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CHARAKTERISTISCHE KLASSEN UND ANWENDUNGEN 209

topiegruppe Tsa—1 (") (Proc. Intern. Congress of Math.,
Edinburgh, 1958, pp. 454-458).

§ 5. EINBETTUNGSFRAGEN.

5.1. Es sei M* eine kompakte orientierte differenzierbare Man-
nigfaltigkeit der Dimension 4k. Das A-Geschlecht A (M*) ist
definiert als der Wert von 2* A, (py, ..., px) = Ax (p1, -, Pi) auf
dem orientierten Grundzyklus von M*. Dabei sind py, ps, ... die
Pontrjaginschen Klassen von M*, (p;e H* (M*; Z)). In
[6, Part 1I] wurde gezeigt, dass A (M*) eine ganze Zahl ist.
In [5] wurde folgender Satz bewiesen.

SaTz. — Es sei M** eine kompakte orientierte differenzierbare Man-
nigfaltigkeit. Wenn M** in den Euklidischen Raum der Dimen-
sion 8k — 2q differenzierbar einbettbar ist, dann ist A (M*)
durch 281 ieilbar. Wenn ausserdem noch ¢ = 2 mod 4 ist,
dann ist A (M**) durch 297 tetlbar.

Der Beweis verlauft, indem man annimmt, dass X in der
Sphére der Dimension 8k — 2¢ eingebettet ist. Mit Hilfe geeigne-
ter Darstellungen der orthogonalen Gruppe konstruiert man aus
dem Normalbiindel von X ein Element von K° (S%729) auf das
man den Bottschen Satz anwendet (3.5).

5.2. Wie in 5.1 sei M** kompakt orientiert differenzierbar. Wir
nehmen einmal an, dass M* in den Euklidischen Raum der
Dimension 4k-4 differenzierbar eingebettet werden kann. Dann
kénnen wir Satz 5.1 mit ¢ = 2k — 2 anwenden und erhalten,
dass A (M*) durch 2**7! und fiir gerades k sogar durch 2% teil-
bar ist.

5.3. Die Mannigfaltigkeit M** (siehe 5.2) sei in der Sphire
S**4 eingebettet. Die Pontrjaginschen Klassen des Normal-
biindels sollen mit p; e H* (M**; Z) bezeichnet werden. Da das
Normalbiinde! die Faser R* hat, verschwindet p; fiir i > 2.
Ferner ist p, das Quadrat der FEulerschen Klasse des Normal-
biindels, welche bei jeder Einbettung einer Mannigfaltigkeit in
eine Sphire verschwindet. Also ist p; = 0 fiir 7 = 2. Nun ist
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{ A, } die multiplikative Folge von Polynomen mit der charak-
teristischen Potenzreihe

(2/z)/sinh (2V/2) .

Es sei { B,} die multiplikative Folge von Polynomen mit der
charakteristischen Potenzreihe

sinh (2v/2)/(2Vz) .
Dann 1st

A (pys -5 P = B (pgs> oo P1) s
fallsp-p=1, (=Ypn, P=31p.

In unserer besonderen Situation ist p; = 0 fiir t = 2. Deshalb ist

i ® - sinhZ\/p:
ZAj(pla""pj) = ZBj(plsO:“'aO) = ”—_'-_:—E_'_l
j=0 §=0 2\/p1

und damit
22k (*ﬁ;)k
Qk+1)!

Ak(pla £y pk) =
Also ist nach 5.2 die Klasse

2-(py)f

kT D! e H* (M*; Q) ganzzahlig .

