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topiegruppe nn+4.k-1 (S") (Proc. Intern. Congress of Math.,

Edinburgh, 1958, pp. 454-458).

§ 5. Einbettungsfragen.

5.1. Es sei M4k eine kompakte orientierte differenzierbare
Mannigfaltigkeit der Dimension 4k. Das Al-Geschlecht A (M4k) ist
definiert als der Wert von 24k Äk (p^ pk) Ah (p^ pk) auf
dem orientierten Grundzyklus von M4k. Dabei sind p±, p2, die

Pontrjaginschen Klassen von M4k, (pt e H4x (M4k; Z)). In
[6, Part II] wurde gezeigt, dass A (M4k) eine ganze Zahl ist.
In [5] wurde folgender Satz bewiesen.

Satz. — Es sei M4k eine kompakte orientierte differenzierbare
Mannigfaltigkeit. Wenn M4k in den Euklidischen Raum der Dimension

8k — 2q differenzierbar einbettbar ist, dann ist A (M4k)
durch 2q+1 teilbar. Wenn ausserdem noch q ~ 2 mod 4 ist,
dann ist A (M4k) durch 2q+1 teilbar.

Der Beweis verläuft, indem man annimmt, dass X in der
Sphäre der Dimension 8k — 2q eingebettet ist. Mit Hilfe geeigneter

Darstellungen der orthogonalen Gruppe konstruiert man aus
dem Normalbündel von X ein Element von K° (S8k~2q), auf das

man den Bottschen Satz anwendet (3.5).

5.2. Wie in 5.1 sei M4k kompakt orientiert differenzierbar. Wir
nehmen einmal an, dass M4k in den Euklidischen Raum der
Dimension 4A+4 differenzierbar eingebettet werden kann. Dann
können wir Satz 5.1 mit q=2k — 2 anwenden und erhalten,
dass A (M4k) durch 22k~1 und für gerades k sogar durch 22k teilbar

ist.

5.3. Die Mannigfaltigkeit M4k (siehe 5.2) sei in der Sphäre
S4/£+4 eingebettet. Die Pontrjaginschen Klassen des Normalbündels

sollen mit fi e H4i (M4k ; Z) bezeichnet werden. Da das
Normalbündel die Faser R4 hat, verschwindet ~Pi für i > 2.
Ferner ist Yi das Quadrat der Eulersehen Klasse des Normalbündels,

welche bei jeder Einbettung einer Mannigfaltigkeit in
eine Sphäre verschwindet. Also ist pï 0 für i X 2. Nun ist

L'Enseignement nialhém., t. VI, fasc. 14
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{Ak} die multiplikative Folge von Polynomen mit der
charakteristischen Potenzreihe

(2 Vz)/sinh (2 z)

Es sei {A} die multiplikative Folge von Polynomen mit der
charakteristischen Potenzreihe

sinh (2 Vz)/(2 Vz)

Dann ist

00 00

falls p p1 (p YjPi > P E Ä) •

i 0 i 0

In unserer besonderen Situation ist p] 0 für i ^ 2. Deshalb ist

22, ® sinh 2 Vpï
Pj) Y,Bj(Pl>Q> - )°) 7EEE—

j' o j'=o 2 v px

und damit
22fc (^)fc

^fcCPl* jPfc) •

(21c+ 1)!

Also ist nach 5.2 die Klasse

(1)
(2k + l)l

e H*k ^M*k; ® §anzzallli? •

Für gerades k ist sogar

(~F~)k
(2)

(2k + l)l
6 "4k (M4k; Q) ganzzahIi§ •

5.4. Der Index t (ilf4fc) einer kompakten orientierten
differenzierbaren Mannigfaltigkeit ist die Anzahl der positiven minus
die Anzahl der negativen Eigenwerte der quadratischen Form
B (x, x) (für x e H2k (Af4fc; R)), wo B (x, x) der Wert von x • x
auf dem orientierten Grundzyklus von M4k ist. Es gilt [12]

