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194 M. F. ATIYAH UND F. HIRZEBRUCH

Hilfe. Bott hat eine Homotopie-Äquivalenz zwischen F und
Q2 T angegeben. Also gibt es die entsprechende Bijektion

(5) K~n(X, Y) z K~(n + 2)(X, Y) n>0.

Man kann zeigen, dass (5) die Gruppenstruktur respektiert. Also
sind die Funktoren K~n und X~(n+2) einander „gleich". Verlangt
man (5) für alle ganzen Zahlen zz, dann sind alle Funktoren Kn

definiert. Die Funktoren Kn erfüllen alle Axiome (vgl. [4, 15]
und auch den Vortrag von Eckmann auf diesem Symposium)
bis auf das Dimensionsaxiom. Es ist (n N 0)

K~n(pt) - K~n(pt\pt)

K°(S"(pt+),pt)K(S",tr„(0

Nach Bott (vgl. (5)) ist izn (T) — Z für gerades n und gleich 0

für ungerades n. Also gilt (für alle n)

(6) Kn (pt) Z für n gerade, Kn (pt) 0 für n ungerade.

2.5. Da Kn — Kn+21 genügt es, die Funktoren K° und K1 zu
betrachten. Wir setzen

(7) K* K° + K1

Für einen Raum X ist K° (X) ein kommutativer Ring. Die

Multiplikation wird durch das Tensorprodukt von komplexen
Vektorraum-Bündeln induziert. A* (X) ist über Z2 graduiert.
(Man betrachte die Indices 0 und 1 in (7) als die Elemente von
Z2.) Man kann die Ringstruktur von K° (X) so erweitern [4], dass

A * (X) zu einem Z2-graduierten antikommutativen Ring wird.
Für a g K1 (X) und b e KJ (Z) ist ab e Kl+J (Z), und es gilt

ab — l)17 ba (ij eZ2)

§ 3. Der Chernsche Charakter.

3.1. Es seien x1, xk Unbestimmte und a1? ak die

elementarsymmetrischen Polynome in den ...,%. Es sei ferner Sj

das Polynom in den a1? a2, welches die Potenzsumme

x[ + + x]k (k ^ /) durch die aly a2, ausdrückt. Man hat so
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(das k und die xt kann man vergessen), eine wohlbestimmte

Folge s±, s2, von Polynomen in den Unbestimmten a2,

mit ganzzahligen Koeffizienten

— (X^ S2 2^2 5 •••

(1) sn —zusammengesetzte Monome.

3.2. Gegeben sei ein komplexes Vektorraum-Bündel E, über X.
(Wir machen die Voraussetzungen von 2.1.) Ordnet man jeder
Zusammenhangskomponente von X die Dimension der Fasern

von £, über den Punkten dieser Zusammenhangskomponente zu,
dann erhält man ein Element von H° (X; Z), das wir den Rang
des Vektorraum-Bündels nennen (rg (£)). rg liefert einen Ring-
Homomorphismus

(2) rg: K° (X) - H° (X; Z)

Nun seien ct (£) e H21 (X; Z) die Chernschen Klassen von
Dann können wir die Elemente

Si(0 .«.c;(9)ek2i(I;Z)
betrachten (i 1, 2, Wir führen nun rationale Koeffizienten
ein, d.h. wir betrachten das Tensorprodukt

H* (X;Z) 0 Q H*(X;Q)

Der Chernsche Charakter von Ï; is so definiert:

00 sTcD
(3) ch(Q rg(Ç)+ £ A-^eh*(X;Q)

i i j!
Der Chernsche Charakter ist offensichtlich der Exponentialfunktion

nachgebildet. Fundamentale Eigenschaften der Chernschen
Klassen implizieren [6, 12], dass

(4) ch or © n cÄ(o+cÄ(n,
® n Chilenin,

wobei es sich hier um die Whitneysche Summe, bzw. um das
Tensorprodukt von Vektorraum-Bündeln handelt. Wegen (4)
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liefert ch einen Ring-Homomorphismus

(5) ch: K° (X) -> X*(X;Q)

Offensichtlich ist auch st (£) für Ç e X° (X) wohldefmiert.

