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LE THEOREME DE THUE-SIEGEL-ROTH 1)

par G. Poirou

(Recu le 30 septembre 1960.)

Soit o un nombre algébrique de degré n, ¢’est-a-dire la racine
d’une équation irréductible

a+ a2+ +a, =0

a coefficients a,, ..., a, rationnels; supposons qu’il existe une
infinité de fractions p/q telles que
1

p
l“_5l<qk

ou k est une constante fixe.

Il se trouve que cette constante &£ ne peut étre trés grande,
ce qui signifie que les nombres algébriques irrationnels s’ap-
prochent assez mal par des rationnels. Le premier résultat de
cette sorte est di & Liouville ([1], [2]) qui a démontré que k& < n.
Ce résultat est intéressant historiquement, car c¢’est la premiére
démonstration de l’existence des nombres transcendants. Par

exemple, le nombre > 2™ est transcendant, car il s’approche
m=0

par des rationnels (les sommes partielles) mieux que ne le
permet le résultat de Liouville & un nombre algébrique.

On sait par ailleurs ([3], [4]) que 'équation (2) a, pour k = 2,
une infinité de solutions p/q, quel que soit le nombre « réel
irrationnel (non nécessairement algébrique). I.’inégalité de Liou-
ville £ << n ne peut donc étre améliorée lorsque n = 2, c¢’est-
a-dire pour les nombres « quadratiques; pour ceux-ci, elle résulte
d’ailleurs aussi de la périodicité du développement en fraction
continue, déja démontrée par Lagrange ([5]) en 1770.

1) Conférence prononcée & Grenoble, dans le cadre des « Journées mathématiques
de Grenoble», 21-22 mai 1960.
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Par contre, pour n > 2, le résultat de Liouville a été recou-
vert par des majorations de £ de plus en plus strictes:

+1 par Axel Thue en 1908 ([6], [7]);

4 ¢ pour chaque s = 1,2, ..., n — 1 par C. L. Siegel
dans sa theése en 1921 ([8], voir aussi [9]); en pre-

nant s au mieux, cette majoration est de I'ordre
de k < 2 4/n;

kE < A/2n par F. J. Dyson en 1947 ([10]), démonstration
simplifiée par Mahler ([11]) et résultat retrouvé
par Schneider ([12]) et par Gelfond ([13]).

Siegel avait conjecturé I'inégalité k£ < 2, qui a été établie par
K. F. Roth en 1955 ([14]). Voir aussi ([15]).

Les démonstrations de Thue et de Siegel sont exposées dans
le livre classique de Landau ([16],) avec leurs importantes applica-
tions, notamment a la finitude de solutions d’équations diophan-
tiennes. Pour diverses questions analogues, en particulier pour
I’étude des fractions voisines des zéros d’un polynome & coeffi-
cients entiers, & la fois au sens de la valeur absolue ordinaire, et
au sens d’un nombre fini de valuations p-adiques, contentons-
nous de renvoyer a la bibliographie ([17], [18], [19], [20], [21]).

Quant a la démonstration de Roth elle-méme, outre le
mémoire original, elle est exposée completement (sans parler de
sa généralisation a ’approximation par des nombres algébriques)
dans deux ouvrages récents [22, 23]. Cette démonstration étant
assez difficile, elle a donné lieu & des exposés simplifiés (mais
forcément incomplets) destinés & mettre en lumiere les idées
directrices, par Pauteur lui-méme [24, 25] & Doccasion des
congres.

C’est un tel exposé que j’ai donné & Grenoble, et déja en 1956
au séminaire d’Algebre et Théorie des nombres de Paris. Il est
évidemment inutile d’écrire encore une fois sur ce sujet, et je
me bornerai donc & faire remarquer en quoi la démonstration
récente de Roth s’apparente a la démonstration classique de
Liouville.

Il est facile de montrer qu’on peut supposer les coefficients
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ay, ..., 4, entiers rationnels, quitte & multiplier « par un entier
rationnel. Posons } (x) = 2" + a; 2™ 4 ... + a, et désignons
par B une borne supérieure de la valeur absolue de la dérivée
de f dans un intervalle contenant «; donc si 8 appartient a cet
intervalle, on a

1@ =17/@—f(x]|<B|[B—al

En particulier, pour les fractions p/g vérifiant (2), avec un
nombre fini d’exceptions, donc pour une infinité de fractions, et
pour des dénominateurs ¢ arbitrairement grands, on a les
inégalités ‘

B

—1—n<lf(f-’>[<B oc—%!< y

]

ce qui implique évidemment £ < n.

La clé de cette démonstration de Liouville est le fait qu’un
polyndéme & coefficients entiers, pour des valeurs entiéres de la
variable, s’il n’est pas nul, a une valeur absolue au moins égale
a 1. Cette 1idée se retrouve dans la démonstration de Roth, ou
intervient de fagon essentielle un polynéme Q (xy, 2o, ..., 2,,) &
un grand nombre de variables, et & coefficients entiers, ayant les
propriétés suivantes:

(A) beaucoup de dérivées partielles de ce polynéme sont nulles
au point (o, &, ..., &);

(B) ce polyndme a des coefficients point trop grands;

(C) ce polyndome a des degrés partiels point trop élevés;

(D) pour des fractions vérifiant (2) convenablement choisies,
on a

P, Pm
Qs M) #0

Q (..., Bmy

7, 4
est majoré, tandis que les conditions (C) et (D) en donnent une
minoration. De la comparaison de ces deux inégalités résulte le
théoréeme. Naturellement, il faut d’abord remplacer les énoncés
précédents par des assertions précises, et surtout prouver Pexis-
tence d’un polyndme Q vérifiant ces assertions. Il faut pour cela

Alors, les conditions (A) et (B) entrainent que
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mettre en ceuvre une technique délicate, qui assure d’abord
Pexistence d’'un polynome vérifiant toutes ces conditions, sauf
la derniere; mais on montre que ce polynéme posséde une
dérivée partielle convenable, qui, elle, vérifie toutes les condi-
Lions voulues?).
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