \mu, \nu \in M)$$

et le produit scalaire μ . ν de M est invariant par le groupe K (G) correspondant à la structure réductive $\underline{G} = \underline{H} + M$.

Considérons sur l'espace $V_m = G/H$ à \overline{G} compacte une métrique riemannienne invariante arbitraire. L'holonomie est normale: pour la connexion riemannienne correspondante

$$\Psi_{x_0}^0 = K_{x_0}(G) .$$

D'autre part, d'après (9-5):

$$\tilde{H} \subset \Psi_{x_0}$$
.

De (12-1) on déduit que pour toute métrique invariante $\Psi_{x_0} = \tilde{H}$. $K_{x_0}(G)$, soit:

$$\Psi_{x_0} = \tilde{H} \cdot \Psi_{x_0}^0.$$