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APPROXIMATING SUMS AND THE TEACHING
OF THE RIEMANN INTEGRAL

by William Zuor

(Recu le 15 décembre 1960.)

The limit process appearing in the definition of the Riemann
integral, is a difficult one for a student to comprehend, even if
he has already grasped the notion of “ the limit of a single-
valued function .

The following method of presentation is designed to provide
the student with a conceptual bridge between these two notions
of limit.

The approach is especially suitable to the classroom because
appeal can be made, at any step in the method, to geometrical
relationships.

The results of the classical theory of Riemann integration
are assumed.

First, a few standard definitions are needed:

A partition of [a, b]1) is a finite set of points zy, 24, ..., 2,
such that ¢ = xy<x;<...<z, = b. Such a partition will be
denoted by (a, 24, ..., b).

The norm of (a, x4, ..., b) 1s the maximum of the differences,
x;—xj—q forj =1, .., n.

A mesh of (a,x, ...,b) is any of the closed subintervals
[%;—q, 2;] for j =1, ..., n.

If f is a continuous real-valued function defined at every
point of [a, b], and (e, z, ..., b) 1s a partition of [a, b], then

‘Zlf(cj) (x; — x;-1), where z;_y < ¢; < z; for j =1, ..., n, is
J:

called a Riemann sum for (a, x4, ..., b).

1) [a, b] denotes the closed interval from a to b.
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If, in the preceding definition, f (¢;) is the maximum value
of f on [z;_y, 2;] for j = 1, ..., n, then the Riemann sum 1s called
the upper Riemann sum for (a, 24, ..., b). If, on the other hand,
f (¢;) is the minimum value of f on [x;_4, z;]for j = 1, ..., n, then
the Riemann sum is called the lower Riemann sum for (a, z4, ..., b).

In the following approach detailed study is made of the
behavior of the Riemann sums for some simple function. The
method will be applied to the function y = 2?2 on [0,1].

Let y = 22 on [0,1]. Let %, denote any real number such
that 0 < h, £ 1. Let K (h,) denote the set of all partitions each
of which has a norm less than, or equal to, h,. Let S (,) denote
the set of all numbers that are Riemann sums for at least one
partition belonging to the set K (4,).

Taeorem [. Ify = 2?2on[0,1]and £,is such that 0<h, = 1,
then the least upper bound of § (%,) is attained by the upper
Riemann sum for the partition P* (k) = (0,1 — nh,,
1—(n—1)hy, ..., 1 — hy, 1) where n = [1/h,], that is, n is the
greatest integer less than, or equal to, 1/k,. For example, if
1/4 < hy £ 1/3, then [1/h,] = 3, and the least upper bound of
S (hy) occurs for the partition P* (h,) = 0,4 — 3h,, 1 — 2h,,
1 — hy, 1).

Proof. In the search for a least upper bound for S (A,),
we need merely consider upper Riemann sums. Let
P (hy) = (0, x4, ..., 1) denote any other partition of norm A,?).
It will be proved that the upper Riemann sum for P (%) is less
than, or equal to, the upper Riemann sum for P* (h,). The
meshes of P (hy) can be segregated into disjoint classes C; and
C, as follows: C; consists of those meshes of P (k,) which are
subsets (proper or improper) of a mesh of P* (h,), and C,
consists of the remaining meshes of P (k,), that is, those meshes
of P (h,) which contain a point 2) of P* (h,) in their interior.
Now, the maximum of y = 2% over a mesh belonging to C, is
less than, or equal to, the maximum of y = 22 over the mesh of

1) Note that P* (ho) also has norm ho. In Figures I, 11, and III, the solid lines
denote rectangles associated with the partition P* (hy) and the dotted lines denote
rectangles related to P (ho).

?2) No mesh of P (ho) can contain more than one point of P* (ho) in its interior
because the norm of P (hg) is ho.
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P* (hy) of which it is a subset. Thus, the contribution to the
upper Riemann sum of P (k,) by a rectangle, with a mesh from
C, as base, is consistent with the offered conclusion of the
theorem.

Let us now turn to the consideration of the contribution to
the upper Riemann sum of P (k,) by a rectangle erected on a
mesh that belongs to C,. Let [z;-,, x;] denote a mesh of €, that
contains 1 — kh,, a point of P* (h,), in its interior. Note that
O0<xj—ux;_y £ hpand ;3 < 1 —khy < x;. Figure I will aid
in the analysis.
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|
l
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1—(k+1hy  xj1 1-khy xj 1—(k=1)k

Fig. I.

It will be proved that the area of the rectangle denoted by B
is less than the area of the rectangle denoted by A. Thus, the
upper Riemann sum for P (k) “ loses ” more (4) than 1t “ gains ”
(B) ).

The area of rectangle B is

[(1 — kho) — x;-4] [x] — (1 — kh¢)?]
and the area of rectangle A4 is

[x; — (1 — kho)] [{1 — (k — 1) ho}> —x] .

1) An analogous result does not hold for an arbitrary monotone continuous function.
For example, consider the function obtained from y=x2, by substituting a line segment
through the points (xy, x?) and (1 — (kR —1) ho, xf + e), where ¢ > 0, for the portion
of y = x2? defined over theinterval [x;, 1 — (kR — 1) ho]. Since e can be made arbitrarily
small, we can obviously construct a monotone continuous function for which the area
of A is less than the area of B.
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Now, since x; — (1 — kk,) > 0, it suffices to prove that
2

[(1 —kho) — x;_1] [x; + (1 =kho)] < {1 —(k—1Dho}* —xj .
Observe that

[(1—khy) — x;-1] [x; + (1 —khg)]
< [(1—khg) — x;-1] [(xj-1 +ho) + (1= Kkho)]
and that

(1 = (k=1 hg)? = (x;_1 +hp)? {1 — (k=D ho}* —x] .
Therefore, it suffices to prove that

[(1—kho) — x;-4] [(xj-1 + ho) + (1 —khy)]
<{1 = (k=1 hy}* — (x;-4 + hy)? .

