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UNGLEICHUNGEN UND ITHRE VERWENDUNG
ZUR ELEMENTAREN LOSUNG VON MAXIMUM-
UND MINIMUMAUFGABEN

von J. AczEL

(Regu le 26 janvier 1961)

Meinem geehrten Lehrer und Freund T. Gallau
zum 90-sten Geburtstag geswidmet.

1. Einfiihrung. In diesem Artikel werden wir ein dreifaches
Ziel verfolgen: 1. Die Feststellung grundlegender Tatsachen iiber
Ungleichungen und iiber einige Anwendungen derselben; 2. Die
Mitteilung der hierzu benodtigten Vorkenntnisse; und endlich
3. Zu zeigen, dall der dargelegte einheitliche Gedankengang auch
in konkreten Spezialfillen verwertet werden kann. — Dabei
werden wir uns mit der Herleitung unid mit den Anwendungen
allgemeingiiltiger Ungleichungen beschiftigen (und nicht mit der
Bestimmung von Werten die gegebene Ungleichungen befriedi-
gen, d. h. nicht mit der ,,Losung® von Ungleichungen).

Eine der am héufigsten auftretenden und wohl auch der am
besten bekannten Ungleichungen, diejenige zwischen dem
arithmetischen und dem geometrischen Mittel, sagt in ihrer
einfachsten Gestalt folgendes aus:

t,+1t,
2

> \/;;l;(t1>0, t,>0) fur t;#t,

(D)

und wird bekanntlicherweise wie folgt bewiesen:

hrt,  —_ Wa—ViP
2

{ =
1°%2 D)

(2)

0 far t;#¢t,.

2. Formale Regeln. Um uns im oben dargelegten Sinne mit
Ungleichungen beschéftigen zu konnen, miissen wir vor allem
die formalen Regeln des Rechnens mit Ungleichungen fest-
stellen (und dazu auch den Begriff der Ungleichung prizisieren).
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Das Fehlen einer solchen vorangehenden Klidrung ist ein ernster
Mangel mehrerer einschliagiger Werke.

Wie dies bereits aus der Herleitung (2) der Ungleichung (1)
hervorgeht, wird ein Ausdruck A dann (und fiir jene Werte der
auftretenden Veranderlichen) gréfler als B genarnt, was man
durch

(3) A>B

bezeichnet, falls A — B positiv ist (A — B > 0). Der Tat-
bestand, daB A groBer als B oder aber gleich B ist, wird so
bezeichnet:

4) A>B

(in Worten: A nicht kleiner als B). (4) ist also mit der Nucht-
negativitit der Differenz A — B aquivalent (A — B = 0). (3)
bzw. (4) konen auch so geschrieben werden:

(5) B< A

bzw.
B<A

(B kleiner bzw. nicht gréfer als A). Offenbar gilt fiir dieselben
Ausdriicke A und B (bei denselben Werten der Verdnderlichen)
entweder A = B oder A << B, und es gibt keine andere Moglich-
keit und auch das gleichzeitige Bestehen dieser beiden Moglich-
keiten 1ist ausgeschlossen. Zum Beweis einer Ungleichung der
Form (3) (oder (b)) bzw. (4) mufl man also zeigen, dal A —B >0
(oder B— A < 0), bzw. A — B = 0 1st.
So lassen sich die folgenden Rechenregeln herleiten:

Ist A > B und C = D, dann ist auch A + C > B -+ D,
denn aus 4 — B > 0 und C — D = 0 folgt durch Addition
(A + C)— (B + D) >0, da die Summe einer positiven und
einer nichtnegativen Zahl jedenfalls positiv ist.

Aus A > B folgt cA > c¢B bzw. cA < ¢B je nachdem ¢ > 0
oder ¢ < 0 ist (da cA —c¢B =c¢(A— B) > 0 bzw. < 0 ist:
das Produkt zweier positiver Zahlen ist positiv, das Produkt
einer positiven und einer negativen Zahl hingegen negativ). —
Aus C =z Dundc = 0 folgt cC = ¢D (da ¢C — ¢D = ¢ (C — D)
=0 ist). — Aus A > B und B=D folgg A>D (A—D
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= (A —DB) 4+ (B— D) >0). — Aus diesen Regeln folgt
bereits:

Ist A >B =0, C =D und C >0, dann ist AC > BD,
da aus AC > BC und BC = BD tatsichlich AC > BD folgt.
(Dasselbe 14t sich auch wunmittelbar aus der Zerlegung
AC — BD = (A — B) C + B (C — D) folgern.) Weiterhin folgt
daraus 1m Falle A > B =0 (C = A4, D = B, bzw. C = A2,
D = B?% usw.)

A* > B*, A®*>B3, ...
und im allgemeinen fiir einen beliebigen positiven ganzen Ezxzpo-
nenten n:

(6) A" > B

Ist A > B > 0, dann gilt

1 1 B" — A"
A" -B"'"=— —— = <0
A" B A" B"

also fiir positive ganze Werte von n
(7) A" < B™",

Fir 'ganze positive Werte von p und von ¢ gilt im Falle
p p
q

A > B >0 auch A4 > Ba (d.h. (6) gilt auch fiir positive

p p
rationale Exponenten), wire namlich 4¢ < B4, dann wiirde auf

Grund von (6) durch Erhebung auf die g-te Potenz (¢ eine ganze
positive Zahl) A? < BP? folgen, im Widerspruch zu (6) (auch p
ist eine positive ganze Zahl).

LaBt sich (6) auch auf den Fall beliebiger positiver reeller
Ezxponenten iibertragen ? Wir werden zeigen, dall dies tatséch-
lich der Fall ist, d. h., daB

(8) A*>B* fir A>B=0,x>0

gilt. Es sei namlich {r,} eine gegen z konvergierende Folge
positiver rationaler Zahlen (z. B. die Folge der dezimalen
Néaherungsbriiche von x). Wie wir bereits gesehen haben, gilt

9) A™ > B
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woraus wir einstweilen
(10) A* = B~

folgern. Wire nimlich A* < B* d.h. D = B* — A* > 0 dann
wiirden fiir ein zu z geniigend nahe liegendes r, A* und A™
beliebig wenig voneinander abweichen und (s. Abb. 1) es wére

A" A +D AT+ B B D<B'
< * —_ = — X oy = n
2 2 2
e i — >
D D
2 2
: t XX {r S X
K AP A+B" B" B
2
Abb. 1.

im Gegenzatz zu (9). In (10) kann aber A* = B* unmdoglich

gelten, da daraus (durch Erhebung beider Seiten auf die —-te
X

Potenz) A = B folgen wiirde. Also ist (8) richtig. — Aus (7) folgt
auf dhnliche Weise, dal}

A*<B* fir A>B>0 und x<0
gilt.

Es mag vielleicht so erscheinen, als ob die angefiihrten
Beweise komplizierter wiren, als die oft ziemlich evidenten
Behauptungen; dennoch sind solche Betrachtungen zur strengen
Begrindung des Rechnens mit Ungleichungen unerla8lich.
Dabei ist es auch nicht so ganz evident, unter welchen Bedingun-
gen sich z. B. zwei Ungleichungen multiplizieren lassen. (Z. B.
15t 2 > —3und 4 > —3aber2 . 4 < (— 3) . (— 3), wihrend
mit 2 > — 3und 4 > — 2 zugleich auch 2 . 4 > (— 3) . (— 2)
gilt.) — Sind wir nun aber einmal im Besitz dieser Regeln, so
konnen wir ohne weiteres zur Erorterung der grundlegenden
Ungleichungen schreiten, und auch 1m spiateren Laufe unserer
Darlegungen werden wir keine Schwierigkeiten haben, wenn es
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gilt einzusehen, warum man z. B. von der Untersuchung der
Extremaleigenschaften irgendeines Ausdrucks zur Untersuchung
der Extremaleigenschaften einer Potenz desselben iibergehen
kann.

