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ganzzahligen Cohomologieringe) keine Torsion haben. Das
geschah um die Darstellung zu vereinfachen. Die Begriffe
,Multiplikator und ,,normierter Multiplikator* lassen sich auch
fiir beliebige kompakte orientierte Mannigfaltigkeiten einfiihren.
Natiirlich bleibt Lemma 3.9 richtig. Fiir die Lemmata 3.6 und 3.7
sowie fiir die Sdtze 3.7 und 3.9 wurde die Torsionsfreiheit
wesentlich benutzt. Jedoch ist uns kein Beispiel bekannt, dass
diese Lemmata und Sétze fiir Mannigfaltigkeiten mit Torsion
falsch werden. Fir differenzierbare Mannigfaltigkeiten siehe den
néchsten Paragraphen.

§ 4. DIFFERENZIERBARE MANNIGFALTIGKEITEN
UND PONTRJAGINSCHE KLASSEN.

4.1. Essei X eine kompakte orientierte differenzierbare Mannig-
faltigkeit. Wir setzen voraus, dass die zweite Stiefel-Whitneysche
Klasse w, € H? (X; Z,) als Reduktion einer ganzzahligen Klasse
¢; € H? (X; Z) auftritt. Das ist z.B. dann der Fall, wenn X keine
Torsion hat. Wir nennen X eine ¢;-Mannigfaltigkeit, wenn ein
Element ¢, (X) e H?2(X; Z), dessen Reduktion mod 2 gleich
wy (X) ist, fest gewihlt ist. Es seien p; e H* (X; Z) die Pontrja-
ginschen Klassen von X. Man definiert dann die totale Toddsche
Klasse 7 (X)e H* (X; Q) der c¢,-Mannigfaltigkeit X durch
folgende Gleichung

(D T (X) = e '_Zofij (P1sees D)) >
=
s L V22 . .
wo { A;} die zur Potenzreihe —— gehorige multiplikative
sinh (v/z/2)
Folge von Polynomen ist
4, =1, 4, = __P_1’ 4, = (—4p, +7p))
24 27.45 2o
Es gilt [3, 4, 6]:
Satz. — Gegeben sei eine ¢, — Mannigfaltigkeit X. Fiir jedes

£ e K* (X) istder Wert von ch (E) - 7 (X) auf dem orientierten
Grundzyklus von X eine ganze Zahl. '
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(Dieser Satz wird in [6, Part I11] nur firr geradedimensionale
Mannigfaltigkeiten bewiesen, wo man ohne Einschrinkung der
Allgemeinheit annehmen kann, dass £ e K° (X).)

Ist X eine projektive algebraische Mannigfaltigkeit, dann
wahlt man fiir ¢; (X) die erste Chernsche Klasse. Der vorstehende
Satz wird durch den Satz von Riemann-Roch [12] motiviert, der
fiir ein holomorphes Vektorraum-Biindel £ iiber X besagt, dass
der Wert von ch (£) - 7 (X) auf dem orientierten Grundzyklus
von X gleich der Euler-Poincaréschen Charakteristik von X mit
Koeffizienten in der Garbe der Keime von holomorphen Schnitten
von & ist.

Der obige Satz geht in den Satz von Bott (3.5) iiber, wenn X
eine gerade-dimensionale Sphére ist, da man ¢; (X) = 0 wihlen
kann und da dann J (X) = 1. Der allgemeine Fall wird auf den
Bottschen Satz zuriickgefithrt, indem man X in eine Sphére S*"
einbettet und unter Verwendung gewisser Darstellungen aus &
und dem Normalbiindel von X ein Element & e K° (S*") kons-

truiert, auf das man den Bottschen Satz anwendet [3].

4.2. Es seien X, Y kompakte orientierte torsionsfreie differen-
zierbare c;-Mannigfaltigkeiten. Wir haben in 4.1 gesehen, dass
die totale Toddsche Klasse 7 (X) bzw. J (Y) ein normierter
Multiplikator von X bzw. Y 1st. Also gilt Satz 3.9 mit diesen
Klassen. Das ist das differenzierbare Analogon der Grothen-
dieckschen Verallgemeinerung des Riemann-Rochschen Satzes
[7]. Dieses Analogon kann ohne Voraussetzung der Torsions-
freiheit bewiesen werden [3, 4].

4.3. Es seien X und X’ kompakte orientierte differenzierbare
Mannigfaltigkeiten vom gleichen Homotopietyp. (Man nehme an,
dass eine Homotopie-Aquivalenz von X und X' gegeben ist.)

