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UNGLEICHUNGEN UND IHRE VERWENDUNG
ZUR ELEMENTAREN LÖSUNG VON MAXIMUM-

UND MINIMUMAUFGABEN

von J. Aczél

(Reçu le 26 janvier 1961)

Meinem geehrten Lehrer und Freund T. Gallai
zum 50-sten Geburtstag gewidmet.

1. Einführung. In diesem Artikel werden wir ein dreifaches
Ziel verfolgen: 1. Die Feststellung grundlegender Tatsachen über
Ungleichungen und über einige Anwendungen derselben; 2. Die
Mitteilung der hierzu benötigten Vorkenntnisse; und endlich
3. Zu zeigen, daß der dargelegte einheitliche Gedankengang auch
in konkreten Spezialfällen verwertet werden kann. — Dabei
werden wir uns mit der Herleitung und mit den Anwendungen
allgemeingültiger Ungleichungen beschäftigen (und nicht mit der
Bestimmung von Werten die gegebene Ungleichungen befriedigen,

d. h. nicht mit der „Lösung" von Ungleichungen).
Eine der am häufigsten auftretenden und wohl auch der am

besten bekannten Ungleichungen, diejenige zwischen dem
arithmetischen und dem geometrischen Mittel, sagt in ihrer
einfachsten Gestalt folgendes aus:

(1)
** + 12

> yJh t2 (L > 0,t2> 0) für C ^ t2

und wird bekanntlicherweise wie folgt bewiesen:

t\ T t2 /—(2) — V«112 > 0 für

2. Formale Regeln. Um uns im oben dargelegten Sinne mit
Ungleichungen beschäftigen zu können, müssen wir vor allem
die formalen Regeln des Rechnens mit Ungleichungen
feststellen (und dazu auch den Begriff der Ungleichung präzisieren).
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Das Fehlen einer solchen vorangehenden Klärung ist ein ernster

Mangel mehrerer einschlägiger Werke.
Wie dies bereits aus der Herleitung (2) der Ungleichung (1)

hervorgeht, wird ein Ausdruck A dann (und für jene Werte der

auftretenden Veränderlichen) größer als B genannt, was man
durch

(3) A > B

bezeichnet, falls A — B positiv ist (A — B > 0). Der

Tatbestand, daß A größer als B oder aber gleich B ist, wird so

bezeichnet:

(4) A^B
(in Worten: A nicht kleiner als B). (4) ist also mit der Nicht-
negativität der Differenz A — B äquivalent (A — B ^ 0). (3)
bzw. (4) könen auch so geschrieben werden:

(5) B<A
bzw.

B^A
(B kleiner bzw. nicht größer als A). Offenbar gilt für dieselben
Ausdrücke A und B (bei denselben Werten der Veränderlichen)
entweder A ^ B oder A < B, und es gibt keine andere Möglichkeit

und auch das gleichzeitige Bestehen dieser beiden Möglichkeiten

ist ausgeschlossen. Zum Beweis einer Ungleichung der
Form (3) (oder (5)) bzw. (4) muß man also zeigen, daß A —B > 0

(oder B — A < 0), bzw. A — B ^ 0 ist.
So lassen sich die folgenden Rechenregeln herleiten:

Ist A > B und C ^ D, dann ist auch A + C > B + D,
denn aus A — B > 0 und C — D 0 folgt durch Addition
(A + C) — (B + D) > 0, da die Summe einer positiven und
einer nichtnegativen Zahl jedenfalls positiv ist.

Aus A > B folgt cA > cB bzw. cA < cB je nachdem c > 0
oder c < 0 ist (da cA — cB c (A — B) > 0 bzw. <0 ist:
das Produkt zweier positiver Zahlen ist positiv, das Produkt
einer positiven und einer negativen Zahl hingegen negativ). —«

Aus C ^ D und c ^ 0 folgt cC ^ cD (da cC — cD — c (C — D)
^ 0 ist). — Aus A > B und B D folgt A > D (A — D
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(A — B) -f- (B — D) > 0). — Aus diesen Regeln folgt
bereits :

Ist A > B ^0, C > D und C > 0, dann ist AC > 5Z),
da aus AC > BC und BC 5D tatsächlich AC > i?D folgt.
(Dasselbe läßt sich auch unmittelbar aus der Zerlegung
AC — BD (A — £) C + £ (C — D) folgern.) Weiterhin folgt
daraus im Falle A > B ^ 0 (C A, D B, bzw. C A2,
D 52, usw.)

A2>B2, A3>jB3,

und im allgemeinen /ür beliebigen positiven ganzen
Exponenten n:

(6) An > Bn

Ist A > B > 0, dann gilt
1 1 Bn - An

A~n -Bn=^ < 0
An Bn An Bn

also für positive ganze Werte von n

(7) A~n < B n

Für ganze positive Werte von p und von q gilt im Falle
p p

A > B > 0 auch A« > Bi (d. h. (6) gilt auch für positive
p p

rationale Exponenten), wäre nämlich A« ^ B«, dann würde auf
Grund von (6) durch Erhebung auf die q-te Potenz (q eine ganze
positive Zahl) Ap ^ Bp folgen, im Widerspruch zu (6) (auch p
ist eine positive ganze Zahl).

Läßt sich (6) auch auf den Fall beliebiger positiver reeller

Exponenten übertragen Wir werden zeigen, daß dies tatsächlich

der Fall ist, d. h., daß

(8) Ax > Bx für A>R^0, x > 0

gilt. Es sei nämlich { rn } eine gegen x konvergierende Folge
positiver rationaler Zahlen (z. B. die Folge der dezimalen

Näherungsbrüche von x). Wie wir bereits gesehen haben, gilt

(9) Arn > Brn
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woraus wir einstweilen

(10) Ax ^ Bx

folgern. Wäre nämlich Ax < Bx d.h. D— > 0 dann

würden für ein zu x genügend nahe hegendes rn Ax und Ar"

beliebig wenig voneinander abweichen und (s. Abb. 1) es wäre

D Ax + Bx
Ar" <AX + - - <

2 2 2

0_
2 2.

1 "t +Z— 1

V

Ax Arn A + B ß " B
M 2

Abb. 1.

im Gegenzatz zu (9). In (10) kann aber Ax Bx unmöglich

gelten, da daraus (durch Erhebung beider Seiten auf die --te

Potenz) A — B folgen würde. Also ist (8) richtig. — Aus (7) folgt
auf ähnliche Weise, daß

Ax < Bx für A > B > 0 und x < 0

gilt.
Es mag vielleicht so erscheinen, als ob die angeführten

Beweise komplizierter wären, als die oft ziemlich evidenten
Behauptungen; dennoch sind solche Betrachtungen zur strengen
Begründung des Rechnens mit Ungleichungen unerläßlich.
Dabei ist es auch nicht so ganz evident, unter welchen Bedingungen

sich z. B. zwei Ungleichungen multiplizieren lassen. (Z. B.
ist 2 >— 3 und 4 > — 3 aber 2 4 < (— 3) (— 3), während
mit 2 > — 3 und 4 > — 2 zugleich auch 2 4 > (— 3) (—- 2)

gilt.) — Sind wir nun aber einmal im Besitz dieser Regeln, so

können wir ohne weiteres zur Erörterung der grundlegenden
Ungleichungen schreiten, und auch im späteren Laufe unserer
Darlegungen werden wir keine Schwierigkeiten haben, wenn es



218 J. ACZÉL

gilt einzusehen, warum man z. B. von der Untersuchung der
Extremaleigenschaften irgendeines Ausdrucks zur Untersuchung
der Extremaleigenschaften einer Potenz desselben übergehen
kann.