3. Konvexe Funktionen. In den Arbeiten-[5, 11, 12, 17, 21]
(s. das Literaturverzeichnis am Ende der Arbeit) werden die
einzelnen Ungleichungen aus der Theorie der konvexen Funk-

!

X‘I x1+ XZ Xl

Abb. 2.

tionen hergeleitet. Um verstéindlich zu machen, worum es sich
dabei handelt, betrachten wir z. B. die Ungleichung (1) zwischen
dem arithmetischen und dem geometrischen Mittel. Fiithren wir
die Bezeichnungen ¢, = a™, {, = a™ (a > 0, @ 7% 1) ein, so geht
dieselbe in die Ungleichung

¥1+¥2  g¥ 4 g™ .
a 2 <———2— fir x; # x,

iiber. Diese Ungleichung (s. Abb. 2) bringt nun ihrerseits die Tat-
sache zum Ausdruck, daB fiir die Kurve der Funktion o der
Mittelpunkt jeder echten (d. h. nicht in einen Punkt entarteten)
Sehne iiber der Kurve liegt. Solche Funktionen werden Jensen-
konvex genannt.
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Genauer: Eine Funktion wird im Intervall [a, b] Jensen-
konvex gennant, falls fiir beliebige in [a, 6] liegende Punkte x4, z,
die folgende, sog. Jensensche Ungleichung erfillt ist:

Xy + x2> <f(x1) +.f(x2)

fir x{#x,.
2 2 172

(11) f(

Im folgenden werden wir immer im Intervall [a, b] liegende
Stellen betrachten, ohne dies jedesmal ausdriicklich zu betonen.
Befriedigt eine Funktion eine zu (11) analoge Ungleichung,
wobei aber statt < das Zeichen <, > bzw. = steht, so wird
sie im weiteren Sinne Jensen-konvex, bzw. Jensen-konkav bzw.
im weiteren Sinne Jensen-konkav genannt. Im Falle z; = z, gilt
natiirlich fiir jede Funktion

f(xl + x2> ___f(x1) + f(x,) .

2 2
Aus (11) folgt die n-gliedrige Jensensche Ungleichung :
(12) f<x1 + Xy + . F xn) <f(x1) +f(x2) + .+ (X
n

n

falls nicht x; = x, = ... = x,, ist,

4+ Xy + .o+ X,
<im letzteren Falle gilt offenbar f <x1 ic: x)

n

n

) G + +f(x,,)>

Esist iiblich, diese Ungleichung durch sog. Cauchy’sche Induk-
tion zu beweisen, wobei von n auf 2n und von m auf m — 1
gefolgert wird. Da nun erfahrungsgem&f auch das Versténdnis
der gewohnlichen vollstdndigen Induktion mit gewissen Schwie-
rigkeiten verbunden ist, scheint es wenig wiinschenswert, den
der diese Schwierigkeiten gliicklich iiberwunden hat, sogleich
durch einen noch komplizierteren Induktionsschlufl in Verlegen-
heit zu setzen. Eben darum geben wir im folgenden gleich zwei
Beweise der Ungleichung (12), die beide mit der gewohnlichen
vollstdndigen Induktion gefiihrt werden. Da gemaf (11) die
Ungleichung (12) fir n = 2 Giiltigkeit hat, wird es geniigen zu
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zeigen, dal} aus der Giiltigkeit von (12) fiir » auch seine Giiltigkeit

fir n + 1 folgt. Der erste Beweis (vgl. [17]) verlduft folgender-
massen :

Wir setzen

X+ Xy + oo+ X, + X,
X =

n+1
und erhalten so
Xy X, + ...+ X, + X,
f(x)=f(1 : 1)
n-+1
x1+x2+...+x,,+x,,+1+(n—1)x
7 n n -
— 5 <
+ Xy + e F X, ey +(n—1
f(xl X, x>+f<x L+ (n )x)
n n
= <
- 2
<f(x1) +f(x) + o (X)) ) F(n = 1) f(X)
2n

(hier haben wir (11) einmal und (12) zweimal nacheinander ver-
wendet: im ersten Falle multen wir =< schreiben, da der Fall
X +x,+...+x, x,+m—-—1x . o
L2 _ X+ ’ 7 nicht ausgeschlossen ist, im
n n

zweiten Falle jedoch war < stichhaltig, da Gleichheit nur im

X1+ Xy +ooo+ X+ X501

Falle x; =x, = ...=x, und x,,;, =x = =
n+1
nx,+ X,+1 ..
= . also x,,; =x,=...=Xx, = Xx,; auftreten konnte,
n +

was jedoch auch hier ausgeschlossen wird). Durch Umordnung
(mit Hilfe der anfangs kennengelernten formalen Regeln)
erhalten wir nunmehr

Xy + X, + ...+ X, + X,
(13) f< 1 2 +1>

n—+1

Fx) +(x) + oo + () + (Xt 1)
n+1

=fx) <

falls nicht x;, =x, = ... = x, = x,, 1st.
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Wie kann man sich nun diesen Gedankengang einprdgen ?
Es ist ein haufiger Irrtum, daf man glaubt, das arithmetische
Mittel von n -} 1 Zahlen sei gleich dem arithmetischen Mittel
des arithmetischen Mittels der ersten n» Zahlen und der Zahl
Xn+1, Wogegen freilich im allgemeinen

Xi+x,+ ...+ x,
x1+x2+“"+xn+xn+1 h
n+1 2

+ xn+1

gilt. Wenden wir diesen Fehler zum Nutzen und fragen wir nun
nach der Zahl y, fiir welche

X1+ X+ .00+ X,

+y

x1+x2+...+x,,+x,,+1_ n

n+1 B 2
vichtig ist. Diese Zahl ist
X+ X+ oo+ X, + X404
Xp+1 T (n - 1)
B n+1 Xpr1 +F(m—1)x

d n B n

und auf die somit erhaltene Zerlegung

Xy + Xy + ..+ X, + X,
n-+1

x1+x2+...+xn+xn+1+(n——1)x
n n

griindet sich der angefiithrte Beweis.

Den anderen Beweis verdanke ich einer Mitteilung des
Herrn Alfréd Rényi:

£ =f(x1 +x, + o+ x, + xn+1>

n+1

x1~l—xz+...—l—x,,_}_x—l—(n—l)x,,+1

n n

(n—1)

=/

lIA
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(n.—— 1)f<x1 + xz;ql— e F xn> +f(x +(n-1) xn+1)

n

< <
n

L= D) +fO) + - H G ) + (= D fCen)
nZ

Durch Umordnung erhalten wir wiederum (13). Dieser Beweis
hat den Vorteil, da — wie man dessen bei der vollstindigen
Induktion gewohnt ist — beim Beweis der fiir » 4 1 geltenden
Relation (13) nur die auf n beziigliche Relation (12) herangezo-
gen wird (und zwar dreimal; daBl man im ersten Falle nur =,
in den beiden anderen hingegen << schreiben kann, lalt sich
wie vorher einsehen) nicht aber der auf n = 2 beziigliche Spezial-
fall (11). Freilich ist auch an der Verwendung von (11) nichts
auszusetzen, da wir einmal schon wissen, duf} dieselbe giiltig ist.
Die Zerlegung