3.3. Der Ring H* (X; Q) ist ebenfalls über Z2-graduiert:
Xeü(X;Q) sei die direkte Summe der gerade-dimensionalen
Cchomologiegruppen und Hod (X; Q) die der ungerade-dimen-
sionalen („Even" bzw. „Odd"). Dann ist

Hev + Hod

wo Hev die Rolle von X° und Hod die yon K1 in 2.5 übernommen
hat. ch ist ein Ring-Homomorphismus von X° (X) in Hev (X; Q).
Man kann ch zu einem Ring-Homomorphismus von X* (X) in
X* (X; Q) erweitern, indem man verlangt, dass ch mit den Ein-
hängungs-Isomorphismen verträglich ist. ch wird so zu einer
natürlichen Transformation von X* in X* (rationale Koeffizienten),

welche die Z2-Graduierung und die multiplikative Struktur
respektiert (vgl. [4] für Einzelheiten).

3.4. Es gibt eine Spektralsequenz [4], welche die in § 2

konstruierte Cchomologie-Theorie mit der üblichen (ganzzahligen)
Cchomologie-Theorie in Verbindung setzt. Für endliche CW-
Komplexe X, deren ganzzahlige Cohomologie keine Torsion hat,
bricht die Spektralsequenz zusammen, und es ergibt sich
folgender Satz.

Satz. — Es sei X ein endlicher CW-Komplex, dessen ganzzahlige
Cohomologie keine Torsion habe. Dann ist

ch: K*(X) H*(X;Q)

injektiv. X* (X; Z) und X* (X) ch X* (X) sind Unterringe
con X* (X; Q). Diese beiden Unterringe stehen in folgender
Beziehung :

a) Ist a ech X* (X), dann gehört die erste nicht oerschwin¬

dende Komponente der rationalen Cohomologieklasse a zu
H*(X;Z);
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b) Zu jedem xeHn(X; Z), gibt es ein Element

a eck K*(X),dessen erste nicht verschwindende

nente gleich x ist.

Eine Folgerung aus dem vorstehenden Satz ist, dass K* (X)
und if* (X; Z) für torsionsfreies X (unter Erhaltung der Z2-

Graduierungen) additiv-isomorph. sind. Beide sind also freie

abelsche Gruppen vom Range è, wo b die Summe der Bettischen

Zahlen von X ist.

3.5. Aus dem vorstehenden Satz erhält man für X S2n

folgenden Satz von Bott, der bei einem systematischen Aufbau der

Theorie als direkte Folge der Bottschen Periodizität natürlich
viel früher auftritt.

Satz. — Ist \ ein komplexes Vektorraum-Bündel über S2", dann

ist die Chernsche Klasse cn (£) eH2n (S2"; Z) Z durch

(n — 1) teilbar.

Wegen (X; Z) a eh K° (X) und da H1 (S2"; Q) für
0 < i < 2n verschwindet, ist nämlich sn (Z)/n nach 3.4 a) eine

ganzzahlige Klasse. Also ist cn (£) wegen 3.1 (1) durch (n — 1)

teilbar.
Aus dem Bottschen Satz kann man schliessen, dass Sm für

m ^ 1, 3, 7 nicht parallelisierbar ist (1.4).

3.6. Es sei X nun eine kompakte orientierte Mannigfaltigkeit.
Wir setzen sie nicht als differenzierbar voraus, nehmen aber im
folgenden immer an, dass die auftretenden Mannigfaltigkeiten
endliche CW-Komplexe sind, damit wir im Rahmen der von uns
gewählten Kategorie von Räumen bleiben. Wir setzen ferner in
diesem Abschnitt 3.6 voraus, dass die ganzzahlige Cohomologie von
X keine Torsion habe. Dann können wir nämlich den Satz 3.4
anwenden.

Wir betrachten den rationalen Vektorraum ZT* (X; Q) und auf
ihm die folgende rationale Bilinearform B: Für x, y eZT* (X; Q)
ist B (x, y) der Wert von xy auf dem orientierten Grundzyklus
von X. (Dabei nehmen die Komponenten von xy, deren Dimension

nicht gleich der von X ist, den Wert 0 an). Wir können die
Bilinearform B auf die beiden „Gitter" H* (X; Z) und eh X* (X)
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beschränken. Die Beschränkungen bezeichnen wir mit BH bzw.
Bk. Es ist sinnvoll, von der Determinante von Bn bzw. BK zu
sprechen.

Lemma. — Es ist det BH det BK +1.