3. Konvexe Funktionen. In den Arbeiten [5, 11, 12, 17, 21]
(s. das Literaturverzeichnis am Ende der Arbeit) werden die
einzelnen Ungleichungen aus der Theorie der konvexen Funk¬

tionen hergeleitet. Um verständlich zu machen, worum es sich
dabei handelt, betrachten wir z. B. die Ungleichung (1) zwischen
dem arithmetischen und dem geometrischen Mittel. Führen wir
die Bezeichnungen t± a*1, t2 aX2 (a > 0, a ^ 1) ein, so geht
dieselbe in die Ungleichung

xl+x2 flXl 4- flX2a—< IffürXl *2

über. Diese Ungleichung (s. Abb. 2) bringt nun ihrerseits die
Tatsache zum Ausdruck, daß für die Kurve der Funktion ax der

Mittelpunkt jeder echten (d. h. nicht in einen Punkt entarteten)
Sehne über der Kurve liegt. Solche Funktionen werden Jensenkonvex

genannt.
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Genauer: Eine Funktion wird im Intervall [a, b] Jensen-

konvex gennant, falls für beliebige in [a, b] liegende Punkte x2

die folgende, sog. Jensensche Ungleichung erfüllt ist:

(u) fi^P)</(")2/fe> «"

Im folgenden werden wir immer im Intervall [a, b] liegende

Stellen betrachten, ohne dies jedesmal ausdrücklich zu betonen.

Befriedigt eine Funktion eine zu (11) analoge Ungleichung,
wobei aber statt < das Zeichen > bzw. ^ steht, so wird
sie im weiteren Sinne Jensen-konvex, bzw. Jensen-konkav bzw.

im weiteren Sinne Jensen-konkav genannt. Im Falle xx — x2 gilt
natürlich für jede Funktion

rfXl + *2\ _ /(xi) + f(X2)
V 2 y " 2~ "

Aus (11) folgt die n-gliedrige Jensensche Ungleichung:

X1 + X2 + ••• + Xn\ ^/(Vj) + /(x2) + + /CO
n n

falls nicht xt x2 xn ist,

^im letzteren Falle gilt offenbar /
__/(*i) +/(x2) +

-h/CQ^

Es ist üblich, diese Ungleichung durch sog. Cauchy'sche Induktion

zu beweisen, wobei von n auf 2n und von m auf m — 1

gefolgert wird. Da nun erfahrungsgemäß auch das Verständnis
der gewöhnlichen vollständigen Induktion mit gewissen
Schwierigkeiten verbunden ist, scheint es wenig wünschenswert, den
der diese Schwierigkeiten glücklich überwunden hat, sogleich
durch einen noch komplizierteren Induktionsschluß in Verlegenheit

zu setzen. Eben darum geben wir im folgenden gleich zwei
Beweise der Ungleichung (12), die beide mit der gewöhnlichen
vollständigen Induktion geführt werden. Da gemäß (11) die

Ungleichung (12) für n 2 Gültigkeit hat, wird es genügen zu

(12) f(

X± + x2 + + Xrt
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zeigen, daß aus der Gültigkeit von (12) für n auch seine Gültigkeit
für n + 1 folgt. Der erste Beweis (vgl. [17]) verläuft folgender-
massen :

Wir setzen

+ *2 + ••• + xn + xn¥l
x

n + 1

und erhalten so

/(*)=/ x1 + x2 + + *„ + xn+1

n + 1

<

2

/Ol) + /O2) + ••• + /Q„) + /Qn+i) + (n - 1)f(x)
2 n

(hier haben wir (11) einmal und (12) zweimal nacheinander
verwendet: im ersten Falle mußten wir fg schreiben, da der Fall
xt + x2+ + xn xn+l + (n — 1) x

nicht ausgeschlossen ist, im
n n

zweiten Falle jedoch war < stichhaltig, da Gleichheit nur im

Falle xx x2 xn und xn+l x
x1 + x2 + + xn + xn+1

fi 4-1
nxn + xn+1

— ajso Xfl+1 xn v2 x± auftreten könnte,
n + 1

was jedoch auch hier ausgeschlossen wird). Durch Umordnung
(mit Hilfe der anfangs kennengelernten formalen Regeln)
erhalten wir nunmehr

(13) f(x 1 + *2 + + + X"+1

\ n + 1 fOl)+/O2) + - + On) +/On+l)/ 0) < —
n + 1

falls nicht xt — x2 xn xn+1 ist.
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Wie kann man sich nun diesen Gedankengang einprägen
Es ist ein häufiger Irrtum, daß man glaubt, das arithmetische
Mittel von n -f- 1 Zahlen sei gleich dem arithmetischen Mittel
des arithmetischen Mittels der ersten n Zahlen und der Zahl
xn+1, wogegen freilich im allgemeinen

+ X2 + + Xn
+ xn+1

x1 + x2+ + x„ + xn+1
^

n

n + 1

gilt. Wenden wir diesen Fehler zum Nutzen und fragen wir nun
nach der Zahl ?/, für welche

Xi + x2 + + xn
y+ x2 + + xn + n

n + 1
~

2

richtig ist. Diese Zahl ist

x„+1 + (»-l)Xl + X2 + -V" + JC"+1

„n + 1 Xn+l + (n- l)x
n n

und auf die somit erhaltene Zerlegung

(14) x
+ X2 + + xn + xM+1

n + 1

+ x2 + + xn xn+1 + (n — 1) x

gründet sich der angeführte Beweis.
Den anderen Beweis verdanke ich einer Mitteilung des

Herrn Alfréd Rényi:

/(*)=/ Vi + x2 + + x„ + xn+1

n + 1

(i n-1)
+x2 + •••+*»

+
x + - 1) x„ + 1N

/' <
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/ ,w/* i + *2 + — + *»\ + (n - 1) xn+1

^n-^{ n J+/
n

(n - 1) [/(xi) +/(x2) + ••• + /(*„)] + /(*) + (" - l)/(x„+i)

Durch Umordnung erhalten wir wiederum (13). Dieser Beweis
hat den Vorteil, daß — wie man dessen bei der vollständigen
Induktion gewohnt ist — beim Beweis der für n + 1 geltenden
Relation (13) nur die auf n bezügliche Relation (12) herangezogen

wird (und zwar dreimal; daß man im ersten Falle nur
in den beiden anderen hingegen < schreiben kann, läßt sich
wie vorher einsehen) nicht aber der auf n 2 bezügliche Spezialfall