Xy + X4+ .00+ X, + X,
(15) x = 1 2 +1
n+1

x1+x2+...+xn+x+(n—1)xn+1
n n

(-1

n

welche diesem zweiten Beweis zugrunde liegt, kann man sich wie

Xg+ X3+ ...+ X,
n

und x,,; in n+ 1 gleiche Teile (s. die Abb. 3, wo wir

, Xi + Xp b s X .
Xpi1 > © angenommen haben, was keine Be-
n

schrinkung der Allgemeinheit bedeutet) und die Teilpunkte

. i . x1 + x2 + s + X
seien der Reihe nach z, = N T

folgt merken: Wir teilen das Intervall zwischen

vy Zyy
n
z° 24 ZZ zﬂ an1‘
1 1 i b ) 1 - ] ]
I v X Y v A v v ] )] ,
X4t Xy +..+ Xn Pia X 144
n

Abb. 3.
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Zp+1 = Xp+1 - Da z; der Schwerpunkt des Systems bestehend aus
der im Punkt z,,, angebrachten Masseneinheit und einer im
Punkte z, angebrachten Masse von n Einheiten darstellt (der
Abstand des Schwerpunktes von den beiden Massenpunkten
i1st zu den Massen derselben umgekehrt proportional) gilt

X1+ Xy 4+ ...+ X,

n +xn+1
Z=nZo+Zn+1= n = x
! n+ 1 n+1

und aus demselben Grunde ist z, der Schwerpunkt einer Masse
in z; und einer Masse (n — 1) in z,,4:
_Zl‘l‘(n‘“ 1) zy44 _x+(n— 1) Xy4y

n n

n

und z; ist der Schwerpunkt einer Masse (n — 1) in z, und einer
Masse 1 in z,:

Xi+XxX,+...4+x, x+m-—1)x,
(Tl—'l) 1 2 + ( ) +1

(n—1)z, + z, n n
FEARE n N n

das ist nun aber gerade (15). Auf Grund von Abb. 3 laBt sich
(14) auf ghnliche oder noch einfachere Weise veranschaulichen :

(n—l)x+x,,+1
21 =X, 2= =Y,
n

x1+x2+...+xn+(n——1)x+x,,+1

zog + 2z, n n
x::Zl= 2 b 2

Da aus der Jensen-Konvexitdt (12) und aus der von uns
beziiglich des arithmetischen und des geometrischen Mittels
zweier Zahlen bewiesenen Ungleichung (1) die Jensen-Konvexitit
der Funktion a* folgt, gilt

x1+x2+,._+xn axl + ax2 + + ax,n,
a " < falls nicht x; = x, = ... = x
n ,

1st, und indem wir a** =1, setzen (k = 1, 2, ..., n) erhalten wir

n
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daraus.

TR 2 EEUU H L — ,
(16) + 12 > Vit ot t>0k=1,2,...n)
n

falls nur nicht t;, =t, = ... = t, ist.

Dies 1st die Ungleichung zwischen dem arithmetischen und dem
geometrischen Mittel von n Zahlen. Wollen wir etwa nur diese
Ungleichung herleiten, dann eriibrigt es sich natiirlich die allge-
meine Theorie der Jensen-konvexen Funktionen heranzuziehen,
jede der oben angefiihrten Methoden ermdglicht es uns, aus (1)
die Ungleichung (16) unmittelbar herzuleiten.

In (12) konnen — wie wir dies bereits gesehen haben —
gewisse x,-s — nur nicht alle — einander auch gleich sein, so
dal wir die folgende, mit Gewichien versehene m-gliedrige Jen-
sensche Ungleichung erhalten:

X1+ P2Xo+ i + DX
(17) f<P1 1 T Pa2Xs T P ><

P1 + P2+ ...+ Py
< plf(xl) + p2f(x2) + ... + pmf(xm)
p1 +pr+ ...+ P

,(p, >0, k=1,2,...,m)

mit Ausnahme des Falles x; =x, = ... =x,.
Dabei gilt diese Ungleichung nicht nur fiir positive ganze
Zahlen py, ps, ..., Pm, sondern auch im Falle, wo die py, ps, ---; Pm

positiv rational sind, da wir ja in diesem letzteren Falle eine
Erweiterung mit dem gemeinsamen Nenner der Briiche
P1, P2y -y Pm vOrnehmen koénnen. (Fir x; =x, =...=x, gilt
wiederum

(pl Xy + paXy .+ pmxm> _ P1f(x) +paf(x)+ .o+ puf(x,) )
p1+p2++pm p1+p2++pm

Ist die Funktion f (x) stetig, so konnen wir die Giltigkeit
unseres Ergebnisse auch auf den Fall beliebiger positiver reeller
Zahlen p, ausdehnen. (Freilich eignet sich zu diesem Zwecke
ein einfacher Grenziibergang nicht, da infolge desselben die
Relation < in (17) in = iibergehen konnte.) Indessen benotigen
wir aus der Theorie der stetigen Funktionen nur das folgende
Ergebnis: Ist eine stetige Funktion an einer Stelle kleiner, an

kil
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einer anderen Stelle aber groBer als eine lineare Funktion, so
gibt es eine Zwischenstelle, an welcher beide Funktionen einander
gleich sind; anschaulich gesprochen: Verliduft eine stetige Kurve
an einer Stelle oberhalb, an einer anderen Stelle unterhalb einer
Geraden, so schneidet sie die Gerade irgendwo zwischen diesen
beiden Stellen, und im Falle des Vorhandenseins mehrerer
solcher Stellen gibt es unter diesen eine erste und eine letzte.
Auf Grund dieser Tatsache zeigen wir nun, dafi aus (11) die
zweigliedrige gewichtete Jensensche Ungleichung

(18) f<P1 X1+ D3 xz) < pif(xy) + sz(xz) ,
Dyt D3 p1 + D2

(py > 0, p, > 0), falls x; # x, ist,

fiir beliebige positive reelle Zahlen p,, p,, folgt. — In der Tat
bedeutet (18), daB alle innere (d. h. vom Anfangs- und vom
Endpunkt verschiedene) Punkte sdmtlicher Sehnen der Kurve
der Funktion f (x) oberhalb der Kurve liegen. Solche Funktionen
werden konvex genannt. (Auf dhnliche Weise werden auch im
weiteren Sinne konvexe, konkayve und im weiteren Sinne konkave
Funktionen definiert, indem man in (18) statt << die Rela-
tionen <, > bzw. = setzt.) Wie wir uns daran erinnern, bedeutet
(11), daB der Mittelpunkt jeder zur Kurve gehoriger Sehne
oberhalb der Kurve liegt. Jetzt beweisen wir das folgende
Resultat, welches allgemeiner ist, als unsere vorige Behauptung:
Liegt je ein Punkt jeder Sehne eines stetigen Kurvenstiickes ober-
halb der Kurve, so liegen auch simtliche Punkte aller dieser Sehnen
oberhalb der Kurve. (D. h. gibt es fiir beliebige Werte z, % x, je
etn positives reelles Paar py > p, > O fiir welches (18) erfiillt ist,
so gult (18) fiir beliebige x, # x5, p; > 0, py > 0.) Lége namlich
irgendein Punkt der Kurve oberhalb einer Sehne, dann gibe es
zu diesem Punkt (Abb. 4) infolge der erwihnten Eigenschaft
der stetigen Funktionen einen letzten vorangehenden und einen
ersten nachfolgenden auf der Sehne liegenden Punkt P, bzw. P.,.
Dann ldge aber jeder innere Punkt der Sehne P, P, unterhalb
der Kurve, was unserer Annahme widerspricht. Also kann kein
Punkt irgendeiner Sehne oberhalb der Kurve liegen. Dann liegen
aber sdmtliche inneren Punkte jeder Sehne unterhalb der Kurve,

L’Enseignement mathém., t. VII, fasc. 1. 15
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denn es sei (Abb. 5) AB eine beliebige Sehne und P ein beliebiger
innerer Punkt des Kurvenstiickes AB. Unserer Voraussetzung
gemdl liegt ein Punkt P’ des Kurvenstiickes AB unterhalb der

|

B
R
A

Abb. 4.

i B
p
A o
o
Abb. 5.