Es sei p=7) p; baw. p’ =Y p; die totale Pontrjaginsche
i=0 i=0

Klasse von X bzw. X'. Wegen der gegebenen Homotopie-
Aquivalenzen fassen wir auch p’ als Element von #* (X; Z) auf.
Setzen wir X (und X') als torsionsfrei voraus, dann kénnen wir X
und X’ zu ¢,-Mannigfaltigkeiten machen. Da w, eine Homotopie-
Invariante ist, konnen wir annehmen, dass bei der Homotopie-
daquivalenz ¢; (X) in ¢; (X’) tibergeht. Es folgt aus 3.8, 3.9, dass

R R A SR o o LT e T Tk
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o0 . 0 . , , o

@ ZAJ«pl,...,p,->/zAj<p1,...,p,->ech1< x) .
/=0 j=0

Wir setzen p/p’ =q =Y ¢, mit ¢; € H* (X; Z). Da {4;} eine
$i=0

multiplikative Folge von Polynomen ist, kann (2) auch so
geschrieben werden

(3) iﬁj(ql, ...y q;) €ch K°(X) .

Wir wollen sehen, was man daraus iiber die ¢; schliessen kann.

4.4 Im Rahmen dieses Vortrags hatten wir (2) fiir torsionsfreie
Mannigfaltigkeiten erhalten. Man kann jedoch (2) und damit (3)
fiir beliebige, kompakte differenzierbare homotopie-dquivalente
Mannigfaltigkeiten X und X’ nachweisen [3], die auch nicht
orientierbar zu sein brauchen. Also ist auch in diesem allgemeine-
ren Fall

.ZOA‘j (qla uid &y qj) = Ch (6) ) €€Ko (X) )

und daher (siehe 3.2)

(4) QR Ay (qys s @) = 524 (8)

wo S, (&) von einer ganzzahligen Klasse kommt. Nun kann man
zeigen [3], dass £ sogar als Element des Unterrings von A° (X)
gewdhlt werden kann, der von den komplexen Vektorraum-
Biindeln erzeugt wird, die komplexe Erweiterung eines reellen
Vektorraum-Biindels sind. In diesem Fall kommt sogar s, (£)/2
von einer ganzzahligen Klasse und wir erhalten also die Aussage

(5) 271 (2! A (ay, ., 1)

ist ewne ganzzahlige Klasse (oder genauer: die angegebene ratio-
nale Klasse kommt bei dem Koeffizienten-Homomorphismus
Z — Q von einer ganzzahligen Klasse).

4.5. Wir wollen jetzt etwas néaher erldutern, was die Aussage (5)
fiir Cohomologieklassen ¢; € H* bedeutet.
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Das Polynom A, (¢, ..., q;) ist von folgender Gestalt

a(k)—4k

(k)

wo D, ein Polynom mit ganzzahligen teilerfremden Koeffizienten
1st, o (k) die Anzahl der Einsen in der dyadischen Entwicklung
von k ist und wo

@) k() = T1 o171

(Produkt iiber alle ungeraden Primzahlen p.)
Siehe hierzu [12, § 1.6] und [5, § 3.8].
Wir setzen

(6) Ak(quﬂqu) = .Dk(Q1a--~7qk) ’

(8) Mk — /’L(k) ‘2—a(k)+4k+1 .
(2k) !

Fiir jede rationale Zahl r schreiben wir

r = + npvp(r) ’

wo p iiber alle Primzahlen lauft und der Exponent v, (r) ganz-
zahlig ist.

LemmaA. — Dre rationale Zahl M, ist ganzzahlig.

Es ust
V2 (Mk) - 2k+1

2k
% ( 1)] fiir p ungerade,

vp (Mk) = [

wo o, (n) die Summe der Koeffizienten in der p-adischen Ent-
wicklung von n ist.

(Die Zahl «, () wurde oben mit « (n) bezeichnet).

Zum Beweis erinnern wir an die bekannte Formel

r—o,(r)
Vp(r ') = 7—%1———
Also 1st

v,(M,) = —a(k)+4k+1—(2k —a(2k))

= 2k+1,
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da « (k) = « (2k). Ferner ist fiir eine ungerade Primzahl p

2k ] | 2k—a, (26)

M) =|—
vp( k) l:p_l p—l

Daraus folgt die Behauptung, da

Die Aussage (5) ist dquivalent zu
(9 Dy(q1s---q0) =0 (mod M),

d.h. D,/ M, kommt von einer ganzzahligen Klasse. Fiir k =1, 2, 3
haben wir
g; =0 (mod 24),
4q,—7q% = 0 (mod 480),
16g5 —44q, g, +31q; = 0 (mod 2688) .

4.6. Im néchsten Abschnitt (4.7) wollen wir zeigen, dass aus (5)
oder, was auf dasselbe hinauskommt, aus (9) rein formal die
Kongruenz '

g = 0 (mod 8), k=1,2,3,...,

abgeleitet werden kann. Wir benotigen dazu das folgende zahlen-
theoretische Lemma.