(11). Freilich ist auch an der Verwendung von (11) nichts
auszusetzen, da wir einmal schon wissen, daß dieselbe gültig ist.
Die Zerlegung

xt + x2 + + xn + xn+1
(15)

n + 1

X,+ x2 + + X x + (n -1) x„+1(„ - i) +

welche diesem zweiten Beweis zugrunde liegt, kann man sich wie

folgt merken : Wir teilen das Intervall zwischen 1 —2 +
n

und xn+1 in n + 1 gleiche Teile (s. die Abb. 3, wo wir

xn+1 >
1

——- angenommen haben, was keine Beiz

schränkung der Allgemeinheit bedeutet) und die Teilpunkte
• a t3 n u Xi + x2 + + xn

seien der Reihe nach z0 zx z2 z„,

Zo Z2
1 ^—%—•"Xj +Xi»...* X-n

*1

*tvH

Abb. 3.
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zn+i Xfi+i - Da zi der Schwerpunkt des Systems bestehend aus
der im Punkt zn+1 angebrachten Masseneinheit und einer im
Punkte z0 angebrachten Masse von n Einheiten darstellt (der
Abstand des Schwerpunktes von den beiden Massenpunkten
ist zu den Massen derselben umgekehrt proportional) gilt

*1 "F *2 + +
n + *„+i

_ rcz0 + z„+i n
_1

n + 1 n + 1

und aus demselben Grunde ist zn der Schwerpunkt einer Masse
in z1 und einer Masse (n — 1) in zn+l :

zi + (n - 1) zn+1 x + (n - 1) xn+l
Zm

und z1 ist der Schwerpunkt einer Masse (n — 1) in z0 und einer
Masse 1 in z„:

*! + x2 + + x x + (rc - 1) xn+1
(n — i 1

(n - 1) zQ + z„ n n

das ist nun aber gerade (15). Auf Grund von Abb. 3 läßt sich
(14) auf ähnliche oder noch einfachere Weise veranschaulichen:

(n — 1) x + xn+1
Z1 X, z2 y,

Kl

^1 + x2 + + xn (n - 1) X + x„+1
zo + z2 n n

x Zl

Da aus der Jensen-Konvexität (12) und aus der von uns
bezüglich des arithmetischen und des geometrischen Mittels
zweier Zahlen bewiesenen Ungleichung (1) die Jensen-Konvexität
der Funktion ax folgt, gilt

*1 + *2 ••• "t" xn nX\ i X2 Xnaxi + aX2 + + a
a " < —— falls nicht xt x2 x

n

ist, und indem wir axk tk setzen (k 1, 2, erhalten wir
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daraus

(16) h.±h± - + f"
> yt 7n,(h>0;k= 1,2

n

falls nur nicht t1 t2 tn ist.

Dies ist die Ungleichung zwischen dem arithmetischen und dem

geometrischen Mittel von n Zahlen. Wollen wir etwa nur diese

Ungleichung herleiten, dann erübrigt es sich natürlich die
allgemeine Theorie der Jensen-konvexen Funktionen heranzuziehen,
jede der oben angeführten Methoden ermöglicht es uns, aus (1)
die Ungleichung (16) unmittelbar herzuleiten.

In (12) können — wie wir dies bereits gesehen haben —
gewisse xk-s — nur nicht alle — einander auch gleich sein, so

daß wir die folgende, mit Gewichten versehene m-gliedrige Jen-
sensche Ungleichung erhalten:

^17) f(p1*1 + P2*2 + ••• + Pm
<

V Pl + Pl + ••• + Pm

Plf(Xi)+ p2f(x2) + +pmf(xm)
A< o, k 1, 2,m)Pl+ p2 + + Pm

mit Ausnahme des Falles x2 xm

Dabei gilt diese Ungleichung nicht nur für positive ganze
Zahlen p1? p2? •••? Pm? sondern auch im Falle, wo die pu p2l >•*§ pm

positiv rational sind, da wir ja in diesem letzteren Falle eine

Erweiterung mit dem gemeinsamen Nenner der Brüche

Ph Pi-> •••, Pm vornehmen können. (Für xx x2 xm gilt
wiederum

/ Pl*l + Pl*2+— + PmXm\ Plf
Pl + Pl + ••• + Pm ••• +

Ist die Funktion / (x) stetig, so können wir die Gültigkeit
unseres Ergebnisse auch auf den Fall beliebiger positiver reeller
Zahlen pk ausdehnen. (Freilich eignet sich zu diesem Zwecke
ein einfacher Grenzübergang nicht, da infolge desselben die

Relation < in (17) in ^ übergehen könnte.) Indessen benötigen
wir aus der Theorie der stetigen Funktionen nur das folgende
Ergebnis: Ist eine stetige Funktion an einer Stelle kleiner, an
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einer anderen Stelle aber größer als eine lineare Funktion, so

gibt es eine Zwischenstelle, an welcher beide Funktionen einander

gleich sind; anschaulich gesprochen: Verläuft eine stetige Kurve

an einer Stelle oberhalb, an einer anderen Stelle unterhalb einer

Geraden, so schneidet sie die Gerade irgendwo zwischen diesen

beiden Stellen, und im Falle des Vorhandenseins mehrerer

solcher Stellen gibt es unter diesen eine erste und eine letzte.

Auf Grund dieser Tatsache zeigen wir nun, daß aus (11) die

zweigliedrige gewichtete Jensensche Ungleichung

f(PlXl + P2*2\ Pif(xi) + Plffrl)
\ P1+P2 )K P1+P2

(Pi > 0, p2 > 0), falls xt x2 ist,

für beliebige positive reelle Zahlen folgt. — In der Tat
bedeutet (18), daß alle innere (d. h. vom Anfangs- und vom
Endpunkt verschiedene) Punkte sämtlicher Sehnen der Kurve
der Funktion / (x) oberhalb der Kurve liegen. Solche Funktionen
werden konvex genannt. (Auf ähnliche Weise werden auch im
weiteren Sinne konvexe, konkave und im weiteren Sinne konkave
Funktionen definiert, indem man in (18) statt < die
Relationen > bzw. ^ setzt.) Wie wir uns daran erinnern, bedeutet
(11), daß der Mittelpunkt jeder zur Kurve gehöriger Sehne

oberhalb der Kurve liegt. Jetzt beweisen wir das folgende
Resultat, welches allgemeiner ist, als unsere vorige Behauptung:
Liegt je ein Punkt jeder Sehne eines stetigen Kurvenstückes oberhalb

der Kurve, so liegen auch sämtliche Punkte aller dieser Sehnen
oberhalb der Kurve. (D. h. gibt es für beliebige Werte xx ^ x2 je
ein positives reelles Paar p± > p2 > 0 für welches (18) erfüllt ist,
so gilt (18) für beliebige x± x2l px > 0, p2 > 0.) Läge nämlich
irgendein Punkt der Kurve oberhalb einer Sehne, dann gäbe es

zu diesem Punkt (Abb. 4) infolge der erwähnten Eigenschaft
der stetigen Funktionen einen letzten vorangehenden und einen
ersten nachfolgenden auf der Sehne liegenden Punkt Px bzw. P2.
Dann läge aber jeder innere Punkt der Sehne Px P2 unterhalb
der Kurve, was unserer Annahme widerspricht. Also kann kein
Punkt irgendeiner Sehne oberhalb der Kurve liegen. Dann liegen
aber sämtliche inneren Punkte jeder Sehne unterhalb der Kurve,

L'Enseignement mathém., t. VIT, fasc. 1. 15
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denn es sei (Abb. 5) AB eine beliebige Sehne und P ein beliebiger
innerer Punkt des Kurvenstückes AB. Unserer Voraussetzung
gemäß liegt ein Punkt P' des Kurvenstückes AB unterhalb der

Abb. 4.