Sehne AB; es soll dieser Punkt zum Kurvenstiick AP gehoren.
Dann liegt P nicht oberhalb der Sehne P’ B, also legt er streng
unterhalb der Sehne AB. Damit haben wir (18) aus (11) fiir
beliebige positive reelle Werte p,, p, hergeleitet.
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Jetzt beweisen wir (17) von (18) ausgehend bereits ohne
Berufung auf die Stetigkeit fiir beliebige positive reelle Werte
pe (k= 1,2, ..., m) mit vollstindiger Induktion. GemiB (18)
gilt (17) in der Tat fiir m = 2. Wir zeigen jetzt, dal aus der
Giiltigkeit fiir m auch die Giiltigkeit dieser Relation fir m +1
folgt: Hierbei verwenden wir zuerst (18) und dann (17). Es
kann in

f(P1 Xy +P2Xy+ oo + Pu X + Pt xm+1>
D1t P2+ oo T Pt P+t

| P1X1+PaXo+ .o+ DXy
(py+p2+...+pm) T Dms1Xme1
2 P+ Pyt Py

=f =
(p1 + P2+ oo+ Pm) + Pt
plxl +p2x2+°"+pmxm
(P4 +P2+---+Pm)f< >+pm+1f(xm+1)
< P1+p2+...+ D, ' <

pl +p2+ +pm+pm+1

pif (X)) +paf (X)) + oo+ P f ()
(py+pr+...4+pn) = - - - +Dm+1S (Xpi1)
p1+p2+...+pm

DiTP2t ...t Put Pt

— plf(xl) + pi(x2) T o ua pmf(xm) + pm+1(xm+1)
p1+p2+"'+ pm+pm+1 ‘

nicht an beiden Stellen fiir die Relation =< der Fall = eintreten,

P1Xy t+ PaXy i+ PpXy,
da dann =X, und x; =X, =...=Xx
Py +py+ ...+ Dy

also auch x; =x, =...=x, =x,,,; wire, was auch hier aus-
geschlossen wird. Damit haben wir (17) in vollkommener
Allgemeinheit bewiesen. — Hier 148t sich der Grundgedanke
des Beweises noch leichter einpréagen, als in den vorangehenden
P1X{+ Dy X +...+p,X

m

Fallen. ~ bedeutet namlich den Schwer-
| py+p,+ ...+ p,

punkt der Punkte x{, x,, ..., x,,, falls dieselben der Reihe

nach mit den Massen py, p,, ..., p,, versehen sind, und der

Schwerpunkt von m + 1 Punkten 148t sich bestimmen, indem
man die Massen der ersten m Punkte im Schwerpunkt derselben
vereinigt denkt, und dann den Schwerpunkt dieses mit der
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entsprechenden Masse versehenen Punktes und des Punktes
Xm+1 Mit Masse p,, ., bildet:
D1 Xy + D, Xo+ oo+ P Xy + Pm+1Xm+1

Py + P2+t oot Pt P

Pi1X1+ PrXo+ coi T P X
(p1+ pa+ ...+ pn) + Pmti1Xm
1 2 Pit Dyt ot D, Pm+1Xm+1

(P1+ P2+ oo+ D)+ Pt

Wegen der Jensen-Konvexitit und Stetigkeit der Funk-
tion a* gilt nach (17)

x4+ +...+
P1X1 7 Pa%y PaXn - pia*+ p,a*®+ ...+ p,a*

a pitpet..tpn
Py + pp+ ...+ p,

falls nur nicht x; = x, = ... = x,, ist, und falls wir wiederum

P =t (k=1,2, .., n) setzen, so ergibt sich zwischen den
gewichieten artthmetischen und geometrischen Mitteln von n Zahlen
die Ungleichung

D1ty +prty+ ...+ puty
Pr+pyt+ ...+ Dy
< PPt TEe fipigpe gpn, (> 0,9, > 05k =1,2, ..., n)

(19)

falls nur nicht t, =t, = ... =, ist.
Co. . 1 1
Indem wir hierin t; = -, ¢, =+, ..., t, = — setzen, erhalten
| o %) Iy
WIr nun
& e B": d ok Pf
t, t 1

3(tl::>0:pk>0)'

> +po+...+pn ’ ’ ’
p1+p2+ "'+pn L 2 \/t1p1t2p2 ...tpn

n

Lassen wir hier die Kommas weg, und multiplizieren wir beide
Seiten mit dem Produkt der reziproken Werte der beiden Seiten
(dies ist nach den formalen Regeln der Umformung von Unglei-
chungen zulidssig), so erhalten wir eine andere wichtige Unglei-
chung zwischen den gewichieten geometrzschen und harmonischen
Mitteln von n Zahlen :

G A . T R S T T R S W I T T T R Tl e
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+...+pn
(20) DERTTPn fipigpe | gPn >

p1 -+ p2+ ...+‘pn

, > 0,p>0;k=1,2,...n)

tl t2 tn
falls nur nicht t, = t, = ... = 1, ist.

Ein Vergleich von (19) und von (20) ergibt folgende Unr-
gleichung zwischen den gewichieten arithmetischen und harmo-
nischen Mitteln von n Zahlen :

Piti+Paty+.o+ Doty
p1+p2+"'+pn ‘
p1+p2 T+t Py

. (4,>0, p,>0k =1,2, ...n)

Thm, m
1 Lo n
falls nur nicht t; =t, =... =t, ist.

Multiplizieren wir hier beide Seiten mit dem Produkt der
Nenner, so folgt

P Dn
(p1ti+patr+...4 Dy ,,)<t + 24 +t)>(pl+pz+--.+pn)2

1 123 "

. . i a .
und indem wir hier p, = a; b, 1, = —b—k setzen, erhalten wir
k
abermals eine wichtige Ungleichung:

1) (@ +ai+...+ad)(bi+b2+...+b?) >

> (a, by +a, b2+ .+ a, b,)?
ap  a a,
falls nur nicht b, E; = . = b—n i
steht 1n (21) statt > das Gleichheitszeichen.)

Dies 1st die Cauchy’sche Ungleichung. Zwar gilt der obige
Beweis wegen p, > 0, t, > 0 nur fir a, b, > 0, doch 1aBt sich
diese Beschrankung leicht eliminieren. Ist ndmlich z. B.a; b; < 0,
so gilt

st. (In diesem letzteren Falle

(al b1+a2 b2 +...+‘an bn)2 < ("‘al b1+ a2 b2 +...+ an bn)2 <
< [(=a)’+a3+... +a2](b] +b} +...+ b}) =
= (ai+a3+...+al) (B3 +b3+...+b?),
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weil —a, by schon positiv ist, und ist z. B. a,b, = 0 so erhilt
man, indem man (21) statt fiir » fiir n — 1 schreibt,
(agby+ayby+...4a,_1b,_; +a,b,)* =

= (a;by+a, by +...4+a,_1b,_)*<

< (af+aj+..+aj_)(b]+ b3 +...+ b2y <

< (ai+az+...+ai_ s +a))(bi +bs+...+ bi_s 4+ b])

und auf dhnliche Weise kann man verfahren, auch wenn mehrere
der a; b, negativ oder gleich Null sind. Damit haben wir (21) fiir
samtliche Werte der a, b, bewiesen.