LemMA. — Es seien a4, @y, ag, ... Unbestimmie iiber dem Korper Q
der rationalen Zahlen. Das Polynom

(10) 271 (2k)! - 4, (8ay, 84ay,, ..., 8a,) (val. (5))

ist ganz beziiglich 2, d.h. alle Koeffizienten dieses Polynoms sind
rationale Zahlen, die 2 nicht im Nenner enthalten.

Bewets : Der Koeffizient «; ; von a; ...q; (j;+...+], = k)
in dem Polynom (10) ist gegeben durch :

(11) Ocjl'"j,. = 2—1 (2k)' ) 23)‘ ) Z(jla --':jr) ]
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wo = (jy, ..., j,) die symmetrische Funktion mit Hauptterm
(81)" ... (B,)’" in den PB; bezeichnet, wobei die B; die formalen
Wurzeln der charakteristischen Potenzreihe

\/2/2

- 1. [12,§ 1.4
b D (vgl. [12, § 1.4])

sind. Wir setzen s, = X (7). Bekanntlich ist X (j;, ..., j,) ein
Polynom in den s; mit ganzzahligen Koeffizienten dividiert durch

d =n,!n,!...n!,

falls in der Folge (j4, ..., j,) ny-mal eine Zahl &, n,-mal eine Zahl
R, ..., n-mal eine Zahl h, vorkommt. Die #; sollen distinkt sein,
ferner

t
Yn =r.
i=1

In dem erwihnten Polynom fir X (jy, ..., j,) treten nur Monome
(12) Sy, Sy oee Sy, Mt My +...+my, =j +...+j, =kund p=r

auf. Vgl. hierzu z.B. [19, S. 220] und die dort angegebene Litera-
tur. Nun ist

— B,
2-(20)!° [12,§1.6,§ 1.7],

(13) S; =

wo B; die i-te Bernoullische Zahl ist. Es geniigt zu zeigen, dass
(14) : 227 (2K - Sy e S /d

ganz ist beziiglich 2, sofern die Bedingung (12) erfiillt ist. Die
in (14) angegebene Zahl ist aber wegen (13) gleich

(2k)!

+ 23r-p~ L. ‘B, ..
2m)!...(2m,)! !

B, /d .

Da der Polynomialkoeffizient ganz ist und da v, (B;) nach dem
von Staudtschen Satz gleich — 1 ist, geniigt es zu zeigen, dass

(15) 3r—2p—1 =2 v,(d) .
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Nun ist in der Tat (siehe 4.5)
t t t '
vy (d) = Zni—za(ni) = Zni -1 =r—-1,
i=1  i=1 i=1

womit (15) wegen p < r (siche (12)) bewiesen ist.

4.7. Gegeben sei nun fir k =1,2,3, ... die Aussage (5). Wir
wollen daraus ¢, = 0 (mod 8) herleiten. Fiir £ = 1 erhalten wir

g, = 0 (mod 8) (siehe (9)) .

Nehmen wir an, dass

(16) g, = 0 (mod 8)

bereits fiir alle £ mit 1 < & < k, bewiesen ist. Dann folgt aus
Lemma 4.6, aus (5) und aus (13), dass

—B,,

271+ (2ko)! Sko " Ky = 1 dk,

ganz beziiglich 2 ist. Da v, (B, ) = —1, folgt (16) fir k = k,.

4.8. Die vorstehenden Rechnungen haben ergeben, dass
g = p/p’ = 1 (mod 8), wo 1 € H°. Also ergibt sich (vgl. 4.4)

Satz. — Man fasse die Pontrjaginschen Klassen einer kompakten
differenzierbaren Mannigfaltigkeit als Elemente des durch das
Torsionsideal dividierten ganzzahligen Cohomologieringes auf.
Diese Ponirjaginschen Klassen sind modulo 8 Inyarianten des
Homotopietyps der Mannigfaltigkeit.

Wu Wen-Tsun hat im Jahre 1954 fiir die Pontrjaginschen
Klassen die Homotopie-Invarianz modulo 12 nachgewiesen.
(On Pontrjagin classes I1I, American Math. Soc. Translations,
Series 2, Vol. 11, S. 155-172 (1959).) Die Invarianz mod 3 ist
eine Folgerung aus der Theorie der Steenrodschen reduzierten
Potenzen. Die Invarianz modulo 4 folgt aus der Tatsache, dass
die Pontrjaginschen Klassen modulo 4 aus den (bekanntlich
homotopie-invarianten) Stiefel-Whitneyschen Klassen mit Hilfe
der Pontrjaginschen Quadrate berechnet werden kénnen.
Beziiglich der Primzahl 2 haben wir also das Resultat von Wu
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verbessert: Die Pontrjaginschen Klassen (im Sinne des obigen
Satzes) sind Homotopie-Invarianten mod 24. (Die Invarianz
modulo 12 gilt tbrigens fiir die ganzzahligen Pontrjaginschen
Klassen. Man braucht sie nicht modulo des Torsionsideals zu
reduzieren.) Es ist anzunehmen, dass die Invarianz modulo 3
ebenfalls rein formal aus (5) hergeleitet werden kann. Diese
formale Herleitung wiirde uns gelingen, wenn wir analog zum
Lemma 4.6 nachweisen konnten, dass das Polynom

(2k)! * Ak(3a1, N 3ak)

ganz beziiglich der Primzahl 3 ist.