B

Abb. 5.

Sehne AB; es soll dieser Punkt zum Kurvenstück AP gehören.
Dann liegt P nicht oberhalb der Sehne P' 5, also liegt er streng
unterhalb der Sehne AB. Damit haben wir (18) aus (11) für
beliebige positive reelle Werte p2 hergeleitet.
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Jetzt beweisen wir (17) von (18) ausgehend bereits ohne

Berufung auf die Stetigkeit für beliebige positive reelle Werte

pk (k 1, 2, m) mit vollständiger Induktion. Gemäß (18)

gilt (17) in der Tat für m2. Wir zeigen jetzt, daß aus der

Gültigkeit für m auch die Gültigkeit dieser Relation für m + 1

folgt: Hierbei verwenden wir zuerst (18) und dann (17). Es

kann in

j(PlXl + P2X2++ PmXm+ Pm

Pl+ P2+ ••• + + Pm +

/'
Pi-X1+p2x2 + ...+p

(Pl + ?2+ ••• + Pm) : ; : b Pm+l 1

Pl+ Pl+ ••• + Pm

(Pl + Pl+ ••• + Pm) + Pim+1

f ,JPlxl+P2x2+---+Pm,
(Pi+P2 + ---+Pm)f[ ; ; : + Pm+i/Om+i)

<
V Pl+P2 + -+Pn <

Pl + P2+ + Pm + Pm+l

,Plf(Xi) +P2f(x2)+ ...+pmf(xm)
(Pi+ P2+ ••• + Pm)

; ; ; bpm+1/(xm+1)
< pt+p2 + + pm

Pl + P2+ ••• +P„ + Pm+l

Plf(.Xl)+ P2/fe) + ---+ Pm/(*m)+ Pm+l(^m+l

Pl + P2 + •+ Pm + Pm+l

nicht an beiden Stellen für die Relation ^ der Fall eintreten,
Pi*i + p2x2 ++ pmxm

da dann xm+1 und x2
Pi + p2 + + pm

also auch xt x2 — xm xm+1 wäre, was auch hier
ausgeschlossen wird. Damit haben wir (17) in vollkommener
Allgemeinheit bewiesen. — Hier läßt sich der Grundgedanke
des Beweises noch leichter einprägen, als in den vorangehenden

p..,, Pixi+ p2x2 +... + pmxm j „V allen. bedeutet nämlich den Schwer-
Pl + P2 + ••• + Pm

punkt der Punkte xi;x2,falls dieselben der Reihe
nach mit den Massen px, p2,versehen sind, und der
Schwerpunkt von m + 1 Punkten läßt sich bestimmen, indem
man die Massen der ersten m Punkte im Schwerpunkt derselben
vereinigt denkt, und dann den Schwerpunkt dieses mit der
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entsprechenden Masse versehenen Punktes und des Punktes
xm+1 mit Masse pm+l bildet:

V1*1 + P2X2+ ••• + PmXm+ P,m+1Am+1

Pl + P2+ + Pm+ Pm+l

PlXt + p2x2+ +
(P1 + Pl+ + pJ11 + pm + 1xm+l

P1 + P2 + + Pm

(P1 + Pl+ + pj + Pm+ 1

Wegen der Jensen-Konvexität und Stetigkeit der Funktion

ax gilt nach (17)

Plx1 + p2x2 + + Pnxn pi ax, + p2 ax2 + _ + pnüxn
d Pl+P2 + -" + Pn <

Pl + P2+ ...+ Pn

falls nur nicht xl x2 xn ist, und falls wir wiederum
aXk =tk(k 1? 2, n) setzen, so ergibt sich zwischen den

gewichteten arithmetischen und geometrischen Mitteln von n Zahlen
die Ungleichung

(19)
Pl fl + Pltl + + Pntn

>
Pi + Pi + ••• + Pn

< P'+^+-+PV^ ' & > 0, Ä > 0; fc 1, 2, n)

falls nur nicht t2 tn ist.

11 1

Indem wir hierin t1 -, t2 -, tn — — setzen, erhalten
*1 *2 tn

wir nun

Pi Pi
x x

Pn

-r +—+... 4 r

— — > — > 0, pfc > 0).
Pl + P2 + ••• + Pn t'Pi t'P2 _

Lassen wir hier die Kommas weg, und multiplizieren wir beide
Seiten mit dem Produkt der reziproken Werte der beiden Seiten

(dies ist nach den formalen Regeln der Umformung von
Ungleichungen zulässig), so erhalten wir eine andere wichtige Ungleichung

zwischen den gewichteten geometrischen und harmonischen
Mitteln von n Zahlen:
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(20) ff ...ff» >

>P1 + P2+ _Z±EAtk>o,pk>0;
Pi Pi ,P»— + — -+- -f- —

t2

falls nur nicht h £2 **= tn ist.
Ein Vergleich von (19) und von (20) ergibt folgende

gleichung zwischen den gewichteten arithmetischen und harmo-

nischen Mitteln von n Zahlen:

Pi h + P2 *2 + • • • + Pn *n

Pi + Pi+'-- + Pn

>
P1 + P2+ —+ fl,

^
1, 2,

PlPl,Pn
1 r... ih t2 tn

falls nur nicht t1—t2 =tn ist.
Multiplizieren wir hier beide Seiten mit dem Produkt der

Nenner, so folgt

(Pi h + P2 G +-" + Pn tn) + Tl + '"+t) > (pi + Pl + •" +p")2
\ h h lnJ

ak 11-und indem wir hier pk akbk tk ~ setzen, erhalten wir
bk

abermals eine wichtige Ungleichung:

(21) (a\ + a\ +... + al) (bl + b2 +... + b„) >

> (ax bx + a2b2 +... + an bn)2

falls nur nicht — -2 ist. (In diesem letzteren Falle
b1b2 bn

steht in (21) statt > das Gleichheitszeichen.)
Dies ist die Cauchy''sche Ungleichung. Zwar gilt der obige

Beweis wegen pk > 0, tk > 0 nur für akbk > 0, doch läßt sich
diese Beschränkung leicht eliminieren. Ist nämlich z. B. a1 bt < 0,
so gilt

(flj b1 + a2b2+... + a„b„)2<(-at bt + a+...+ <
< [(-a^2 + a22 +... +a2](bi +b22 +...+ b2)

(a2 +a\ +...+ a2) (bj +b\+...+ b2)
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weil — al b± schon positiv ist, und ist z. B. anbn 0 so erhält
man, indem man (21) statt für n für n — 1 schreibt,

(<a1 fe1 + a2 b2 +... + an_1 bn_1 +an bn)2

(a1fc1 + a2fc2+...+ an_1bn_1)2<

< (a\ + a2 +... + (bl + b2 +... + b^-1) ^
— («i +a2 +... + cin-i + °n) (ßi + b2 +... + b„_1 + bl)

und auf ähnliche Weise kann man verfahren, auch wenn mehrere
der ak bk negativ oder gleich Null sind. Damit haben wir (21) für
sämtliche Werte der ak bk bewiesen.

