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EINE KENNZEICHNENDE EIGENSCHAFT DER KUGEL

von Helmut Groemer

(Reçu le 1er septembre 1960)

In seinem Buch „A Collection of Mathematical Problems"
stellt S.M.Ulam die folgende Aufgabe: Es sei K ein konvexer
Körper konstanter Dichte, der die Eigenschaft hat, dass er
sich in jeder Stellung auf einer ebenen horizontalen Unterlage
im Gleichgewicht befindet. Folgt daraus, dass K eine Kugel
ist Im folgenden soll diese Frage bejahend beantwortet
werden. Es wird sich dabei zeigen, dass die Voraussetzung
konstanter Dichte überflüssig ist, woraus dann insbesondere

folgt, dass die Annahme der Konvexität von K nicht notwendig
ist, da man ja zur konvexen Hülle K von K übergehen kann,
wenn man die Dichte in K — K null setzt.

Dafür, dass sich K im Gleichgewicht befindet, ist notwendig,
dass die vom Berührungspunkt von K mit der Unterlage
ausgehende auf diese Ebene senkrecht stehende Gerade durch den
Schwerpunkt von K geht. Die Behauptung ist demnach in dem
folgenden Satz enthalten, der eine kennzeichnung der n-dimen-
sionalen Kugel darstellt. Ist P ein Punkt des Randes von K,
so heisse eine durch P gehende Gerade g eine Normale, wenn g
auf einer P enthaltenden Stützebene von K senkrecht steht.

Satz: Hat ein ft-dimensionaler konvexer Körper K die
Eigenschaft, dass alle Normalen durch einen festen Punkt Q
gehen, so ist K eine ft-dimensionale Kugel mit dem Mittelpunkt

Q.
Beweis: Es seien Px und P2 zwei beliebige Punkte am Rande

von K und r1? r2 die Entfernungen QPX bzw. QP2. Es genügt
offenbar für alle P1? P2

>2 ^ 1 (1)

zu beweisen. Schneidet man K mit einer durch Q, Px, P2
gehenden zweidimensionalen Ebene E, so erhält man in E einen
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konvexen Bereich G, auf dessen Rande P2, P2 liegen und dessen

Normale alle durch Q gehen. Der Winkel zwischen rx und r2
sei a (a ^ 7r). N bedeute irgendeine natürliche Zahl. gt (i
0, 1, N) sei definiert als eine durch Q gehende Gerade, die

mit i\ den Winkel i S einschliesst und in dem durch a bestimmten
Winkelraum liegt. Man ziehe nun von ausgehend senkrecht
zu g0 eine Strecke bis man gx etwa in einem Punkt Ax trifft.
Von Ax ziehe man eine Strecke Z2, bis man g2 in einem Punkte A2
trifft. So kann man fortfahren, bis man gN erreicht. Die Strecken

lt liegen alle ausserhalb oder am Rande von C. Für l± folgt dies

daraus, dass lx in einer durch Px gehenden Stützgeraden von G

liegt. Da ausserhalb oder am Rande von C liegt, gilt dies auch
für A1 und daher auch für Z2, weil die auf g2 senkrecht stehende

Stützgerade von G zwischen l2 und C liegt. Auf diese Weise
gelangt man bis AN. Es ist somit AN ausserhalb oder am Rande

von G. Wegen AN egN, P2 e gN, P2 e G gilt daher für den Abstand

dN QAn
r2 ^ dN • (2)

Berechnet man rfN, so erhält man

was mit (2)

2 N (3)

ergibt. Wegen

lim ('cos —= 1

N-*oo V

folgt aus (3) die mit dem zu beweisenden Satz äquivalente
Behauptung (1).
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