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194 M. F. ATIYAH UND F. HIRZEBRUCH

Hilfe. Bott hat eine Homotopie-Aquivalenz zwischen T' und
Q2" angegeben. Also gibt es die entsprechende Bijektion

(5) K"X,Y) = K-"*2(X,Y), n>0.

Man kann zeigen, dass (b) die Gruppenstruktur respektiert. Also
sind die Funktoren K" und K~ "2 einander ,,gleich®. Verlangt
man (b) fiir alle ganzen Zahlen »n, dann sind alle Funktoren K"
definiert. Die Funktoren K" erfiillen alle Axiome (vgl. [4, 15]
und auch den Vortrag von Eckmann auf diesem Symposium)
bis auf das Dimensionsaxiom. Es ist (n = 0)

K=" (pt) = K™ (pt™, pt) =
K°(S"(pt™), pt) = K°(S", pt) = m, () .

Nach Bott (vgl. (5)) ist =, (I') = Z fiir gerades n und gleich 0
fiir ungerades n. Also gilt (fiir alle n)

(6) K"(pt) =@ Z fiir n gerade, K"(pt) = 0 fiir n ungerade.

2.5. Da K" = K""2, geniigt es, die Funktoren K° und K' zu
betrachten. Wir setzen

(7) K* = KO+ K! .

Fiir einen Raum X ist K° (X) ein kommutativer Ring. Die
Multiplikation wird durch das Tensorprodukt von komplexen
Vektorraum-Biindeln induziert. K* (X) ist iiber Z, graduiert.
(Man betrachte die Indices O und 1 in (7) als die Elemente von
Z,.) Man kann die Ringstruktur von K° (X) so erweitern [4], dass
K* (X) zu einem Z,-graduierten antikommutativen Ring wird.
Fiir a € K (X) und b € K’ (X) ist ab e K7 (X), und es gilt

ab = (—=1)" ba , (i,jel,) .

§ 3. DER CHERNSCHE CHARAKTER.

3.1. Es seien z, ..., 2, Unbestimmte und a, ..., @, die elemen-
tarsymmetrischen Polynome in den zy, ..., 2. Es sel ferner s,
das Polynom in den ay, ay,..., welches die Potenzsumme
zl 4 ...+ a) (k = j) durch die a, a,, ... ausdriickt. Man hat so
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(das % und die z; kann man vergessen), eine wohlbestimmte
Folge sy, Sy, ... von Polynomen in den Unbestimmten a,, a,, ...
mit ganzzahligen Koeffizienten

S = dy, S, = ——2a2+af, cees
(1) s, = (—1)" ' na,+ zusammengesetzte Monome.
3.2. Gegeben sei ein komplexes Vektorraum-Biindel & iiber X.
(Wir machen die Voraussetzungen von 2.1.) Ordnet man jeder
Zusammenhangskomponente von X die Dimension der Fasern
von £ iiber den Punkten dieser Zusammenhangskomponente zu,
dann erhilt man ein Element von H° (X; Z), das wir den Rang

des Vektorraum-Biindels nennen (rg (£)). rg liefert einen Ring-
Homomorphismus

(2) rg: K°(X) - H°(X;Z) .

Nun seien ¢; (£) e H* (X; Z) die Chernschen Klassen von £.
Dann koénnen wir die Elemente

5:(8) = si(c1 (&), .o, () e H (X3 Z)

betrachten (i = 1, 2, ...). Wir fithren nun rationale Koeffizienten
ein, d.h. wir betrachten das Tensorprodukt

H*(X;Z2) @ Q = H*(X;9Q) .
Der Chernsche Charakter von & is so definiert:

3) h(&) = rg(O+ Y E#eH*(X;Q) .

Der Chernsche Charakter ist offensichtlich der Exponentialfunk-
tion nachgebildet. Fundamentale Eigenschaften der Chernschen
Klassen implizieren [6, 12], dass

(4) ch(&" @ L") = ch(&)+ch (L),
ch (& ®&") = ch(¢)ch (&),

wobei es sich hier um die Whitneysche Summe, bzw. um das
Tensorprodukt von Vektorraum-Biindeln handelt. Wegen (4)
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liefert ch einen Ring-Homomorphismus
®) ch: K°(X) - H*(X;Q) .
Offensichtlich ist auch s; (&) fiir £ € K° (X) wohldefiniert.