Auf ähnliche Weise, wie (19) aus der Konvexität vonax, folgt

aus der Konvexität der Funktion (?*>g), daß jede der
Potenzmittel

bei konstanten positiven Werten von xl9 x2, x„, pl9 p2, pn

mit y zunimmt. Strebt r gegen 0, so ist der Grenzwert dieser
Ausdrücke nichts anderes als das entsprechende geometrische
Mittel, strebt r gegen — oo bzw. gegen + oo, so ist der Grenzwert

die kleinste bzw. die größte der Zahlen xl9 xl9 xn.
Wächst r von —oo bis + oo, so durchläuft das r-te Potenzmittel

das Intervall zwischen diesen beiden Zahlen (s. [17]).
Auch die — meistens ungeklärt gelassene — Frage ist von

Interesse, was sich z. B. in (18) ändert, falls die reellen Zahlen

Pi,p2 nicht positiv sind. Für pt p2 0 werden die auf
beiden Seiten von (18) auftretenden Brüche offenbar sinnlos;
ist p1 0 oder p2 0, so gilt

Für Pi<0 und p2< 0 behält (18) unveränderte Gültigkeit, da
sich die beiden Brüche durch — 1) erweitern lassen. Was

r
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geschieht aber im Falle p1 P2 < 0 Ist Pi + P2 — 0? so haben
die in (18) auftretenden Brüche wiederum keinen Sinn. Anderseits

haben wir gesehen, daß durch (18) die Tatsache zum
Ausdruck gebracht wird, daß jeder innere Punkt der Sehne oberhalb
der Kurve liegt. Zugleich (Abb. 6) liegt bei solchen konvexen

Funktionen jeder außerhalb der Sehne liegende Punkt einer
jeden Sekante unterhalb der Kurve. Mit Formeln ausgedrückt
bedeutet das, daß

J(x1) + (x~xi) <f(x)
x2 ~xt

ist, falls x nicht in [x1,x2] liegt.
Setzen wir x2-x pu x~Xl p2, so ist Pip2 < 0, falls x

nicht in [x1? x2] liegt, aber es ist Pi + p2 ^ 0. Das ergibt eben

rfPi xi + P2x2\^ Pif(xi) +p2f(x2)
f\~7^TT) — pï+Vz—# -p"x'

womit wir die zwischen f(—un(j ^i/(xi) + ^2/fe)
V P1+P2 J P1 + P2
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herrschenden relativen Grösseverhältnisse für den Fall konvexer
Funktionen vollends geklärt haben. — Insbesondere folgt aus
der Konvexität von (1 +h)x (h> — 1, 0) (s. Abb. 7), daß
(1 + h)x < 1 + hx für 0<x<l und (1 + h)x > 1 + hx für x<0
oder x > 1 gilt. (Für x.= 0 und für x 1 gilt (1 + h)x 1 + hx
Dies ist die Bernoullische Ungleichung.

Unsere Ergebnisse für Jensen-konvexe und konvexe
Funktionen bleiben in unveränderter Form und mit demselben Beweis
auch im Falle konvexer Funktionen mehrerer Veränderlichen

gültig. Gilt z. B. immer

(X1+X2jv+yA /(*!, yi)+/(*2, y2)

\2 ' 2 2

mit Ausnahme von
so gilt auch

JXl + x2 + + xn yi + y2+-- + y„\
<

V »
' n

1. yi)+f(*2> y2)+ +/(*», y«)
^ 5

n
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falls nur nicht x1 x2 xn und jq y2 — • •• yn ist-
Einen ähnlichen Sachverhalt haben wir auch dann, falls statt <
eine der Relationen ^ gilt. (Jensen-konvexe, im weiteren
Sinne Jensen-konvexe, Jensen-konkave bzw. im weiteren Sinne
Jensen-konkave Funktionen zweier Veränderlichen.) So folgt
z. B. aus

lx1 + x2y1 + y2 yXly1+Jx2y2. x2
/ > mit Ausnahme von — —V 2 2 2 Ji h

die Relation

/*l + *2 +--- + ^„J;l + 3;2+ •••+ y_n N\y\ y2+—+Ix„y„
V n n n

falls nur nicht — — — ist.
y% 2 y«

Indem wir hier beide Seiten durch n multiplizieren und auf
das Quadrat erheben, erhalten wir nach Einführung der
Bezeichnungen xk — al, yk bl gerade die Cauchy'sche
Ungleichung (21). Um an der Hand eines Beispiels zu zeigen, wie
man unsere allgemeinen Beweise auf konkrete Fälle anwenden
kann, beweisen wir jetzt die Cauchy'sche Ungleichung bzw. die
(für positive xk, yk) äquivalente Ungleichung

(22) Vxi + x2 4-... + xn Vji + y2 + ••• + yn >

> Ix1y1+y/x2y2+...+ y/xny„

falls nur nicht — — — ist,
3*i y2 y„

auch so, wie wir (12) aus (11) gewonnen haben:

(23) Jx1 + x2 Iy1 + y2>Ix1 y2 + Ix2y2

mit Ausnahme von — —. Es ist nämlich
y i y2

xi+ xi y2+ x2 Jh + X2y2>*i Jh + 2 Vxi x2 y2 + x2 y2
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d. h.

y2 + x2 yi > V*i y2 x2 y1

falls nur nicht y2 x2y1 ist. (Das arithmetische Mittel ist
größer als das geometrische.) (22) gilt also für n 2. Um (22)
durch vollständige Induktion zu beweisen, müssen wir zeigen,
daß aus der Gültigkeit dieser Relation für n auch seine Gültigkeit

für n + 1 folgt. Führen wir die Bezeichnungen x — xl + x2

+ + x„ + xn+1, y yi + y2+'" + yn + yn+i ein, so erhalten wir
in der Tat

\Jxy - y]x1 + x2 +... + xn+xn + 1 Vjh + Jh +... + yn+yn+i —

n +1
2n

(xl + x2 + + x„) +
n + 1 n — 1

*»+i + -~—(x1 + x2+... + xl
2n In

n +1
In

Oh ~yy 2 +••• +yn) +
n+1 n—1
-+~yn+i + -^—(^1 + ^2 +

2n 2n
+ y„ + Jh+oj ^

n +1 n +1
— (xx + x2 +... + xB)—~(y1 + y2 + + }>„) +
2n 2n

n+1 n — l\/n+l n — 1

xn+1 + ——x)[——yn+1 + y }>2n 2n 2n 2n

n+1
2n

(Vxj y + \/x2y2+ + Jx„yn) + Vx„+1 +

Xi x? xn
falls nur nicht— — —

y i y2 yn

und n+1

yn+i

xt + x2 + + x„
>h + J>2 +•••+J>»

ist.