Natiirlich liefert unsere Methode viel stédrkere Invarianz-
aussagen als den vorstehenden Satz. Aber sie lassen sich nicht
so leicht formulieren (vgl. (9)).

Zum Beispiel ergibt (9), dass fiir eine kompakte differenzier-
bare Mannigfaltigkeit X, fiir die H* (X; Q) = 0, die Pontrja-
ginsche Klasse der Dimension 8 (modulo Torsion) eine Homo-
tople-Invariante mod 120 ist.

Es sei noch erwihnt, dass die Methoden von [3] auch folgen-
den Satz ergeben.

Satz. — Es set £ ein reelles Vektorraum-Biindel iiber dem endlichen
CW-Komplex X. Man nehme an, dass der stabile Faser-
Homotopie-Typ von & gleich dem des trivialen reellen Vektor-
raum-Biindels ist. Die 4i-dimensionale ganzzahlige Pontrja-
ginsche Klasse von & moge mit q; bezeichnet werden. Dann ist

.Zofij(Q1> KR q_]) = Ch (77) >
j=

wo = ein Element des von den reellen Vektorraum-Biindeln
bestimmien Unterringes von K° (X) ist (4.4). Insbesondere
geniigen die q; den Relationen (9).

Vgl. hierzu M. F. Atiyah, Thom complexes (Proc. London Math.
Soc., (3), 11, 291-310 (1961)).

Wendet man den vorstehenden Satz auf die reellen Vektor-
raum-Biindel iiber der Sphire S* an, dann erhidlt man ein
Resultat von J. Milnor und M. Kervaire iiber die stabile Homo-

i N R T A5 i A, T
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topiegruppe Tsa—1 (") (Proc. Intern. Congress of Math.,
Edinburgh, 1958, pp. 454-458).

§ 5. EINBETTUNGSFRAGEN.

5.1. Es sei M* eine kompakte orientierte differenzierbare Man-
nigfaltigkeit der Dimension 4k. Das A-Geschlecht A (M*) ist
definiert als der Wert von 2* A, (py, ..., px) = Ax (p1, -, Pi) auf
dem orientierten Grundzyklus von M*. Dabei sind py, ps, ... die
Pontrjaginschen Klassen von M*, (p;e H* (M*; Z)). In
[6, Part 1I] wurde gezeigt, dass A (M*) eine ganze Zahl ist.
In [5] wurde folgender Satz bewiesen.

SaTz. — Es sei M** eine kompakte orientierte differenzierbare Man-
nigfaltigkeit. Wenn M** in den Euklidischen Raum der Dimen-
sion 8k — 2q differenzierbar einbettbar ist, dann ist A (M*)
durch 281 ieilbar. Wenn ausserdem noch ¢ = 2 mod 4 ist,
dann ist A (M**) durch 297 tetlbar.

Der Beweis verlauft, indem man annimmt, dass X in der
Sphére der Dimension 8k — 2¢ eingebettet ist. Mit Hilfe geeigne-
ter Darstellungen der orthogonalen Gruppe konstruiert man aus
dem Normalbiindel von X ein Element von K° (S%729) auf das
man den Bottschen Satz anwendet (3.5).

5.2. Wie in 5.1 sei M** kompakt orientiert differenzierbar. Wir
nehmen einmal an, dass M* in den Euklidischen Raum der
Dimension 4k-4 differenzierbar eingebettet werden kann. Dann
kénnen wir Satz 5.1 mit ¢ = 2k — 2 anwenden und erhalten,
dass A (M*) durch 2**7! und fiir gerades k sogar durch 2% teil-
bar ist.

5.3. Die Mannigfaltigkeit M** (siehe 5.2) sei in der Sphire
S**4 eingebettet. Die Pontrjaginschen Klassen des Normal-
biindels sollen mit p; e H* (M**; Z) bezeichnet werden. Da das
Normalbiinde! die Faser R* hat, verschwindet p; fiir i > 2.
Ferner ist p, das Quadrat der FEulerschen Klasse des Normal-
biindels, welche bei jeder Einbettung einer Mannigfaltigkeit in
eine Sphire verschwindet. Also ist p; = 0 fiir 7 = 2. Nun ist

L’Enseignement mathém., t. VI, fasc. 1. 14
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