(1)

Fiir gerades k ist sogar

(P

(2k + 1)! € H4k(M4k;Q) ganzzahlig )

(2)

5.4. Der Index 7 (M*) einer kompakten orientierten differen-
zierbaren Mannigfaltigkeit ist die Anzahl der positiven minus
die Anzahl der negativen Eigenwerte der quadratischen Form
B (z, z) (fir x € H** (M*;R)), wo B (z,z) der Wert von z-x
auf dem orientierten Grundzyklus von M* ist. Es gilt [12]

(3) T (M*) = L, (py, .., p) [M*] ,



CHARAKTERISTISCHE KLASSEN UND ANWENDUNGEN 211
Vz
tgh\/ z
gehorige multiplikative Folge von Polynomen ist. Macht man

wieder die Annahme, dass M* in der Sphére der Dimension
4k+4 eingebettet ist, dann folgt &hnlich wie in 5.3, dass

tgh\/_z—)—:
Vs

wo { Ly (py, ---, pi)} die zur charakteristischen Potenzreihe

ZLj(pla "'>pj) =
i=0
und damit

(4) Ly (p1s s D) = T 1"

wo t, die (2k-+1)-te Ableitung von tg () fiir x = 0 ist. Bekannt-
lich ist ¢, eine gerade ganze Zahl (k = 1). Aus (1)-(4) folgt

5.5. Satz. — Die kompakte orientierte diﬁerenzierbaie Mannig-
faltigkett M** mdige sich differenzierbar in den Euklidischen
Raum der Dimension 4k -4 einbeiten lassen (k = 1). Dann ist

L
der Index © (M**) durch —; teilbar, wo t, die (2k-+1)-Ableitung

von tg (x) fur x =0 ist. Ist ausserdem k gerade, dann ist
T (M**) sogar durch t, teilbar.

Fiir die ganzen Zahlen ¢, hat man folgende Formel

22k (22k _ 1) Bk
tk—l = )

2k

wo B, die k-te Bernoullische Zahl ist. Es gilt
t1=2, t2=16, t3=24'17, t4=28'31.

Fiir &k = 1 ist der vorstehende Satz trivial (Jede M* kann in den
R® eingebettet werden.) Fiir k = 2 besagt er, dass eine M2, die
in den Euklidischen Raum der Dimension 12 einbettbar ist,
einen durch 16 teilbaren Index hat.

5.6. Sarz. — Es gibt eine kompakte orientierte differenzierbare
Mannigfaltigkeit V¥, die sich differenzierbar in den Eukli-
dischen Raum der Dimension 4k 3 einbetten lisst, und deren
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Index gleich =+t ist (4, = (2k+1)-Ableitung von tg (x)
fiir x = 0).

Zum Beweis benotigen wir zunachst ein Lemma, das bereits

bei Kervaire (Courbure intégrale généralisée et homotopie, Math.
Ann., 131, 219-252 (1956), siehe S. 247) vorkommt.

LeMmMa. — Das cartesische Produkt S™ X ... X S" von Sphdren
kann in den Euklidischen Raum der Dimension ny~+...+n,-+1
differenzierbar eingebettet werden.

Das Lemma ist richtig fiir r = 1. Wir beweisen es durch
Induktion iiber r. Offensichtlich kann S" mit trivialem Normal-
biindel in den euklidischen Raum der Dimension n;+...+n,+1
eingebettet werden. Die Faser des Normalbiindels ist ein R? mit
d = n;+...4n,_; +1. Nach Induktionsannahme ist 8" x... x §"1
differenzierbar in R? einbettbar. Daraus folgt die Behauptung
des Lemmas.

In[12, § 9.4] wird erwihnt, dass es in S2x... xS? (2k+1 Fak-
toren) eine Untermannigfaltigkeit V** der Codimension 2 gibt,
die mit jedem Faktor S? die Schnittzahl 1 hat.

Nach dem Lemma ist V** in den Euklidischen Raum der Di-
mension 4k--3 differenzierbar einbettbar. Nach [12, § 9.4] ist der
Index von V* in der Tat gleich der (2k--1)-ten Ableitung von
tgh z fir z = 0, q.e.d.

Der vorstehende Satz zeigt, dass Satz 5.5 fiir gerades k scharf
ist. Fiir k& = 3, 5, ... ist uns keine M** bekannt, die in R*** ein-
bettbar ist und deren Index gleich t;/2 ist.
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