(3) t(M«) Lk(Pl,..:,Pk)\_M4k]
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wo {Lk (plr..., pk)} die zur charakteristischen Potenzreine ——

gehörige multiplikative Folge von Polynomen ist. Macht man
wieder die Annahme, dass M4k in der Sphäre der Dimension

4A+4 eingebettet ist, dann folgt ähnlich wie in 5.3, dass

£ T \ tghV?I
LLj(Pu >Pj)=~

j=o V Pl
und damit

—k
(4) Lk(Pl,...,Pk) ±tk-

1

(2k+ 1)1

wo tk die (2&+l)-te Ableitung von tg (x) für x 0 ist. Bekanntlich

ist tk eine gerade ganze Zahl (k ^ 1). Aus (l)-(4) folgt

5.5. Satz. — Die kompakte orientierte differenzierbare Mannigfaltigkeit

M4k möge sich differenzierbar in den Euklidischen
Raum der Dimension 4/c+4 einbetten lassen (k ^ 1). Dann ist

der Index r (M4k) durch ~ teilbar, wo tk die (2k+1)-Ableitung

von tg (x) für x 0 ist. Ist ausserdem k gerade, dann ist

t (M4k) sogar durch tk teilbar.

Für die ganzen Zahlen tk hat man folgende Formel

_
2lk (l2k — 1) Bk

h~l 2k '

wo Bh die A:-te Bernoullische Zahl ist. Es gilt

t± 2 t2 — 16, f3 24 • 17 u 28 • 31

Für k 1 ist der vorstehende Satz trivial (Jede M4 kann in den
R8 eingebettet werden.) Für k 2 besagt er, dass eine AT8, die
in den Euklidischen Raum der Dimension 12 einbettbar ist,,
einen durch 16 teilbaren Index hat.

5.6. Satz. — Es gibt eine kompakte orientierte differenzierbare
Mannigfaltigkeit F4fc, die sich differenzierbar in den
Euklidischen Raum der Dimension 4A+3 einbetten lässt, und deren
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Index gleich ± tk ist (tk (2k +1)-Ableitung von tg (x)
für x 0).

Zum Beweis benötigen wir zunächst ein Lemma, das bereits
bei Kervaire (Courbure intégrale généralisée et homotopie, Math.
Ann., 131, 219-252 (1956), siehe S. 247) vorkommt.

Lemma. — Das cartesische Produkt S"1 x X S"r von Sphären
kann in den Euklidischen Raum der Dimension n1-\-—JrnrJr/^
differenzierbar eingebettet werden.

Das Lemma ist richtig für r 1. Wir beweisen es durch
Induktion über r. Offensichtlich kann S"r mit trivialem Normalbündel

in den euklidischen Raum der Dimension 721+...+ft,.+l
eingebettet werden. Die Faser des Normalbündels ist ein Rd mit
d nx~\~...+ ttr-i +1. Nach Induktionsannahme ist S"1 x... xS"r_1

differenzierbar in Rd einbettbar. Daraus folgt die Behauptung
des Lemmas.

In [12, § 9.4] wird erwähnt, dass es in S2x... xS2 (2&+1
Faktoren) eine Untermannigfaltigkeit V4k der Codimension 2 gibt,
die mit jedem Faktor S2 die Schnittzahl 1 hat.

Nach dem Lemma ist V4k in den Euklidischen Raum der
Dimension 4A+3 differenzierbar einbettbar. Nach [12, § 9.4] ist der
Index von V4k in der Tat gleich der (2/c + l)-ten Ableitung von
tgh x für x 0, q.e.d.

Der vorstehende Satz zeigt, dass Satz 5.5 für gerades k scharf
ist. Für k 3, 5, ist uns keine M4k bekannt, die in R4/c+4

einbettbar ist und deren Index gleich U/2 ist.
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