(Wir haben erst (23), dann (22) und dann wieder (23)
verwendet.) Eine Umordnung der Glieder ergibt jetzt

(n+i) V*i + x2 + + x„+x„+1

{n+\)\/xy > (n+l)(V*i + \fx2 + ••• + +
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x1 x2 xn xn+1
falls nicht— — — ist.

y± y2 yn yn+±

Durch Vereinfachung mit (n +1) ergibt sich daraus die zu
beweisende Ungleichung (22) für (n +1). (Ein dem zur
Herleitung von (12) benutzten zweiten Beweis ähnlicher Gedankengang

würde hier außer (22) wiederum auch (23) verwenden.)
Somit haben wir (21) für positive Werte der ak und der bk bewiesen.

Auf den Fall nichtpositiver Werte läßt sich unser Ergebnis
auf ähnliche Weise übertragen, wie beim vorangehenden Beweis.

Die Cauchy'sche Ungleichung läßt sich auch auf den Fall
von mehr als zwei Faktoren sowie auf den Fall von Exponenten
die von zwei (bzw. von ^) verschieden sind, verallgemeinern
(Holdersehe Ungleichung), und ist der Minkowshischen Ungleichung

I m / n \ n Im

V j= 1 \k 1 fc=i V j= 1

falls nur nicht — — — 1,2, n) ist,
all a2l anl

äquivalent.

4. Die elementare Lösung von Extremalaufgaben. In der
höheren Analysis haben Ungleichungen viele wichtige Anwendungen,

in den Rahmen der Elementarmathematik besteht
jedoch ihr Hauptanwendungsgebiet in der elementaren Lösung
von Extremalaufgaben. — Außer den bereits erwähnten
beschäftigen sich u. a. auch die folgenden Arbeiten mit der
elementaren Lösung von Extremalaufgaben [1-4, 6-10, 13-16,
18-20, 22-25]. Hier betrachten wir nur einige Aufgaben, die oft
auf komplizierterem Wege gelöst werden.

Zuerst leiten wir aus (19) die Lösung einer wichtigen
allgemeinen Extremalaufgabe her: Ist

a1ixl + a2x2 +... + anxn S konst.,

50 wird der größtmögliche Wert des Ausdrucks

...xl"P, (xk>0, 0; k 1,2, ...,n)
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an derjenigen Stelle (xu x2f x„) angenommen, für welche

ülX1 a2X2 anXn

Pl Pl Pn

gilt. In der Tat erhalten wir kraft (19)

ai Xi a^x?
falls nur nicht

Also ist P immer kleiner als die Konstante k, mit Ausnahme

ai jxq a2 x2 Qn Xn
des Falles wo sie gleich dieser

Pl Pl Pn

Konstanten ist. D. h. der Wert von P wird in diesem letzteren
Falle am größten sein. — Ist P konstant, so nimmt aus dem-

ai Xi a2 x2
selben Grunde S seinen kleinsten Wert für

Pi Pi
anxn

an. Ähnliche Behauptungen gelten auch im Falle,
Pn

wo an der Stelle des Produktes P eine Summe von mit
1

2Koeffizienten versehenen Reziprokwerte — oder Quadrate xk

steht.
Mit Hilfe des vorangehenden können wir z. B. die Frage

beantworten, welche der quadratischen Pyramiden mit gleicher
Seitenkante a den größten Rauminhalt besitzt. Ist nämlich x
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X2

die Grundkante, so ist (Abb. 8) a2 m2 + — konstant; statt

des Volumens kann man das dreifache desselben betrachten, und

3 y x2 m x2(m2f

ist dann am größten, falls — Im2 ist, dann ist aber

3m2 a2, m —:-
V 3

2a
*= 71

m
V3

Das Volumen der regelmässigen vierseitigen Pyramide ist also
4a3

in diesem Falle am größten, und es beträgt V —V3 — Ein

anderes Beispiel: Welches der geraden Kreiszylinder von
gegebener Oberfläche hat maximales Volumen Die Oberfläche ist

F 271 r2+ 271 rm — Konst.,
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und der Rauminhalt wird offenbar am größten, falls sein

vielfaches um - am größten wird ; nun ist
71

v
— r2 m (r2)* (rm)
71

27t r2
für—— Inrm am größten, also ist m 2r (gleichseitiger

2

Zylinder) und zwar ist in diesem Falle

T IT F /Tr~67t' m~2V6jt' F~3V67t"

Also hat von allen Zylindern gleicher Oberfläche der gleichseitige

Zylinder den größten Rauminhalt.
Diese Methode eignet sich auch zur elementaren Bestimmung

der Extremalwerte von Funktionen mehrerer Veränderlichen.
(In den beiden soeben angeführten Aufgaben war mit Rücksicht

x2
auf m2 -1 — a2 bzw. auf 2nr2 + 2nrm F nur ie eine

2
J

Veränderliche frei wählbar.) Wie soll man z. B. aus einer
rechteckigen Metallplatte einen Trog mit gleichschenkligem
Trapezquerschnitt verfertigen, damit das Flächenmaß des

Querschnittes maximal ausfallen soll
Ist die Breite des Rechtecks d, die Länge des

Trapezschenkels x, diejenige der kürzeren Parallelseite y, dann ist

y + 2x a Konst.,

und für das Flächenmaß des Querschnitts erhalten wir, falls z

die Länge der waagerechten Projektion des Schenkels bedeutet
(Abb. 9),

T ^ + ^ + y
m (y + z) \!x2 — z2 (y + z) (x + zf (x — zf

Für die Faktoren auf der rechten Seite gilt

2 (y + z) + (x + z) + 3 (x - z) 4x + 2y a Konst.,
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also ist T für

x
x=y, z -,

^cos a - -, a 60°^

am größten. Das auf diese Weise erhaltene Trapez ist nichts

anderes als die „untere Hälfte" eines regelmässigen Sechsecks.

z y z

V
x\ A

y
Abb. 9.

Da man beweisen kann, daß von den Sechsecken gleichen Um-
fanges das regelmässige Sechseck das größte Flächenmaß

besitzt, erhalten wir (durch symmetrische Ergänzung zu einem

Sechseck) auch dann dieselbe Lösung der Aufgabe, falls wir nur
voraussetzen, daß der Querschnitt ein Viereck (d. h. nicht
notwendigerweise ein Trapez) ist.

