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LE THÉORÈME DE THUE-SIEGEL-ROTH x)

par G. Poitou

(Reçu le SO septembre 1960.)

Soit oc un nombre algébrique de degré ra, c'est-à-dire la racine
d'une équation irréductible

xn + ax xnA + +an 0

à coefficients alf an rationnels; supposons qu'il existe une
infinité de fractions p/q telles que

où k est une constante fixe.
Il se trouve que cette constante k ne peut être très grande,

ce qui signifie que les nombres algébriques irrationnels
s'approchent assez mal par des rationnels. Le premier résultat de

cette sorte est dû à Liouville ([1], [2]) qui a démontré que A < n.
Ce résultat est intéressant historiquement, car c'est la première
démonstration de l'existence des nombres transcendants. Par

oo

exemple, le nombre ^ 2~m! est transcendant, car il s'approche
m=0

par des rationnels (les sommes partielles) mieux que ne le

permet le résultat de Liouville à un nombre algébrique.
On sait par ailleurs ([3], [4]) que l'équation (2) a, pour A 2,

une infinité de solutions p/q, quel que soit le nombre oc réel
irrationnel (non nécessairement algébrique). L'inégalité de Liouville

k < n ne peut donc être améliorée lorsque n 2, c'est-
à-dire pour les nombres oc quadratiques; pour ceux-ci, elle résulte
d'ailleurs aussi de la périodicité du développement en fraction
continue, déjà démontrée par Lagrange ([5]) en 1770.

y Conférence prononcée à Grenoble, dans le cadre des « Journées mathématiquesde Orenobi e », 21-22 mai 1960. H
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Par contre, pour n > 2, le résultat de Liouville a été recouvert

par des majorations de k de plus en plus strictes:

par Axel Thue en 1908 ([6], [7]);

pour chaque s 1, 2, n — 1 par G. L. Siegel
dans sa thèse en 1921 ([8], voir aussi [9]); en
prenant s au mieux, cette majoration est de l'ordre
de k < 2 -\/n ;

par F. J. Dyson en 1947 ([10]), démonstration
simplifiée par Mahler ([11]) et résultat retrouvé
par Schneider ([12]) et par Gelfond ([13]).

Siegel avait conjecturé l'inégalité k < 2, qui a été établie par
K. F. Roth en 1955 ([14]). Voir aussi ([15]).

Les démonstrations de Thue et de Siegel sont exposées dans
le livre classique de Landau ([16],) avec leurs importantes applications,

notamment à la fmitude de solutions d'équations diophan-
tiennes. Pour diverses questions analogues, en particulier pour
l'étude des fractions voisines des zéros d'un polynôme à coefficients

entiers, à la fois au sens de la valeur absolue ordinaire, et
au sens d'un nombre fini de valuations /?-adiques, contentons-
nous de renvoyer à la bibliographie ([17], [18], [19], [20], [21]).

Quant à la démonstration de Roth elle-même, outre le
mémoire original, elle est exposée complètement (sans parler de

sa généralisation à l'approximation par des nombres algébriques)
dans deux ouvrages récents [22, 23]. Cette démonstration étant
assez difficile, elle a donné lieu à des exposés simplifiés (mais
forcément incomplets) destinés à mettre en lumière les idées

directrices, par l'auteur lui-même [24, 25] à l'occasion des

congrès.
C'est un tel exposé que j'ai donné à Grenoble, et déjà en 1956

au séminaire d'Algèbre et Théorie des nombres de Paris. Il est
évidemment inutile d'écrire encore une fois sur ce sujet, et je
me bornerai donc à faire remarquer en quoi la démonstration
récente de Roth s'apparente à la démonstration classique de

Liouville.
Il est facile de montrer qu'on peut supposer les coefficients

*<^ + i

k < Vïr,
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aXl an entiers rationnels, quitte à multiplier oc par un entier
rationnel. Posons f (x) — xn + xnA + + an et désignons

par B une borne supérieure de la valeur absolue de la dérivée

de f dans un intervalle contenant a; donc si ß appartient à cet

intervalle, on a

| / (ß) | | / (ß) - / («) I < B I ß - a

En particulier, pour les fractions pjq vérifiant (2), avec un
nombre fini d'exceptions, donc pour une infinité de fractions, et

pour des dénominateurs q arbitrairement grands, on a les

inégalités

< B <5

ce qui implique évidemment k < n.
La clé de cette démonstration de Liouville est le fait qu'un

polynôme à coefficients entiers, pour des valeurs entières de la
variable, s'il n'est pas nul, a une valeur absolue au moins égale
à 1. Cette idée se retrouve dans la démonstration de Roth, où
intervient de façon essentielle un polynôme Q (nq, x2,..., xm) à

un grand nombre de variables, et à coefficients entiers, ayant les

propriétés suivantes:
(A) beaucoup de dérivées partielles de ce polynôme sont nulles

au point (oc, a, a);
(B) ce polynôme a des coefficients point trop grands;
(C) ce polynôme a des degrés partiels point trop élevés;
(D) pour des fractions vérifiant (2) convenablement choisies,

on a

Q p) ^0
$m

Alors, les conditions (A) et (B) entraînent que Q 0, -, 1m

est majoré, tandis que les conditions (C) et (D) en donnent une
minoration. De la comparaison de ces deux inégalités résulte le
théorème. Naturellement, il faut d'abord remplacer les énoncés
précédents par des assertions précises, et surtout prouver
tence d'un polynôme Q vérifiant ces assertions. Il faut pour cela
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mettre en œuvre une technique délicate, qui assure d'abord
l'existence d'un polynôme vérifiant toutes ces conditions, sauf
la dernière; mais on montre que ce polynôme possède une
dérivée partielle convenable, qui, elle, vérifie toutes les conditions

voulues1).
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