Auf dhnliche Weise, wie (19) aus der Konvexitiat von a*, folgt

r

aus der Konvexitdt der Funktion x7 (r>gq), daB jede der
Potenzmittel

’Jx{ +Xx5 r\/x§+x§+...+x; r\/plx{+p2x;
2 | n Py +p2

r\/p1x§+p2x§+... + p, X,
Pi+ D2 +...4+ Py

bei konstanten positiven Werten von x;, X5, ..., X,, P1> P2> +++> Pn
mit v zunimmi. Strebt r gegen 0, so ist der Grenzwert dieser
Ausdriicke nichts anderes als das entsprechende geometrische
Mittel, strebt r gegen — oo bzw. gegen + oo, so ist der Grenz-
wert die kleinste bzw. die groBte der Zahlen x4, x,, ..., X,.
Wichst » von — oo bis + o0, so durchliuft das r-te Potenz-
mittel das Intervall zwischen diesen beiden Zahlen (s. [17]).

Auch die — meistens ungeklirt gelassene — Frage ist von
Interesse, was sich z. B. in (18) dndert, falls die reellen Zahlen
Pi, P, nicht positiv sind. Fir p; = p, =0 werden die auf
beiden Seiten von (18) auftretenden Briiche offenbar sinnlos;
ist p; = 0 oder p, = 0, so gilt

f(P1 X1+ P2 x2> _ p1f(x)+ paf(xy)
Pi1+ P2 P1+ P2

Fiir p; <0 und p, <0 behidlt (18) unverinderte Giiltigkeit, da
sich die beiden Briiche durch (—1) erweitern lassen. Was
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geschieht aber im Falle p, p,<0? Ist p;+p, =0, so haben
die in (18) auftretenden Briiche wiederum keinen Sinn. Ander-
seits haben wir gesehen, dal durch (18) die Tatsache zum Aus-
druck gebracht wird, daf jeder innere Punkt der Sehne oberhalb
der Kurve liegt. Zugleich (Abb. 6) liegt bei solchen konvexen

Abb. 6.

Funktionen jeder auflerhalb der Sehne liegende Punkt einer
jeden Sekante unterhalb der Kurve. Mit Formeln ausgedriickt
bedeutet das, daf3

7o+ DO () e

2

ist, falls x nicht in [x, x,] liegt.
Setzen wir x, —x = p;, x—x; = p,, 0 ist pP1p, <0, falls x
nicht in [x;, x,] liegt, aber es ist p,+ p, # 0. Das ergibt eben

f<P1 X1+ Ps xz) - pif(x0) +p2f(xy)

5(p p <0ap #— s X #x s
Pi+ P P+, 1 D2 2 Pi, Xy 2)

womit wir die zwischen f(pl ¥14 P2 x2> und P1f (1) + paf(x2)

Py +Dpy P14+ P2
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herrschenden relativen Grosseverhiltnisse fiir den Fall konvexer
Funktionen vollends geklart haben. — Insbesondere folgt aus
der Konvexitdt von (1+h)* (h> —1, h#0) (s. Abb. 7), daB
(1+h)*<1+hx fir O<x<1 und (1+h)*>1+hx fir x<0O
oder x >1 gilt. (Fir x =0 und fir x =1 gilt (1+h)* =1+ hx.)
Dies 1st die Bernoullische Ungleichung.

Abb. 7.

Unsere Ergebnisse fiir Jensen-konvexe und konvexe Funk-
tionen bleiben in unverdnderter Form und mit demselben Beweis
auch im Falle konvexer Funktionen mehrerer Verdnderlichen
giiltig. Gilt z. B. immer

f<x1~+ X, ’ i+ y2> <f(x1§ y1) + (%2, ¥2)
2 2 2

mit Ausnahme von x; = x,, y; = y,,
so gilt auch |

b

X1+ X et X 7+ ...+ ),
f( 1+ X4 n Vit Va2 y><
n n

<f(x1= yl) +f(x2’ ,Vz) +---+f(xna yn)
n



LOSUNG VON MAXIMUM- UND MINIMUMAUFGABEN 233

falls nur nicht x;, =x, =...=x, und y, =y, = ... =y, ist.
Einen dhnlichen Sachverhalt haben wir auch dann, falls statt <
eine der Relationen =, >, = gilt. (Jensen-konvexe, im weiteren
Sinne Jensen-konvexe, Jensen-konkave bzw. im weiteren Sinne
Jensen-konkave Funktionen zweier Verdnderlichen.) So folgt
z. B. aus

! oo X1 X
mit Ausnahme von — = —=
BTN )

\/x1+xz Yi+ Y2 >\,/x1y1 + \/sz’Z
2 2 2

die Relation

\/xl-}-xz +o X ViVt + Y, o \/xlyl +\/x2y2 + gas +\/x,,y,,
n » n _ n
X, X

X " .
falls nur nicht -+ = -2 = .., = _" 1st.
: yl y2 yn

Indem wir hier beide Seiten durch »n multiplizieren und auf
das Quadrat erheben, erhalten wir nach Einfilhrung der
Bezeichnungen x, = ai, y, = b gerade die Cauchy’sche Un-
gleichung (21). Um an der Hand eines Beispiels zu zeigen, wie
man unsere allgemeinen Beweise auf konkrete Fille anwenden
kann, beweisen wir jetzt die Cauchy’sche Ungleichung bzw. die
(fiir positive x;, y,) aquivalente Ungleichung

(22) \/x1+x2+...+x,,\/y1+y2+...+y,,>
> \/xl V1 +\/x2 V2 +...+\/x,,yn

.. Xy X X, .
falls nur nicht =% = 2 = ., =" 1st,
Yio ¥ Vn

auch so, wie wir (12) aus (11) gewonnen haben:

(23) \/x1+x2 \/J’1+Y2 > \/x;t J’1+\/x2‘J’2
) X1 Xa . .
mit Ausnahme von — = —=. Es ist namlich
Y1 Y2

X1 V1 +X1 Yo+ X Y1+ X3y, > x1y1+2\/x1y1x2y2 + X2 )2
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d. h.

X1 Y2+ X2 V1

5 > \/x1 YaXa V1

falls nur nicht x; y, = x, y, ist. (Das arithmetische Mittel ist
groBer als das geometrische.) (22) gilt also fiir n = 2. Um (22)
durch vollstindige Induktion zu beweisen, miissen wir zeigen,
dall aus der Giiltigkeit dieser Relation fiir n auch seine Giiltig-
keit fiir n +1 folgt. Fihren wir die Bezeichnungen x = x;+ x,
+o X, X1, YV = V1 + Vot ..+ Yo+ yasq €in, so erhalten wir

in der Tat

Vxy = Vx4 g ot Xt Xpot NVit Y2 oot Vak Pur1 =

2n 2n 2n

n+1 n+1 n—1
(X1 4+ X+ X,) +| = Xprq + (14X Feee+ X+ X0 0) |

2n 2n 2n

n+1 n+1
(X1 4+ X2 +...4+ X,) i+ Y2ty +
2n 2n

+\/n+1 +n—1 n+1 +n——l
x| ——y, >
2n wt 2n 2n Yol 2n Y

e

n+41
2n

n+1
2n

(\/X1)’1 +\/;2_);;+...+\/xnyn) -|-<

. X1 X Xn
falls nur nicht — = = = ... = —
Y1 Y2 Yn

Xp+1 X Xi+X,+...4X, .

und = — = 1st.