Eine weniger unmittelbare Anwendung unserer allgemeinen
Methode ist die Bestimmung der Extremalwerte allgemeiner
Polynome dritter Ordnung, wie dies z. B. zur Lösung der folgenden

Aufgabe erforderlich ist: Aus einem Rechteck mit Seiten a,
b soll durch Ausschneiden kleiner Quadrate an den Ecken das

Netz einer offenen Schachtel von größtmöglichem Umfang
hergestellt werden. Indem wir die Seitenlänge der ausgeschnittenen

Quadrate durch x bezeichnen, erhalten wir (s. Abb. 10) für

2(y+z) x + z 3 (x — z)

2 2
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das Volumen der Schachtel den folgenden Ausdruck:

V x(a — 2x) (b — 2x)

Hier ist 4x + (a — 2x) + (b — 2x) konstant, aber aus 4x a— 2x
b— 2x würde a b folgen, so daß eine unmittelbare

Anwendung unserer Methode nur im Falle b a möglich
wäre. Darum multiplizieren wir (b — 2x) mit einem später
zu bestimmenden konstanten Faktor k. Vk hat zugleich mit
V maximales Volumen, und es ist

Vk x (a — 2x) (kb — 2kx)

a

Abb. 10.

Andererseits ist

(kb — 2kx) + (a — 2x) + (2k + 2) x kb + a Konst.,

also ist V dort am größten, wo

k(b — 2x) a — 2x (2k + 2) x

ist. Daraus läßt sich der bisher noch unbekannte Faktor k und
auch das gesuchte x bestimmen:

a — 2x a — 2x \k b^2x' a~2X (2b^Tx

(a — 2x) (b — 2x) — 2 (a— 2x) x — 2 (b — 2x) x 0

12x2 — 4 (a + b) x + ab 0

2 (a + b) + 4 (a + b)2 — 12ab a + b ± Va2 — ab + b2

Xu2 _ _
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Da (z. B. für b ^ a)

a + b + Va2 — ab + b2 a + b + b b
Y ^ ^ —

6 6 ~ 2

keine Lösung unserer Aufgabe sein kann (Abb. 10) muß man

aus dem Rechteck Quadrate der Seitenlänge

a + b — Va2 — ab + b2

herausschneiden, damit eine offene Schachtel von maximalen
Volumen entsteht; das Volumen derselben ist dann

V —(a + b - Va2 - ab + b2)(2a-b + Va2 - ab + b2)
54

(2b —a + Va2 — ab + b2)

a —b + a2 —ab + b2
Es hat sich, wie man leicht berechnet, k

b

als geeigneter Multiplikationsfaktor herausgestellt, aber es wäre
wohl kein natürliches Verfahren, sogleich mit diesem Faktor zu

beginnen.
Wie wir sehen, kann also bereits die Ungleichung zwischen

dem arithmetischen und dem geometrischen Mittel (und auf
ähnliche Weise auch jede Ungleichung zwischen den übrigen
Mittelwerten) zu einer verhältnismässig einfachen, elementaren

Lösung zahlreicher Extremalaufgaben führen. Man soll aber
diese Methode keineswegs forcieren, da auch viele andere

Ungleichungen zu ähnlichen Zwecken mit Vorteil verwendet
werden können. Dies gilt insbesondere für die gleichwertige
(weil, wie wir gesehen haben, ebenfalls die Konvexität der
Funktion ax zum Ausdruck bringende) Bernoullische Ungleichung

(s. z. B. [18, 23]), und überhaupt kann jede elementare

Ungleichung, in welcher in bestimmten Fällen das Gleichheitszeichen

steht, zur elementaren Lösung von Extremalaufgaben
verwendet werden. — Hier möchte ich nur noch auf die
Ungleichung bezüglich der Diskriminante des Polynoms zweiten
Grades und auf die Anwendungsmöglichkeiten derselben
hinweisen.

L'Enseignement mathém., t. VII, fasc. 1. 16
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Bekanntlich hat das Polynom zweiten Grades ax2 + bx + c

keine reelle Wurzel, eine reelle (Doppel-)wurzel, oder aber zwei
reelle Wurzel, je nachdem b2 — 4ac<0, b2 — 4ac 0 oder
b2 — 4ac > 0 ist. — Auch daraus läßt sich — und zwar sofort
in voller Allgemeinheit — die Cauchy'sche Ungleichung (21)
herleiten. In der Tat ist dieser Beweis der am häufigsten benutzte.
Wir betrachten das Polynom zweiten Grades:

(bl + bl+... + b2n)x2 -2{a1 b1 + a2 b2+... + an bn)x +

+ (a\ + ^2 +••• + «n)= («1 — x^i)2 + (a2 — xb2)2 + + (an — xbn)2

Als Summe von Quadraten ist dieses immer positiv, den Fall

a1—xb1 a2 — xb2 — an — xbn 0

ausgenommen. Dann muß aber, diesen letzteren Fall
ausgenommen, die Diskriminante immer negativ sein (das Polynom
ist überall positiv, hat also keine reelle Wurzel):

(a1 bl + a2b2 +...+ an bn)2 —

~~ (Pl "b ^2 + ••• + bn) (ai + a2 + + ein) < 0

Cli üj Cln
falls nur nicht — — ...=— gilt.bib2 b„

Dies ist nun aber nichts anderes als die Cauchy'sche Ungleichung

(21).
Auch die Cauchy'sche Ungleichung kann mit Nutzen zur

elementaren Lösung von Extremalaufgaben verwendet werden,
aber auch in der höheren Analysis und in der nichteuklidischen
elliptischen Geometrie fällt ihr eine grundlegende Rolle zu. Von
Interesse ist die Tatsache, daß unseres Wissens das in der
hyperbolischen (Bolyai-Lobatschewski'schen) Geometrie verwendbare
„hyperbolische" Gegenstück zur Cauchy'sehen Ungleichung bisher
anscheinend unbekannt geblieben ist:

(24) (a\-a22-...-a2n) {b\-b22-...-b2n)<

< (at b1-a2b2-...-anbn)2

(b\ — bl —... — b2 > 0) falls nur nicht ist.
b1 b2 b„
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Auch der Beweis dieser Ungleichung verläuft dem vorigen ganz
analog: Das graphische Bild (Abb. 11) des Polynoms zweiten
Grades

Q>\ ~b\- -b2)x2 -2(öi bx —a2 b2 -...-anbn)x +
+ — (&! x — a^2 — (b2 x —a2)2 —... —(bn x —an)2

ist wegen b\—b\ —... — b2 > 0 eine nach oben offene Parabel,
also nimmt dieses Polynom gewiß positive Werte an (erstreckt

sich doch die Parabel nach beiden Seiten hin ins Unendliche).

Zugleich ist aber an der Stelle x — (wegen b\ — b\ —

— b2> 0 ist bx ^ 0) sein Wert

-(b2a^-a2)2-...~(bn^-any > 0
b i bx

falls nur nicht — ~ ~ ist
bi b2 bn

Mit Ausnahme dieses letzteren Falles (in welchem, wie man
sofort einsieht, an der Stelle von < in (24) das Gleichheits-
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zeichen stehen würde), nimmt also das Polynom sowohl positive
wie auch negative Werte an. Somit gibt es zwei reelle Wurzel,
und die Diskriminante muß dementsprechend positiv sein:

(a1b1-a2b2-...-anbn)2-(b21-b22-...-b2)(a21-a22-...-a2)>0,

womit wir (24) bewiesen haben.

