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ganzzahligen Cohomologieringe) keine Torsion haben. Das

geschah um die Darstellung zu vereinfachen. Die Begriffe
„Multiplikator" und „normierter Multiplikator" lassen sich auch

für beliebige kompakte orientierte Mannigfaltigkeiten einführen.
Natürlich bleibt Lemma 3.9 richtig. Für die Lemmata 3.6 und 3.7
sowie für die Sätze 3.7 und 3.9 wurde die Torsionsfreiheit
wesentlich benutzt. Jedoch ist uns kein Beispiel bekannt, dass

diese Lemmata und Sätze für Mannigfaltigkeiten mit Torsion
falsch werden. Für differenzierbare Mannigfaltigkeiten siehe den
nächsten Paragraphen.

§ 4. Differenzierbare Mannigfaltigkeiten
UND PONTRJAGINSCHE KLASSEN.

4.1. Es sei X eine kompakte orientierte differenzierbare
Mannigfaltigkeit. Wir setzen voraus, dass die zweite Stiefel-Whitneysche
Klasse w2 e H2 (X; Z2) als Reduktion einer ganzzahligen Klasse
c1 e H2 (X; Z) auftritt. Das ist z.B. dann der Fall, wenn X keine
Torsion hat. Wir nennen X eine q-Mannigfaltigkeit, wenn ein
Element c1(X)eH2(X; Z), dessen Reduktion mod 2 gleich
w2 (X) ist, fest gewählt ist. Es seien pt e H4i (X; Z) die Pontrja-
ginschen Klassen von X. Man definiert dann die totale Toddsche
Klasse TT (X) e H* (X; Q) der q-Mannigfaltigkeit X durch
folgende Gleichung

00

(1) ST{X) e^'2--ZÂJ(p1,...,pJ)
jo

c - Vz/2
wo {Ajj die zur Potenzreihe -=— gehörige multiplikative

sinh (V z/2)

Folge von Polynomen ist

Â0 1 Ât — — A2 — — 4p2 + 7pl)

Es gilt [3, 4, 6] :

Satz. — Gegeben sei eine cx - Mannigfaltigkeit X. Für jedes
£ e X* (X) ist der Wert von eh (Ç) • F (X) auf dem orientierten
Grundzyklus von X eine ganze Zahl.



202 M. F. ATIYAH UND F. HIRZEBRUCH

(Dieser Satz wird in [6, Part III] nur für geradedimensionale
Mannigfaltigkeiten bewiesen, wo man ohne Einschränkung der
Allgemeinheit annehmen kann, dass Ç g K° (X).)

Ist X eine projektive algebraische Mannigfaltigkeit, dann
wählt man für cx (X) die erste Chernsche Klasse. Der vorstehende
Satz wird durch den Satz von Riemann-Roch [12] motiviert, der
für ein holomorphes Vektorraum-Bündel Ç über X besagt, dass

der Wert von ch (Ç) • ZT (X) auf dem orientierten Grundzyklus
von X gleich der Euler-Poincaréschen Charakteristik von X mit
Koeffizienten in der Garbe der Keime von holomorphen Schnitten
von Ç ist.

Der obige Satz geht in den Satz von Bott (3.5) über, wenn X
eine gerade-dimensionale Sphäre ist, da man cx (X) 0 wählen
kann und da dann ZT (X) — 1. Der allgemeine Fall wird auf den
Bottschen Satz zurückgeführt, indem man X in eine Sphäre S2n

einbettet und unter Verwendung gewisser Darstellungen aus Ç

und dem Normalbündel von X ein Element V e X° (S2n)

konstruiert, auf das man den Bottschen Satz anwendet [3].

4.2. Es seien X, Y kompakte orientierte torsionsfreie differenzierbare

q-Mannigfaltigkeiten. Wir haben in 4.1 gesehen, dass

die totale Toddsche Klasse ZT (X) bzw. ZT (Y) ein normierter
Multiplikator von X bzw. Y ist. Also gilt Satz 3.9 mit diesen
Klassen. Das ist das differenzierbare Analogon der Grothen-
dieckschen Verallgemeinerung des Riemann-Rochschen Satzes

[7]. Dieses Analogon kann ohne Voraussetzung der Torsionsfreiheit

bewiesen werden [3, 4].

4.3. Es seien X und X' kompakte orientierte differenzierbare
Mannigfaltigkeiten vom gleichen Homotopietyp. (Man nehme an,
dass eine Homotopie-Äquivalenz von X und X' gegeben ist.)