Yn+1 y Yi+ Y2 t+ooit Yy

\/xn+1 Yne1 T+

n_

n+1 n+1 n—1
) Vi +ys+ ) F | —=— Vur1 + i+ Yot oot Yut Var) | 2

2n

: m)

(Wir haben erst (23), dann (22) und dann wieder (23) ver-

wendet.) Eine Umordnung der Glieder ergibt jetzt

(n+1)\/x1+x2+"'+xn+xn+1 \/y1+y2+"'+yn+yn+1 =

o= (n+1)\/x_y >(n+1)(\/le’1 -l~\/xzy2 +...+x/x,,y,,+

+ \/xn+1 Vn+1)
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X X x,, Xpt1 .
falls nicht - = 22 = ... = 2 = 1 ist.
1 Y2 yn Yu+1

Durch Vereinfachung mit (n+1) ergibt sich daraus die zu
beweisende Ungleichung (22) fiir (n+1). (Ein dem zur Her-
leitung von (12) benutzten zweiten Beweis dhnlicher Gedanken-
gang wiirde hier auBler (22) wiederum auch (23) verwenden.)
Somit haben wir (21) fiir positive Werte der a, und der b, bewie-
sen. Auf den Fall nichtpositiver Werte 148t sich unser Ergebnis
auf dhnliche Weise iibertragen, wie beim vorangehenden Beweis.

Die Cauchy’sche Ungleichung 148t sich auch auf den Fall
von mehr als zwei Faktoren sowie auf den Fall von Exponenten
die von zwei (bzw. von 1) verschieden sind, veraligemeinern
(Holdersche Ungleichung), und ist der Minkowskischen Unglei-

chung
JE (B <33 a
J=1 \k=1
falls nur nicht e _ D2k I Cinf(k,.l =1, 2, ..., n) ist,
aii dzi Ani
dquivalent.

4. Die elementare Losung von Extremalaufgaben. In der
héheren Analysis haben Ungleichungen viele wichtige Anwen-
dungen, in den Rahmen der Elementarmathematik besteht
]edoch ihr Hauptanwendungsgebiet in der elementaren Losung
von Extremalaufgaben. — Aufler den bereits erwihnten
beschiftigen sich u.a. auch die folgenden Arbeiten mit der
elementaren Losung von Extremalaufgaben [1-4, 6-10, 13-16,
18-20, 22-25]. Hier betrachten wir nur einige Aufgaben, die oft
auf komplizierterem Wege gelost werden.

Zuerst leiten wir aus (19) die Losung einer wichtigen allge-
meinen Extremalaufgabe her: Ist

ayXy+a;x; +...4+a,x, = § = konst.,

so wird der groftmogliche Wert des Ausdrucks

X(1x52..xfr =P, (>0, p,>0; k = 1,2,...,n)
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an derjenigen Stelle (x{, X5, ..., X,) angenommen, fiir welche
ap Xy ajy X3 ay Xp
D1 1 25) Dn

gilt. In der Tat erhalten wir kraft (19)

P P2 ‘ Pn
p= (B (=) ()"
al (12 an |
2 S\ Pitpat..tpn
. <p1+p2+...+pn\/(a1 x1>p1 <a2 xz)P- (anxn>p ) 1+ P p j
P1 D> D, |

p1 +,p2+“'+pn

ag Xy a X, a, Xp
pp—+p,— +.o+ P —

3 <p_1>p1 <I£>p2 <&>Pn DL Dy D,
a; a a, Pi+Pa+t ..o+ Dy
<p1 P1 <p2 P2 p Pn S pitpet...tpn
_(P) (P2 (P _k
a1> az) (an,> <p1+P2 +---+Pn)

a; x a, X a, X, .
falls nur nicht ——~ = 272 = .. = 1st.
D1 ) 25) DPn

Also ist P immer kleiner als die Konstante &, mit Ausnahme

a; x a, x a, X, : : :
des Falles —— = 222 — | = , Wo sle gleich dieser

P1 P2 Pn ‘
Konstanten 1st. D. h. der Wert von P wird in diesem letzteren
Falle am groBten sein. — Ist P konstant, so nimmi aus dem-

. : . 41X aj X,
selben Grunde S seinen kleinsten Wert fiir = =
D1 b2

= .= 2% 4n. Ahnliche Behauptungen gelten auch im Falle,
Pn

wo an der Stelle des Produktes P eine Summe von mit

1
Koeffizienten versehenen Reziprokwerte — oder Quadrate x}
Xk

steht.

Mit Hilfe des vorangehenden konnen wir z. B. die Frage
beantworten, welche der quadratischen Pyramiden mit gleicher
Seitenkante a den groffiten Rauminhalt besitzt. Ist namlich z
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. ‘
%
die Grundkante, so ist (Abb. 8) a*> = m*+ = konstant; statt

des leumens kann man das dreifache desselben betrachten, und

3V = x*m = x2(m?)?

Das Volumen der regelméssigen vierseitigen Pyramide ist also
4a® —
in diesem Falle am groften, und es betriagt V = 77—\/3 . — Ein

anderes Beispiel: Welches der geraden Kreiszylinder von gege-
bener Oberfliche hat maximales Volumen ? Die Oberfliche ist

F = 2nr*+ 2nrm = Konst.,
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und der Rauminhalt wird offenbar am groBten, falls sein viel-

1
faches um — am grofiten wird; nun ist
T

|4 L
—=r’m = (r)* (rm)
n

2nr?

2
Zylinder) und zwar ist in diesem Falle

fiir

= 2nrm am grofiten, also ist m = 2r (gleichseitiger

F F F |F
r=[|—, m=2[—, V== |—"
6n 6n 3N érn
Also hat von allen Zylindern gleicher Oberfliche der gleich-
seitige Zylinder den groBten Rauminhalt.
Diese Methode eignet sich auch zur elementaren Bestimmung
der Extremalwerte von Funktionen mehrerer Veridnderlichen.

(In den beiden soeben angefithrten Aufgaben war mit Riicksicht
2

X
auf m2+f2— = g2

bzw. auf 2rnr*+2nrm = F nur je eine

Verdanderliche frei wahlbar.) Wie soll man z. B. aus einer recht-
eckigen Metallplatte einen Trog mit gleichschenkligem Trapez-
querschnitt verfertigen, damit das Flichenmall des Quer-
schnittes maximal ausfallen soll ?

Ist die Breite des Rechtecks d, die Lange des Trapez-
schenkels x, diejenige der kiirzeren Parallelseite y, dann ist

y+ 2x = a = Konst.,

und fir das Flichenmal des Querschnitts erhalten wir, falls z
die Linge der waagerechten Projektion des Schenkels bedeutet
(Abb. 9),

+22) +
T___(y z)+y

S m = G+ =22 = (+2) (x+ ) (x—2)*.

Fiir die Faktoren auf der rechten Seite gilt

2(y+2)+(x+2)+3(x—2z) = 4x+ 2y = a = Konst,,
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also 1st T fur

== ,x=y,z=

1
faomaed —_ — 5 o = 600
<GOS o 5 >

am groften. Das auf diese Weise erhaltene Trapez ist nichts
anderes als die ,,untere Halfte® eines regelméassigen Sechsecks. —

2(0+z) x+z 3(x—2)
11
2

PRI

A Y Z
X

Abb. 9.