By simple manipulation, one obtains z;_; < 1 — khy But
this inequality is given. The fact that the area of rectangle 4
is greater than that of rectangle B follows from a reversal of the
previous steps. Combining our results, one notes that the upper
Riemann sum for P (h,) is less than, or equall) to, the upper
Riemann sum for P* (k,) and thus, Theorem I is proved.

Tueorem II. Same hypotheses as Theorem I. Then the
least upper bound S (k) of S (k) is given by the formula:

3

_ h
S(hy) = 1 —2nhg + h2n (2n + 1) — %"(4;1—- D(m+1),
where n = [1/h,]. |

Tueorem III. If y =22 on [0,1] and A, is such that
0 < hy = 1, then the greatest lower bound of § (&) is attained -
by the lower Riemann sum for the partition

I)>l< (ho) - (0,1 - nho, 1 _‘(n_ 1) ho, ceeey 1 - ho, 1) N

where n = [1/hy].

Using the same notation as in the first paragraph of the proof
of Theorem I and making appropriate substitutions, such as
“lower ” for “upper,” we find, again, that the contribution of

1) Note that C, may be empty.
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a rectangle with a mesh from C, as base is consistent with the
offered conclusion of the theorem.

Let us now turn to the consideration of the contribution to
the lower Riemann sum of P (k,) by a rectangle erected on a
mesh that belongs to C,. Figures II and IIT will aid in the
analysis.
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Fig. II. Fig. III.

Figure II indicates the typical situation at every point
1 — khy of P* (h;) that is interior to a mesh [x;_;, z;] of Cy. It
i1s most convenient, however, to conceive of a situation such as
the one indicated in Figure IIl in which the points of P (4,),
lying between z; and 1 — (k — 1) A, are ignored !). This step
can only cause a decrease in the lower Riemann sum for P (h,)
and we will prove that even this reduced sum is greater than,
or equal to, the lower Riemann sum for P* (h,).

It will be proved that the area of the rectangle denoted by B
(Figure III) is less than the area of the rectangle denoted by A.
Thus, the lower Riemann sum for P (&,) “ gains ” more (4) than
it “loses 7 (B). Note that

0<xj—xj—1§h0 Aand— xj_1<1'—kho<xj.

The area of rectangle B is [x; — (1 — kho)] [(1 — kho)* — x7_4]
and the area of rectangle A is

1) Note that the rectangles generated by P (hg) that lie betweenxjand 1 — (R — 1) ho
are replaced by a rectangle over [x;, 1 — (R — 1) ho] with height x?
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[{1 —(k=1)he} — x;] [x] — (1 —kho)*] .
Now, since z; > (1 — kh,), it suffices to prove that
(1—kho)* — xi_; <[{1 — (k=1 ho} — x] [x; +(1—kho)] .
Simple manipulation shows that this inequality is equivalent to
(x;—x;_1) (x; +x;-0) < ho[x; + (1 —=khy)] .

But this latter inequality follows from the simultaneous inequal-
ities 0 < x;—z;_4y < hy and z;_y < (1 — khy) which are given.
The fact that the area of rectangle B is less than the area of
rectangle A now follows from a reversal of the previous steps.
Combining our results, one notes that the lower Riemann sum
for P (hy) 1s greater than, or equal to, the upper Riemann sum

for P* (h,), and thus, Theorem III is proved.

Tueorem IV. Same hypotheses as Theorem III. Then
the greatest lower bound § (&) of S (%) is given by the formula:

3

) hyn
S(ho) = hon—hgn(n+1) +T[(n+1)(2n+1)].

1
TueoreEm V. lim S (hy) = lim S(hy) = 1/3 = | x*dx .
0

hy—0 hy—0
Now, one can reap the fruits of one’s labor, namely, a

visual interpretation for the limit process involved in the
1

definition of [ax?dz. First, let %, vary, and consider the
0

graph (Figure IV) of the functions S (k) and S (k). For
example, to sketch S (2) for 1/2 < A < 1, note that n = 1 and
that S (k) =1 — 2h+3h> —h3. S (k) and S (k) are continuous
functions each of which is composed of an infinite number of
arcs of cubic functions.

Finally, in Figure V, the graph of the single valued function
S (h) — S (R) is sketched.

This function is also continuous and piecewise cubic.

Now, one observes that

lim [S ()~ S (W] =0,
h—-0
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and thus, the limit involved in the definition of the Riemann
integral for y = 2% over [0,1] can be thought of in terms of
the limit of a single-valued function. All the pedagogical
devices that can be used to present the idea of the limit of a
single-valued function can thus be employed in the classroom
development of the more sophisticated limit that occurs in the
definition of the Riemann integral of y = 2% over [0,1].

Some general comments on the case of any continuous
function on a closed interval seem appropriate.

(1) S (k) and S (hy) always exist.
(2) S (h) is always monotone increasing (with increasing %), and
~§ (h) is monotone decreasing (with increasing h).
)

(3) S (h,) attains every value ¢, where S (k) << ¢ < S (h).1)

In conclusion, it may be noted that the graphs and analyses
for the general case of a continuous function on a closed interval
are similar to those for y = 22 on [0,1]. In addition, the limit
that occurs in the definition of the Riemann integral of such a
function can also be thought of in terms of the limit of a single-
valued function, namely, S (&) — S (h).

Yeshiva University
New York, N.Y.

1) The question as to whether S (ho) and S (ho) are always attained for an arbitrary
continuous function (as they were for y = x2) is left open.
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