00 00

Es sei p Yj Pi hzw. p' =Yj Pi die totale Pontrjaginsche
i 0 i — 0

Klasse von X bzw. X'. Wegen der gegebenen Homotopie-
Äquivalenzen fassen wir auch p' als Element von H* (X; Z) auf.
Setzen wir X (und X') als torsionsfrei voraus, dann können wir X
und X' zu crMannigfaltigkeiten machen. Da w2 eine Homotopie-
Invariante ist, können wir annehmen, dass bei der Homotopie-
äquivalenz cx (X) in cx (X') übergeht. Es folgt aus 3.8, 3.9, dass



CHARAKTERISTISCHE KLASSEN UND ANWENDUNGEN 203

00 / 00

(2) I^Äjipu...,Pj)/,...,p'j)ech
j=o / j o

co
^ ^

Wir setzen p/pf Ç =Yi Qt e (V; Z). Da eine
i o

multiplikatiye Folge von Polynomen ist, kann (2) auch so

geschrieben werden

00

(3) YjÄjiqi, qj) e ch K° (X)
j c

Wir wollen sehen, was man daraus über die qt schliessen kann.

4.4 Im Rahmen dieses Vortrags hatten wir (2) für torsionsfreie

Mannigfaltigkeiten erhalten. Man kann jedoch (2) und damit (3)

für beliebige, kompakte differenzierbare homotopie-äquivalente
Mannigfaltigkeiten X und X' nachweisen [3], die auch nicht
orientierbar zu sein brauchen. Also ist auch in diesem allgemeineren

Fall
00

« Ch (0 Ç e K° (X)
j o

und daher (siehe 3.2)

(4) (2/c)! Äk(ql, qk) s2k(0

w0 sik von einer ganzzahligen Klasse kommt. Nun kann man
zeigen [3], dass Ç sogar als Element des Unterrings von K° (X)
gewählt werden kann, der von den komplexen Vektorraum-
Bündeln erzeugt wird, die komplexe Erweiterung eines reellen
Vektorraum-Bündels sind. In diesem Fall kommt sogar s2k (?)/2
von einer ganzzahligen Klasse und wir erhalten also die Aussage

(5) 2-1-(2 k)\Äk{qy, ...,qk)

ist eine ganzzahlige Klasse (oder genauer: die angegebene rationale

Klasse kommt bei dem Koeffizienten-Homomorphismus
Z -> Q von einer ganzzahligen Klasse).

4.5. Wir wollen jetzt etwas näher erläutern, was die Aussage (5)
für Cohomologieklassen qt e H41 bedeutet.
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Das Polynom Âk (q±, qk) ist von folgender Gestalt

~ 4k

(6) Äk(ql9 ...9q£ —— 'Dk(ql9 qk)
p(k)

wo Dk ein Polynom mit ganzzahligen teilerfremden Koeffizienten
ist, oc (k) die Anzahl der Einsen in der dyadischen Entwicklung
von k ist und wo

T—1
a) »(to n pu~iJ

(Produkt über alle ungeraden Primzahlen p.)
Siehe hierzu [12, § 1.6] und [5, § 3.8].
Wir setzen

(8) Mk AN. 1

' k
(2k)

Für jede rationale Zahl r schreiben wir

i TT vpü)r ± Up
wo p über alle Primzahlen läuft und der Exponent vp (r)
ganzzahlig ist.

Lemma. — Die rationale Zahl Mk ist ganzzahlig.

Es ist
v2(Mk) 2k+ 1

vp(M, _ pxp (2k)
k) — ~Lp-I _

für p ungerade,

wo <xp (n) die Summe der Koeffizienten in der p-adischen
Entwicklung von n ist.

(Die Zahl oc2 (n) wurde oben mit a (n) bezeichnet).
Zum Beweis erinnern wir an die bekannte Formel

vp(r
r - ccp (r)

p- 1

Also ist

v2 (Mk) -a(fc) + 4fe + l-(2fe-a(2fe))
2k + 1
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da oc (Ä) oc (2k). Ferner ist für eine ungerade Primzahl p

yP(Mk)
2k

_p-l
Daraus folgt die Behauptung, da

2k — ocp (2k)

p-l

0 <
2k ; 2k '

p~l.
< 1.

Die Aussage (5) ist äquivalent zu

(9) Dk(qu ...,qk) 0 (mod Mk)

d.h. DkIMk kommt von einer ganzzahligen Klasse. Für k — 1, 2, 3

haben wir

qx 0 (mod 24)

4q2 — lql 0 (mod 480)

16q3—44q2q1+31ql 0 (mod 2688)

4.6. Im nächsten Abschnitt (4.7) wollen wir zeigen, dass aus (5)

oder, was auf dasselbe hinauskommt, aus (9) rein formal die

Kongruenz

qk 0 (mod 8) k 1,2, 3,

abgeleitet werden kann. Wir benötigen dazu das folgende
zahlentheoretische Lemma.