Aus dem Poincaréschen Dualitätssatz folgt, dass det BH

± 1. Wählt man in H* (X; Z) eine Basis xb derart,
dass xl7 xbl eine Basis von H1 (X; Z) ist, xbl + u %bl+b2 eine
Basis von X2(X; Z) ist usw. (bt i~ te Bettische Zahl,
b -f + #„; dim X ft), dann wird durch eine
Matrix folgender Gestalt gegeben

(6)

wo Mt eine quadratische ganzzahlige Matrix der Zeilenzahl
bt bn-i ist. Nach 3.4 b) gibt es Elemente a±1 ab g ch K* (X),
deren erste nicht verschwindende Komponenten gleich xb
sind. Die at bilden wegen 3.4 a) eine Basis des Gitters ch X* (X)
und Bk wird durch eine Matrix folgender Gestalt gegeben

(7)

wo * irgendwelche rationale (i.a. nicht ganze) Zahlen andeutet.
Die Gleichheit von det Bn und det BK folgt aus (6) und (7).

3.7. Wie in 3.6 nehmen wir an, dass X eine kompakte, orientierte,
torsionsfreie Mannigfaltigkeit ist. Ein Element m e if* (X; Q)

heisst Multiplikator, wenn B (a, m) für jedes a g ch X* (X)
ganzzahlig ist. Ein Multiplikator m heisst normiert, wenn seine

O-dimensionale Komponente gleich 1 ist und seine ungerade-
dimensionalen Komponenten verschwinden (m g Hev (X; Q)).
Ein normierter Multiplikator ist ein invertierbares Element des

Ringes Hev (X; Q).
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Lemma. — Es gibt einen normierten Multiplikator m0.

Es sei al5 ab wie in 3.6 eine Basis von eh K* (X), wobei

ab xb das zur Orientierung gehörige erzeugende Element von
Hn (X; Z) sei (n dim X). Die a% können so gewählt werden,

dass (in den Bezeichnungen von 3.6) aiechKÇ)(X)1 wenn

dim xt gerade, und at e ch K1 (X), wenn dim xt ungerade. Die

at bilden eine Q-Basis von H* (X; Q). Wegen der Poincaréschen

Dualität gibt es ein m0 e H* (X; Q), so dass B (<% m0) gleich

vorgegebenen Werten ist. Wir verlangen B (ab1 m0) 1, ferner

B (ah mQ) ganzzahlig (i 1, b) und B (ah m0) 0, wenn
dim X — dim xt ungerade.

Dann ist m0 in der Tat ein normierter Multiplikator.
Wir wählen nun einen normierten Multiplikator ?n0 und

definieren mit seiner Hilfe die Bilinearform BK>mQ auf dem

Gitter ch X* (X). Wir setzen

BK,m0 (x y) B (*> ymo) i x, y ech X* (X)

Diese Bilinearform nimmt (im Gegensatz zu BK) ganzzahlige
Werte an. Ihre Determinante ist gleich det Bk — ± 1, denn BK mQ

lässt sich durch eine Matrix geben, die wieder von der Form (7)

ist. Es folgt sofort der Satz

Satz. — Es sei m0 e 77* (X ; Q) ein normierter Multiplikator der

kompakten orientierten torsionsfreien Mannigfaltigkeit X. Ein
Element z eH* (X; Q) gehört dann und nur dann zu ch X* (X),
wenn B (x, zm0) für alle x e ch K* (X) ganzzahlig ist. Ein
Element m e H* (X; Q) ist dann und nur dann Multiplikator,
wenn mfm0 e ch K* (X).

3.8. Gegeben sei ein endlicher CTF-Komplex X. Es sei G* (X)
die Menge der Elemente von X* (X; Q), deren 0-dimensionale
Komponente gleich 1 ist und deren ungerade-dimensionale
Komponenten verschwinden. G* (X) ist eine multiplikative
Untergruppe von X* (X; Q). Der Durchschnitt G* (X) n ch X* (X)

G* (X) n ch X° (X) ist eine Untergruppe von G* (X). Ist X
eine kompakte orientierte torsionsfreie Mannigfaltigkeit, dann
definieren die normierten Multiplikatoren von X (nach Satz 3.7)
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ein wohlbestimmtes Element

Ii (X) e G* (X)/(G* (X) n ch K* (X))

das per definitionem eine „Homotopie-Invariante" von X ist
und auch unabhängig von der Orientierung ist. Das Verhalten
der Multiplikatoren bei Abbildungen soll nun betrachtet werden.