Da man beweisen kann, daf von den Sechsecken gleichen Um-
fanges das regelmissige Sechseck das groBte Flichenmall
besitzt, erhalten wir (durch symmetrische Ergdnzung zu einem
Sechseck) auch dann dieselbe Liosung der Aufgabe, falls wir nur
voraussetzen, dall der Querschnitt ein Viereck (d. h. nicht not-
wendigerweise ein Trapez) ist.

Eine weniger unmittelbare Anwendung unserer allgemeinen
Methode ist die Bestimmung der Extremalwerte allgemeiner
Polynome dritter Ordnung, wie dies z. B. zur Losung der folgen-
den Aufgabe erforderlich ist: Aus einem Rechteck mit Seiten a,
b soll durch Ausschneiden kleiner QQuadrate an den Ecken das
Netz einer offenen Schachtel von groBtmoglichem Umfang
hergestellt werden. Indem wir die Seitenlidnge der ausgeschnitte-
nen Quadrate durch x bezeichnen, erhalten wir (s. Abb. 10) fiir
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das Volumen der Schachtel den folgenden Ausdruck:
V=x(a—-2x)(b—2x).

Hier ist 4x 4+ (a —2x) + (b —2x) konstant, aber aus 4x = a —2x
= b—2x wirde a = b folgen, so dall eine unmittelbare
Anwendung unserer Methode nur im Falle b = a moglich
wire. Darum multiplizieren wir (b—2x) mit einem spéter
zu bestimmenden konstanten Faktor k. Vk hat zugleich mit

V maximales Volumen, und es ist
Vk = x(a—2x)(kb—2kx) .
x a
X
b
Abb. 10.

Andererseits 1ist
(kb —2kx) + (a —2x) + 2k + 2) x = kb + a = Konst.,
also ist V dort am groften, wo
k(b—2x) = a—2x = 2k + 2)

ist. Daraus 1aBt sich der bisher noch unbekannte Faktor k und
auch das gesuchte x bestimmen:

-2 | —2x
k ? x’ a—2x=<2a +2>x,

T ph—2x —2x
(a—2x)(b—2x)—2(a—2x)x—2(b—-2x)x =0,

12x2—4(a+b)x+ab =0,

2(a+b) +Va@+ b2 —12ab a+b +Vai—ab+ b

X1,2 = =

12 6



LOSUNG VON MAXIMUM- UND MINIMUMAUFGABEN 241

Da (z. B. fiir b = a)

2 2
. =a+b+\/a —ab+ b ga+b—|—b -

b
6 6 -2

keine Losung unserer Aufgabe sein kann (Abb. 10) muf man
aus dem Rechteck Quadrate der Seitenldnge

a+b— +Ja*—ab + b*
6

X =

lierausschneiden, damit eine offene Schachtel von maximalen
Volumen entsteht; das Volumen derselben ist dann

1
V= gé—l(a%—b—\/az—ab—l—bz)(2a~—b+\/a2—ab+b2)

(2b—a + ~Ja* —ab + b?) .

a—b+ a*—ab + b
b

als geeigneter Multiplikationsfaktor herausgestellt, aber es wire

wohl kein natiirliches Verfahren, sogleich mit diesem Faktor zu

beginnen.

Wie wir sehen, kann also bereits die Ungleichung zwischen
dem arithmetischen und dem geometrischen Mittel (und auf
dhnliche Weise auch jede Ungleichung zwischen den iibrigen
Mittelwerten) zu einer verhiltnisméssig einfachen, elementaren
Losung zahlreicher Extremalaufgaben fithren. Man soll aber
diese Methode keineswegs forcieren, da auch viele andere Un-
gleichungen zu &dhnlichen Zwecken mit Vorteil verwendet
werden konnen. Dies gilt insbesondere fiir die gleichwertige
(weil, wie wir gesehen haben, ebenfalls die Konvexitit der
Funktion @ zum Ausdruck bringende) Bernoullische Unglei-
chung (s. z. B. [18, 23]), und tberhaupt kann jede elementare
Ungleichung, in welcher in bestimmten Fillen das Gleichheits-
zelchen steht, zur elementaren Lisung von FExtremalaufgaben
verwendet werden. — Hier mochte ich nur noch auf die Un-
gleichung beziiglich der Diskriminante des Polynoms zweiten
Grades und auf die Anwendungsmoglichkeiten derselben hin-
weisen.

Es hat sich, wie man leicht berechnet, k =

I’Enseignement mathém., t. VII, fasc. 1. 16
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Bekanntlich hat das Polynom zweiten Grades ax® + bx + ¢
keine reelle Wurzel, eine reelle (Doppel-)wurzel, oder aber zwei
reelle  Wurzel, je nachdem b?*—4ac<0, b*—4ac = 0 oder
b*> —4ac> 0 ist. — Auch daraus laBt sich — und zwar sofort
in voller Allgemeinheit — die Cauchy’sche Ungleichung (21)
herleiten. In der Tat ist dieser Beweis der am héufigsten benutzte.
Wir betrachten das Polynom zweiten Grades:

(bi+b5+...+bHx2—=2(a by +a, by +...4+a, b)) x +
+(ai‘ + a§ +...+ a,2,)= (a; —xb,)* + (a, — xb,)* +...+ (a, — xb,)* .

Als Summe von Quadraten ist dieses immer positiv, den Fall
a,—xb; =a,—xb, = ... =a,—xb, =0

ausgenommen. Dann mull aber, diesen letzteren Fall ausge-
nommen, die Diskriminante immer negativ sein (das Polynom
ist iiberall positiv, hat also keine reelle Wurzel):

(a1 b1+a2 b2 +...+ a,, bn)Z —_
— (b +b34+...+bD) (@3 +as+...+a}) <0

falls nur nichtZ—i = gi = .. = -g—n'fgilt.

Dies ist nun aber nichts anderes als die Cauchy’sche Unglei-
chung (21).

Auch die Cauchy’sche Ungleichung kann mit Nutzen zur
elementaren Losung von Extremalaufgaben verwendet werden,
aber auch in der hoheren Analysis und in der nichteuklidischen
elliptischen Geometrie féllt ihr eine grundlegende Rolle zu. Von
Interesse ist die Tatsache, dafl unseres Wissens das in der hyper-
bolischen (Bolyai-Lobatschewski’schen) Geometrie verwendbare
hyperbolische Gegenstiick zur Cauchy’schen Ungleichung bisher
anscheinend unbekannt geblieben ist:

(24)  (a?—ai—...—a®) (bi-bi—...—Db}) <
< (a;by—a, b, —...—a,b,)?
a,

(b —b5—...— b2 > 0) falls nur nicht % _ ist
1 2 eos e n = vee .
' 1 b, b,
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Auch der Beweis dieser Ungleichung verlduft dem vorigen ganz
analog: Das graphische Bild (Abb: 11) des Polynoms zweiten
Grades |

(bi—b%—-...mbs)xz—Z(Gl bl—'azbz“‘..."_anbn)x +
+ (ai'_‘ag—...—aﬁ) - (blx*al)z_(bzx'—az)z"'"..._"(bnx_an)z
ist wegen b} —b3 —...—b? > 0 eine nach oben offene Parabel,

also nimmt dieses Polynom gewifl positive Werte an (erstreckt

B

Abb. 11.

sich doch die Parabel nach beiden Seiten hin ins Unendliche).