Lemma. — Es seien a1? a2, a3, Unbestimmte über dem Körper Q

der rationalen Zahlen. Das Polynom

(10) • (2k)! • Âk (8a1, 8a29 8ak) (vgl. (5))

ist ganz bezüglich 2, d.h. alle Koeffizienten dieses Polynoms sind
rationale Zahlen, die 2 nicht im Nenner enthalten.

Beweis : Der Koeffizient otji jr von aji ajr (/i + +/V k)
in dem Polynom (10) ist gegeben durch

(11) aJt...Jr2-M2/c)!-23'-X(,V,...,;,),
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wo S (/j, jr) die symmetrische Funktion mit Hauptterm
(ßi)Jl (ßr)Jr in den ßf bezeichnet, wobei die ß- die formalen
Wurzeln der charakteristischen Potenzreihe

Vz/2
(vgl. [12, § 1.4])

sinh (Vz/2)

sind. Wir setzen st S (i). Bekanntlich ist S (/1? /r) ein

Polynom in den st mit ganzzahligen Koeffizienten dividiert durch

à n1 n2\ nt\

falls in der Folge (/1? /r) %-mal eine Zahl Al5 ^2-mal eine Zahl
A2, 72rmal eine Zahl ht vorkommt. Die ht sollen distinkt sein,
ferner

t

X ni r
i= 1

In dem erwähnten Polynom für S (ju jr) treten nur Monome

(12) smi sm2 smp mit m1+...+mp =j1 + +jr k und p^r
auf. Vgl. hierzu z.B. [19, S. 220] und die dort angegebene Literatur.

Nun ist

(13) "

wo Bt die i-te Bernoullische Zahl ist. Es genügt zu zeigen, dass

(14) 23r_1 • (2fc)! • smi smJd

ganz ist bezüglich 2, sofern die Bedingung (12) erfüllt ist. Die
in (14) angegebene Zahl ist aber wegen (13) gleich

(2fc)!
+ 23r~p~1- — •Bm Bm jd

(2m1)!...(2mp)! mi mpl

Da der Polynomialkoeffizient ganz ist und da v2 (Z?f) nach dem

von Staudtschen Satz gleich — 1 ist, genügt es zu zeigen, dass

(15) 3r-2p-l ^ vi(d)
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Nun ist in der Tat (siehe 4.5)

v2 (d)X>;-Za(«i) ^ Zn> _1 -
i l i 1 i—1

womit (15) wegen p S r (siehe (12)) bewiesen ist.

4.7. Gegeben sei nun für k 1,2, 3, die Aussage (5). Wir
wollen daraus qk 0 (mod 8) herleiten. Für A 1 erhalten wir

0 (mod 8) (siehe (9))

Nehmen wir an, dass

(16) qk 0 (mod 8)

bereits für alle k mit 1 ^ k < k0 bewiesen ist. Dann folgt aus

Lemma 4.6, aus (5) und aus (13), dass

2~1 * (2fc0)! sko
•

qko =^qk0

ganz bezüglich 2 ist. Da v2 (Du0) — — 1? folgt (16) für k A0.

4.8. Die vorstehenden Rechnungen haben ergeben, dass

q — pjp' ~ 1 (mod 8), wo 1 e 77°. Also ergibt sich (vgl. 4.4)

Satz. — Man fasse die Pontrjaginschen Klassen einer kompakten
differenzierbaren Mannigfaltigkeit als Elemente des durch das

Torsionsideal dividierten ganzzahligen Cohomologieringes auf.
Diese Pontrjaginschen Klassen sind modulo 8 Invarianten des

Homotopietyps der Mannigfaltigkeit.

Wu Wen-Tsun hat im Jahre 1954 für die Pontrjaginschen
Klassen die Homotopie-Invarianz modulo 12 nachgewiesen.
(On Pontrjagin classes III, American Math. Soc. Translations,
Series 2, Vol. 11, S. 155-172 (1959).) Die Invarianz mod 3 ist
eine Folgerung aus der Theorie der Steenrodschen reduzierten
Potenzen. Die Invarianz modulo 4 folgt aus der Tatsache, dass

die Pontrjaginschen Klassen modulo 4 aus den (bekanntlich
homotopie-invarianten) Stiefel-Whitneyschen Klassen mit Hilfe
der Pontrjaginschen Quadrate berechnet werden können.
Bezüglich der Primzahl 2 haben wir also das Resultat von Wu
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verbessert: Die Pontrjaginschen Klassen (im Sinne des obigen
Satzes) sind Homotopie-Invarianten mod 24. (Die Invarianz
modulo 12 gilt übrigens für die ganzzahligen Pontrjaginschen
Klassen. Man braucht sie nicht modulo des Torsionsideals zu
reduzieren.) Es ist anzunehmen, dass die Invarianz modulo 3

ebenfalls rein formal aus (5) hergeleitet werden kann. Diese
formale Herleitung würde uns gelingen, wenn wir analog zum
Lemma 4.6 nachweisen könnten, dass das Polynom