3.3. Der Ring H* (X;Q) ist ebenfalls iiber Z,-graduiert:
H® (X; Q) sei die direkte Summe der gerade-dimensionalen
Cchomologiegruppen und H* (X; Q) die der ungerade-dimen-
sionalen (,,Even® bzw. ,,0dd“). Dann ist

H* — Hev+Hod ,

wo H¢ die Rolle von K° und H* die von K! in 2.5 iibernommen
hat. ¢k ist ein Ring-Homomorphismus von K° (X) in H® (X; Q).
Man kann ch zu einem Ring-Homomorphismus von K* (X) in
H* (X; Q) erweitern, indem man verlangt, dass ¢k mit den Ein-
hdngungs-Isomorphismen vertriglich ist. ¢2 wird so zu einer
natiirlichen Transformation von K* in H* (rationale Koeffizien-
ten), welche die Z,-Graduierung und die multiplikative Struktur
respektiert (vgl. [4] fir Einzelheiten).

3.4. Es gibt eine Spektralsequenz [4], welche die in § 2 kon-
struierte Cchomologie-Theorie mit der tiblichen (ganzzahligen)
Cchomologie-Theorie in Verbindung setzt. Fiir endliche CW-
Komplexe X, deren ganzzahlige Cochomologie keine Torsion hat,
bricht die Spektralsequenz zusammen, und es ergibt sich fol-
gender Satz.

Satz. — Es sei X ein endlicher CW-Komplex, dessen ganzzahlige
Cohomologie keine Torsion habe. Dann ist

ch: K*(X) - H*(X;Q)

injektip. H* (X; Z) und K* (X) = ch K* (X) sind Unterringe
von H* (X; Q). Diese beiden Unterringe stehen in folgender
Beziehung :

a) Ist a e ch K* (X), dann gehirt die erste nicht verschwin-
dende Komponente der rationalen Cohomologieklasse a zu

H* (X; Z);
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b) Zu jedem x e H" (X; Z), n beliebig, gibt es ein Element
a € ch K* (X), dessen erste nicht verschwindende Kompo-
nente gleich x ist.

Eine Folgerung aus dem vorstehenden Satz ist, dass K* (X)
und H*(X; Z) fiir torsionsfreies X (unter Erhaltung der Z,-
Graduierungen) additiv-isomorph sind. Beide sind also freie
abelsche Gruppen vom Range b, wo b die Summe der Bettischen
Zahlen von X 1st.

3.5. Aus dem vorstehenden Satz erhilt man fiir X = $*" fol-
genden Satz von Bott, der bei einem systematischen Aufbau der
Theorie als direkte Folge der Bottschen Periodizitdt natiirlich
viel frither auftritt.

Sarz. — Ist £ ein komplexes Vektorraum-Biindel iiber $*", dann
ist die Chernsche Klasse c, (8)eH*" (S*";Z) =~ Z durch
(n — 1) ! teulbar.

Wegen H° (X;Z) < ch K°(X) und da H'(8*;Q) fir
0 < i < 2n verschwindet, ist ndmlich s, (E)/n ! nach 3.4 a) eine
ganzzahlige Klasse. Also ist ¢, (§) wegen 3.1 (1) durch (n —1)!
teilbar.

Aus dem Bottschen Satz kann man schliessen, dass S™ fir
m # 1, 3, 7 nicht parallelisierbar 1st (1.4).

3.6. Es sei X nun eine kompakte orientierte Mannigfaltigkeit.
Wir setzen sie nicht als differenzierbar voraus, nehmen aber im
folgenden immer an, dass die auftretenden Mannigfaltigkeiten
endliche CW-Komplexe sind, damit wir im Rahmen der von uns
gewihlten Kategorie von Rdumen bleiben. Wir setzen ferner in
diesem Abschnitt 3.6 voraus, dass die ganzzahlige Cohomologie von
X keine Torsion habe. Dann konnen wir ndmlich den Satz 3.4
anwenden.

