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EINE KENNZEICHNENDE EIGENSCHAFT DER KUGEL

von Helmut GROEMER

(Regu le 1°* septembre 1960)

In seinem Buch A Collection of Mathematical Problems”
stellt S.M.Ulam die folgende Aufgabe: Es sei K ein konvexer
Korper konstanter Dichte, der die Eigenschaft hat, dass er
sich in jeder Stellung auf einer ebenen horizontalen Unterlage
im Gleichgewicht befindet. Folgt daraus, dass K eine Kugel
ist ? Im folgenden soll diese Frage bejahend beantwortet
werden. Es wird sich dabei zeigen, dass die Voraussetzung
konstanter Dichte iiberfliissig ist, woraus dann insbesondere
folgt, dass die Annahme der Konvexitit von K nicht notwendig

ist, da man ja zur konvexen Hiille K von K iibergehen kann,

wenn man die Dichte in K — K null setzt.

Dafiir, dass sich K im Gleichgewicht befindet, ist notwendig,
dass die vom Beriithrungspunkt von K mit der Unterlage aus-
gehende auf diese Ebene senkrecht stehende Gerade durch den
Schwerpunkt von K geht. Die Behauptung ist demnach in dem
folgenden Satz enthalten, der eine kennzeichnung der n-dimen-
sionalen Kugel darstellt. Ist P ein Punkt des Randes von K,
so heisse eine durch P gehende Gerade g eine Normale, wenn g
auf einer P enthaltenden Stiitzebene von K senkrecht steht.

Saiz: Hat ein n-dimensionaler konvexer Korper K die
Eigenschaft, dass alle Normalen durch einen festen Punkt Q
gehen, so ist K eine n-dimensionale Kugel mit dem Mittel-
punkt Q.

Beweis : Es seien P, und P, zwei be]iebige Punkte am Rande

von K und ry, r, die Entfernungen QP bzw. QP Es gentigt

offenbar fiir alle P, P,
ry S0 (1)

zu beweisen. Schneidet man K mit einer durch Q, P, P, ge-
henden zweidimensionalen Ebene E, so erhidlt man in E einen




276 H. GROEMER

konvexen Bereich C, auf dessen Rande P;, P, liegen und dessen
Normale alle durch Q gehen. Der Winkel zwischen r; und r,
sel a (a =m). N bedeute irgendeine natirliche Zahl. g; (1 =
0,1, ... N) sel definiert als eine durch Q gehende Gerade, die
mit r; den Winkel i & einschliesst und in dem durch o bestimmten
Winkelraum liegt. Man ziehe nun von P, ausgehend senkrecht
zu g, eine Strecke [;, bis man g; etwa in einem Punkt A, trifft.
Von A, ziehe man eine Strecke [,, bis man g, in einem Punkte A,
trifft. So kann man fortfahren, bis man gy erreicht. Die Strecken
[; hegen alle ausserhalb oder am Rande von C. Fir [; folgt dies
daraus, dass [, in einer durch P, gehenden Stiitzgeraden von C
liegt. Da [; ausserhalb oder am Rande von C liegt, gilt dies auch
fir A; und daher auch fiir l,, weil die auf g, senkrecht stehende
Stitzgerade von C zwischen [, und C liegt. Auf diese Weise
gelangt man bis Ay. Es ist somit A ausserhalb oder am Rande
von C. Wegen Ay e gy, P, € gy, P, € C gilt daher fiir den Abstand

dy = QAy
ry =dy . (2)

I&
dy = —" s,
(COS N)
was mit (2)
ry
s S TN (3)
(COS N)

ergibt. Wegen

N
lim (cos 1) = 1
N> N

folgt aus (3) die mit dem zu beweisenden Satz &dquivalente
Behauptung (1).
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