(2k)! * Âk (3a1, 3ak)

ganz bezüglich der Primzahl 3 ist.
Natürlich liefert unsere Methode viel stärkere Invarianzaussagen

als den vorstehenden Satz. Aher sie lassen sich nicht
so leicht formulieren (vgl. (9)).

Zum Beispiel ergibt (9), dass für eine kompakte differenzierbare

Mannigfaltigkeit X, für die H4 (X; Q) 0, die Pontrja-
ginsche Klasse der Dimension 8 (modulo Torsion) eine Homo-
topie-Invariante mod 120 ist.

Es sei noch erwähnt, dass die Methoden von [3] auch folgenden

Satz ergeben.

Satz. — Es sei \ ein reelles Vektorraum-Bündel über dem endliehen

CW-Komplex X. Man nehme an, dass der stabile Faser-

Homotopie-Typ von Ç gleich dem des trivialen reellen
Vektorraum-Bündels ist. Die di-dimensionale ganzzahlige Pontrja-
ginsche Klasse von i; möge mit qt bezeichnet werden. Dann ist

00

•••> ij) c/îO) >

J o

wo 7] ein Element des von den reellen Vektorraum-Bündeln
bestimmten Unterringes von K° (X) ist (4.4). Insbesondere

genügen die qt den Delationen (9).

Vgl. hierzu M. F. Atiyah, Thom complexes (Proc. London Math.
Soc., (3), 11, 291-310 (1961)).

Wendet man den vorstehenden Satz auf die reellen
Vektorraum-Bündel über der Sphäre S4fc an, dann erhält man ein

Resultat von J. Milnor und M. Kervaire über die stabile Homo-
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topiegruppe nn+4.k-1 (S") (Proc. Intern. Congress of Math.,

Edinburgh, 1958, pp. 454-458).

§ 5. Einbettungsfragen.

5.1. Es sei M4k eine kompakte orientierte differenzierbare
Mannigfaltigkeit der Dimension 4k. Das Al-Geschlecht A (M4k) ist
definiert als der Wert von 24k Äk (p^ pk) Ah (p^ pk) auf
dem orientierten Grundzyklus von M4k. Dabei sind p±, p2, die

Pontrjaginschen Klassen von M4k, (pt e H4x (M4k; Z)). In
[6, Part II] wurde gezeigt, dass A (M4k) eine ganze Zahl ist.
In [5] wurde folgender Satz bewiesen.

Satz. — Es sei M4k eine kompakte orientierte differenzierbare
Mannigfaltigkeit. Wenn M4k in den Euklidischen Raum der Dimension

8k — 2q differenzierbar einbettbar ist, dann ist A (M4k)
durch 2q+1 teilbar. Wenn ausserdem noch q ~ 2 mod 4 ist,
dann ist A (M4k) durch 2q+1 teilbar.

Der Beweis verläuft, indem man annimmt, dass X in der
Sphäre der Dimension 8k — 2q eingebettet ist. Mit Hilfe geeigneter

Darstellungen der orthogonalen Gruppe konstruiert man aus
dem Normalbündel von X ein Element von K° (S8k~2q), auf das

man den Bottschen Satz anwendet (3.5).

5.2. Wie in 5.1 sei M4k kompakt orientiert differenzierbar. Wir
nehmen einmal an, dass M4k in den Euklidischen Raum der
Dimension 4A+4 differenzierbar eingebettet werden kann. Dann
können wir Satz 5.1 mit q=2k — 2 anwenden und erhalten,
dass A (M4k) durch 22k~1 und für gerades k sogar durch 22k teilbar

ist.

5.3. Die Mannigfaltigkeit M4k (siehe 5.2) sei in der Sphäre
S4/£+4 eingebettet. Die Pontrjaginschen Klassen des Normalbündels

sollen mit fi e H4i (M4k ; Z) bezeichnet werden. Da das
Normalbündel die Faser R4 hat, verschwindet ~Pi für i > 2.
Ferner ist Yi das Quadrat der Eulersehen Klasse des Normalbündels,

welche bei jeder Einbettung einer Mannigfaltigkeit in
eine Sphäre verschwindet. Also ist pï 0 für i X 2. Nun ist

L'Enseignement nialhém., t. VI, fasc. 14
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