Abb. 12.

Wie man die Diskriminanten-Ungleichung zur Lösung von
Extremalaufgaben verwenden kann, zeigen wir an der Hand
des folgenden Beispiels:

Gegeben sei ein (als geradlinig dahinfliessend gedachter)
Fluß, und in einer Entfernung von d Kilometer davon die
Fabrik B (Abb. 12). Den zu verarbeitenden Rohstoff erhält diese

Fabrik aus dem stromaufwärts gelegenen Hafen A, welcher von
der Projektion C des Punktes B auf die Gerade des Flußes um
a Kilometer entfernt liegt. In welcher Richtung soll die
Landstraße von B nach dem Fluße verlaufen, damit die Kosten der
Rohstoffzufuhr minimal ausfallen, falls die Kosten pro
Tonnenkilometer des Straßentransportes das Doppelte der Kosten des

Wassertransportes betragen. Bezeichnen wir die Stelle der
Umladung mit D, die Länge des Wasserweges mit s und diejenige
des Landstraße mit x, so wird, wie aus Abb. 12 ersichtlich.

a — s Vx2— d2 s a— Vx2— d2
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und aus der Bedingung für die Transportkosten folgt, daß wir
den kleinsten Wert der Funktion

y s + 2x a — x2 — d2 + 2x

suchen müssen. Hieraus ergibt sich

(25) 3x2-4 (y-a)x + (y-a)2 + d2 0.

Hat diese Gleichung überhaupt eine Lösung, so ist die Diskri-
minante nichtnegativ :

4(y —a)2 — 3 (y — a)2 — 3d2 ^ 0 (y-a)2 ^ 3d2

y ^ a + d \/3

(hier haben wir wiederum die formalen Regeln der Umformung
von Ungleichungen verwendet). Wie hieraus ersichtlich, ist der

kleinstmögliche Wert von y gleich a + d \l~3 und in diesem

Falle erhalten wir aus (25)

/- 2d
3x — 4d v 3 V + 4d 0 und x —-

V 3

Bezüglich des Winkels CDB der Richtung der Landstraße

gilt

sin CDB£ t d. h. CDB * 60°
* 2

so daß man die Landstraße immer unter einem Winkel von 60°
führen muß, unabhängig von a, d. h. unabhängig davon, aus
welchem Stromaufwärts liegenden Hafen A der Transport
geschieht. Eine Ausnahme bildet nur der Fall, in welchem die
unter dem Winkel von 60° geführte Straße das Flußufer schon
hinter dem Hafen A erreicht. Offensichtlich ist es in diesem
Falle angebracht, den Transport nur per Landstraße
vorzunehmen.

Obwohl uns die Ungleichungen ein recht wirksames Mittel
zur Hand geben, müssen wir der Vollständigkeit halber bemerken,

daß es noch andere Methoden gibt, die zur elementaren
Lösung von Extremalaufgaben verwendet werden können. In
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der Tat führen geometrische Erwägungen oft schneller zum Ziel.
(S. z. B. [8, 20].) Als Illustration dürften die folgenden zwei —
ziemlich bekannten — Beispiele dienen:

Zuerst fragen wir danach, wie man aus dem Punkt A in den
Punkt B unter Berührung der Geraden e (Abb. 13) auf dem

kürzesten Wege gelangen kann (Z. B. will der Reitersmann
sein Roß unterwegs im Flusse tränken.) Indem wir den Punkt B
und den zweiten (e mit B verbindenden) Teil eines beliebigen
Weges auf der Geraden e spiegeln, sehen wir, daß die Aufgabe
mit derjenigen der Aufsuchung des kürzesten Weges zwischen A
und Br gleichwertig ist. Dieser kürzeste Weg ist nun offenbar
die Gerade AR', und indem wir den Abschnitt EB' derselben

spiegeln, erhalten wir die Lösung AEB der Aufgabe. Dieser Weg
entfernt sich von e in der Richtung nach B unter demselben

Winkel, unter welchem er sich von A ausgehend e genähert hat.
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Bekanntlich gehorcht die Reflexion des Lichtes demselben

Gesetz. — Die andere Aufgabe fragt danach, welches von den

Dreiecken mit gegebenen Seiten a, b das größte Flächenmaß

besitzt. Aus der Abbildung 14 wird ersichtlich, daß bei

festbleibender Seite a die Endpunkte der Seiten der Länge b auf

einem Kreis von Radius b liegen. Alle diese Dreiecke haben die

gemeinsame Basis a, die Dreieckshöhe und folglich auch das

Flächenmaß wird aber am größten, falls die Seite b zu a orthogonal

ist, so daß unter den Dreiecken mit zwei gegebenen Seiten

das rechtwinklige Dreieck mit diesen beiden Katheten das

grösste Flächenmaß besitzt.

Endlich sei noch darauf hingewiesen, daß nicht jede Extre-
malaufgabe eine „wirkliche" Lösung zu besitzen braucht. Dies
kann man mit Hilfe von Ungleichungen, oder auch auf
geometrischem Wege einsehen. Suchen wir z. B. unter den Pyramiden
mit quadratischer Basis und mit gleicher Seitenkante a diejenige
mit der größten Oberfläche, so sehen wir (Abb. 8), indem wir die

Spitze C der Projektion A derselben nähern, daß die Oberfläche
immer größer wird, und ihr Maximum dann erreicht, falls C

mit A zusammenfällt. In der Tat wächst bis dahin das

Grundquadrat fortwährend, und die Seiten sind gleichschenklige
Dreiecke mit dem Schenkel a, und solche Dreiecke erreichen —
wie wir soeben gesehen haben — dann ihr maximales Flächenmaß,

falls sie rechtwinklig sind, was aber genau dann der Fall
ist, wenn C mit A zusammenfällt (Abbildung 15). Die somit

Abb. 14.
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erhaltene „Pyramide" ist aber entartet, „uneigentlich": ein
ebenes Quadrat (doppelt gerechnet; die Oberfläche ist die

Doppelte derjenigen des Quadrates, d. h. 2(a\Jl)2 4a2).
Unter den „eigentlichen" (nicht entarteten) regelmäßigen
Pyramiden mit quadratischer Basis und gegebener Seitenkante a

gibt es keine von maximaler Oberfläche, der Flächeninhalt wird
um so größer, je näher C zu A kommt.

\.
CL/

\a/90° X/c\ SO"

/ 90°

/a aX

Abb. 15.

Angesichts der Vielfalt der elementar lösbaren Extremal-
aufgaben und der zur Verfügung stehenden Methoden entsteht
die — ihrer Natur nach zur mathematischen Logik
hingehörende — Frage, ob es überhaupt eine solche elementare,
d. h. die Begriffsbildungen der Differential- und Integralrechnung

nicht enthaltende Extremalaufgabe gibt, die sich nicht
elementar (d. h. ohne Hilfe der Differentialrechnung) lösen
liesse
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