3.9. Es seien X und Y kompakte orientierte Mannigfaltigkeiten
und /: Y -> X eine stetige Abbildung. Der (additive) Gysin-
Homomorphismus /* : X* Y ; Q) -> X* X ; Q) ist definiert, indem
man von einer Cohomologieklasse von Y via Poincaré-Dualitât
zur entsprechenden Homologieklasse übergeht, diese durch / in
X abbildet und zur entsprechenden Cohomologieklasse von X
übergeht. /* und der Ring-Homomorphismus /*: H* (X; Q)

-> X* Y ; Q) stehen in der Beziehung

(8) /* (/* * * y) x •/* (y) für x e X* (X; Q) und y e X* Y; Q)

Unter Verwendung der Bezeichnungen von 3.7 gilt

Lemma. — Gegeben sei f : Y -> X. Ist m ein Multiplikator von Yf
dann ist ein Multiplikator von X.

Nach (8) ist nämlich der Wert von x • /* (m) auf dem
orientierten Grundzyklus von X gleich dem Wert von f*x-m auf
dem orientierten Grundzyklus von Y. Ist x e ch A* (X), dann ist
f* x e eh K* 7), also nimmt f*X'm und damit auch x • /* (m)
auf dem jeweiligen Grundzyklus einen ganzzahligen Wert an.

Satz. — Gegeben seien kompakte orientierte torsionsfreie
Mannigfaltigkeiten X, Y. Es sei f : Y-> X eine stetige Abbildung. Es sei

(Y) bzw. ET (X) ein festgewählter normierter Multiplikator
von Y bzw. X. Ist vj e X* Y), dann gibt es ein Element

/, 7] e A* (X), so dass

(9) /* (ch (n) • «r Y)) ch (/, n) • r (X) •

Der Beweis folgt sofort aus dem vorstehenden Lemma und
aus Satz 3.7. Da ch: X* (X) -» X* (X; Q) injektiv ist (Satz 3.4)
ist /, 7] durch (9) eindeutig bestimmt.

3.10. In diesem Paragraph haben wir an vielen Stellen
vorausgesetzt, dass die auftretenden Mannigfaltigkeiten (d. h. ihre
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ganzzahligen Cohomologieringe) keine Torsion haben. Das

geschah um die Darstellung zu vereinfachen. Die Begriffe
„Multiplikator" und „normierter Multiplikator" lassen sich auch

für beliebige kompakte orientierte Mannigfaltigkeiten einführen.
Natürlich bleibt Lemma 3.9 richtig. Für die Lemmata 3.6 und 3.7
sowie für die Sätze 3.7 und 3.9 wurde die Torsionsfreiheit
wesentlich benutzt. Jedoch ist uns kein Beispiel bekannt, dass

diese Lemmata und Sätze für Mannigfaltigkeiten mit Torsion
falsch werden. Für differenzierbare Mannigfaltigkeiten siehe den
nächsten Paragraphen.

§ 4. Differenzierbare Mannigfaltigkeiten
UND PONTRJAGINSCHE KLASSEN.

4.1. Es sei X eine kompakte orientierte differenzierbare
Mannigfaltigkeit. Wir setzen voraus, dass die zweite Stiefel-Whitneysche
Klasse w2 e H2 (X; Z2) als Reduktion einer ganzzahligen Klasse
c1 e H2 (X; Z) auftritt. Das ist z.B. dann der Fall, wenn X keine
Torsion hat. Wir nennen X eine q-Mannigfaltigkeit, wenn ein
Element c1(X)eH2(X; Z), dessen Reduktion mod 2 gleich
w2 (X) ist, fest gewählt ist. Es seien pt e H4i (X; Z) die Pontrja-
ginschen Klassen von X. Man definiert dann die totale Toddsche
Klasse TT (X) e H* (X; Q) der q-Mannigfaltigkeit X durch
folgende Gleichung

00

(1) ST{X) e^'2--ZÂJ(p1,...,pJ)
jo

c - Vz/2
wo {Ajj die zur Potenzreihe -=— gehörige multiplikative

sinh (V z/2)

Folge von Polynomen ist

Â0 1 Ât — — A2 — — 4p2 + 7pl)

Es gilt [3, 4, 6] :

Satz. — Gegeben sei eine cx - Mannigfaltigkeit X. Für jedes
£ e X* (X) ist der Wert von eh (Ç) • F (X) auf dem orientierten
Grundzyklus von X eine ganze Zahl.
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