Zugleich ist aber an der Stelle x = ;ﬂ (wegen b3 —b3—...
o 1 N
—bZ > 0 ist by # 0) sein Wert

a1 al
—(by— —a)* —...—(b,— —a)? > 0
( Zbl a2) ( nbl an)
: . a; as a, .
falls ht — = = = ... = Zist.
a nur nic bl b2 bn 1S

Mit Ausnahme dieses letzteren Falles (in welchem, wie man
sofort einsieht, an der Stelle von < in (24) das Gleichheits-
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zeichen stehen wiirde), nimmt also das Polynom sowohl positive
wie auch negative Werte an. Somit gibt es zwei reelle Wurzel,
und die Diskriminante mufl dementsprechend positiv sein:

(@1by—ayby—...—a,b)? —(b? —b%—...—b2)(a* —a2—...—a?) >0,

womit wir (24) bewiesen haben.

-

Abb. 12.

Wie man die Diskriminanten-Ungleichung zur Lvésung von
Extremalaufgaben verwenden kann, zeigen wir an der Hand
des folgenden Beispiels:

Gegeben se1 ein (als geradlinig dahinfliessend gedachter)
FluB, und in einer Entfernung von d Kilometer davon die
Fabrik B (Abb. 12). Den zu verarbeitenden Rohstoff erhilt diese
Fabrik aus dem stromaufwérts gelegenen Hafen A4, welcher von
der Projektion C des Punktes B auf die Gerade des FluBes um
a Kilometer entfernt liegt. In welcher Richtung soll die Land-
strale von B nach dem FluBle verlaufen, damit die Kosten der
Rohstoffzufuhr minimal ausfallen, falls die Kosten pro Tonnen-
kilometer des Straflentransportes das Doppelte der Kosten des
Wassertransportes betragen. Bezeichnen wir die Stelle der
Umladung mit D, die Lénge des Wasserweges mit s und diejenige
des Landstralle mit x, so wird, wie aus Abb. 12 ersichtlich.

a—s =\/x2—d2, s = a—~/x2—d?

T N A A
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und aus der Bedingung fiir die Transportkosten folgt, dafl wir
den kleinsten Wert der Funktion

y = s+ 2x = a—~x*—d® +2x

suchen miissen. Hieraus ergibt sich
(25) 3x2—4(y—a)x+(y—a)}+d* =0.

Hat diese Gleichung iiberhaupt eine Losung, so ist die Diskri-
minante nichtnegativ:

4(y—a)=3(y—a)’-3d>=0, (y—a) = 3d*,
y=a+d+3

(hier haben wir wiederum die formalen Regeln der Umformung
von Ungleichungen verwendet). Wie hieraus ersichtlich, ist der
kleinstmogliche Wert von y gleich a+d\/§, und in diesem
Falle erhalten wir aus (25)

R 2d
3x2—4d~/3x+4d*> =0 und x = .
V3
Beziiglich des Winkels CDB % der Richtung der Landstralle
gilt

AN

sinCDB¢):=—=l/_3 d.h. CDB & = 60°,
X 2

so daB man die Landstrale immer unter einem Winkel von 60°
fithren muf}, unabhéngig von a, d. h. unabhingig davon, aus
welchem Stromaufwirts liegenden Hafen A der Transport
geschieht. Kine Ausnahme bildet nur der Fall, in welchem die
unter dem Winkel von 60° gefithrte Stralle das FluBufer schon
hinter dem Hafen A erreicht. Offensichtlich ist es in diesem
Falle angebracht, den Transport nur per Landstralle vorzu-
nehmen.

Obwohl uns die Ungleichungen ein recht wirksames Mittel
zur Hand geben, miissen wir der Vollstdndigkeit halber bemer-
ken, dafl es noch andere Methoden gibt, die zur elementaren
Losung von Extremalaufgaben verwendet werden koénnen. In
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der Tat filhren geometrische Erwigungen oft schneller zum Ziel.
(S. z. B. [8, 20].) Als Illustration diirften die folgenden zwei —
ziemlich bekannten — Beispiele dienen:

Zuerst fragen wir danach, wie man aus dem Punkt 4 in den
Punkt B unter Beriihrung der Geraden e (Abb. 13) auf dem

B

Abb. 13.

kiirzesten Wege gelangen kann ? (Z. B. will der Reitersmann
sein Rof} unterwegs im Flusse trénken.) Indem wir den Punkt B

und den zweiten (e mit B verbindenden) Teil eines beliebigen
Weges auf der Geraden e spiegeln, sehen wir, daf} die Aufgabe
mit derjenigen der Aufsuchung des kiirzesten Weges zwischen A4
und B’ gleichwertig ist. Dieser kiirzeste Weg ist nun offenbar
die Gerade AB’, und indem wir den Abschnitt EB’ derselben
spiegeln, erhalten wir die Losung AEB der Aufgabe. Dieser Weg
entfernt sich von e in der Richtung nach B unter demselben
Winkel, unter welchem er sich von 4 ausgehend e genédhert hat.
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Bekanntlich gehorcht die Reflexion des Lichtes demselben
Gesetz. — Die andere Aufgabe fragt danach, welches von den
Dreiecken mit gegebenen Seiten a, b das grolite Flachenmal
besitzt. Aus der Abbildung 14 wird ersichtlich, daB bei fest-
bleibender Seite a die Endpunkte der Seiten der Lange b auf
einem Kreis von Radius b liegen. Alle diese Dreiecke haben die
gemeinsame Basis a, die Dreieckshohe und folglich auch das
FlachenmaB wird aber am groBten, falls die Seite b zu a ortho-
gonal ist, so daB unter den Dreiecken mit zwei gegebenen Seiten
das rechtwinklige Dreieck mit diesen beiden Katheten das
grosste Flichenmall besitzt.

Abb. 14.

Endlich sei noch darauf hingewiesen, dafl nicht jede Extre-
malaufgabe eine ,,wirkliche® Losung zu besitzen braucht. Dies
kann man mit Hilfe von Ungleichungen, oder auch auf geome-
trischem Wege einsehen. Suchen wir z. B. unter den Pyramiden
mit quadratischer Basis und mit gleicher Seitenkante a diejenige
mit der groften Oberflidche, so sehen wir (Abb. 8), indem wir die
Spitze C der Projektion A derselben ndhern, dall die Oberflache
immer grofer wird, und ihr Maximum dann erreicht, falls C
mit A zusammenfillt. In der Tat wéchst bis dahin das Grund-
quadrat fortwéhrend, und die Seiten sind gleichschenklige
Dreiecke mit dem Schenkel a, und solche Dreiecke erreichen —
wie wir soeben gesehen haben — dann ihr maximales Flichen-
mal, falls sie rechtwinklig sind, was aber genau dann der Fall
ist, wenn C mit A zusammenfillt (Abbildung 15). Die somit
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erhaltene , Pyramide” ist aber entartet, ,uneigentlich“: ein
ebenes Quadrat (doppelt gerechnet; die Oberfliche ist die

Doppelte derjenigen des Quadrates, d. h. 2 (a \/5)2 = 4a?).
Unter den ,eigentlichen (nicht entarteten) regelmiBigen Pyra-
miden mit quadratischer Basis und gegebener Seitenkante a
gibt es keine von maximaler Oberfiiche, der Flicheninhalt wird
um so grofler, je ndher C zu 4 kommt.

a a
90°
A

go° 90°

C
90°

a a

Abb. 15,

Angesichts der Vielfalt der elementar lésbaren Extremal-
aufgaben und der zur Verfiigung stehenden Methoden entsteht
die — 1hrer Natur nach zur mathematischen Logik hinge-
horende — Frage, ob es iiberhaupt eine solche elementare,
d. h. die Begriffsbildungen der Differential- und Integralrech-
nung nicht enthaltende Extremalaufgabe gibt, die sich nicht
elementar (d.h. ohne Hilfe der Differentialrechnung) lésen
liesse ?
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