Wir betrachten den rationalen Vektorraum H* (X ; Q) und auf
ihm die folgende rationale Bilinearform B: Fiir z, y € H* (X; Q)
1st B (z, y) der Wert von zy auf dem orientierten Grundzyklus
von X. (Dabei nehmen die Komponenten von xy, deren Dimen-
sion nicht gleich der von X ist, den Wert 0 an). Wir konnen die
Bilinearform B auf die beiden ,,Gitter H* (X; Z) und ck K* (X)
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beschrinken. Die Beschriankungen bezeichnen wir mit By bzw.
Bg. Es ist sinnvoll, von der Determinante von By bzw. By zu
sprechen.

LemmA. — Es ist det By = det By = +1.

Aus dem Poincaréschen Dualitédtssatz folgt, dass det By
= + 1. Wahlt man in H* (X; Z) eine Basis z, ..., 2, derart,
dass xy, ..., 2, eine Basis von A1 (X; Z) ist, 2, 11, ..., Zp,+p, €iNeE
Basis von H?(X;Z) 1st usw. (b; = i—te Bettische Zahl
b = b, + e b,; dim X =n), dann wird By durch -eine
Matrix folgender Gestalt gegeben

) Mo ,

M, O
wo M, eine quadratische ganzzahlige Matrix der Zeilenzahl
b; = b,_; ist. Nach 3.4 b) gibt es Elemente ay, ..., a, € ch K* (X)),
deren erste nicht verschwindende Komponenten gleich zy, ..., 7,
sind. Die a; bilden wegen 3.4 a) eine Basis des Gitters ch K* (X)
und By wird durch eine Matrix folgender Gestalt gegeben

* M1
M
(7 o ,

M. O

n

wo * irgendwelche rationale (i.a. nicht ganze) Zahlen andeutet.
Die Gleichheit von det By und det By folgt aus (6) und (7).

3.7. Wie in 3.6 nehmen wir an, dass X eine kompakte, orteniierte,
torsionsfreie Mannigfaltigheit ist. Ein Element m e H* (X; Q)
heisst Multiplikator, wenn B (a, m) fiir jedes a € ch K* (X) ganz-
zahlig ist. Ein Multiplikator m heisst normiert, wenn seine
0-dimensionale Komponente gleich 1 ist und seine ungerade-
dimensionalen Komponenten verschwinden (m e H® (X; Q)).
Ein normierter Multiplikator. ist ein invertierbares Element des
Ringes H*’ (X; Q).
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LeMMA. — Es gibt einen normierten Multiplikator m.

Es sei ay, ..., a, wie in 3.6 eine Basis von ¢k K* (X), wobel
a, = x, das zur Orientierung gehorige erzeugende Element von
H" (X Z) sei (n = dim X). Die a; kénnen so gewdéhlt werden,
dass (in den Bezeichnungen von 3.6) a;ech K°(X), wenn
dim x; gerade, und a; € ch K' (X), wenn dim z; ungerade. Die
a, bilden eine Q-Basis von H* (X; Q). Wegen der Poincaréschen
Dualitit gibt es ein m, € H* (X; Q), so dass B (a;, my) gleich
vorgegebenen Werten ist. Wir verlangen B (a,, m,) = 1, ferner
B (a;, m,) ganzzahlig (i =1, ...,b6) und B (a; my) =0, wenn
dim X —dim z; ungerade.

Dann ist m, in der Tat ein normierter Multiplikator.

Wir wihlen nun einen normierten Multiplikator m, und
definieren mit seiner Hilfe die Bilinearform By, auf dem
Gitter ch K* (X). Wir setzen

BK,mO (xa y) = B(X, ynlO) ] x)yECh K* (X) .

Diese Bilinearform nimmt (im Gegensatz zu By) ganzzahlige
~ Werte an. Thre Determinante ist gleich det B, = + 1, denn Bk,
lasst sich durch eine Matrix geben, die wieder von der Form (7)
ist. Es folgt sofort der Satz

Sarz. — Es sei my € H* (X ; Q) ein normierter Multiplikator der
kompakten orientierten torsionsfreten Mannigfaltigkeit X. Ein
Element z € H* (X ; Q) gehirt dann und nur dann zu ch K* (X),
wenn B (x, zmg) fiir alle x € ch K* (X) ganzzahlig ist. Ein
Element m € H* (X ; Q) ist dann und nur dann Multiplikator,
wenn m/mgy € ch K* (X). |

3.8. Gegeben sei ein endlicher CW-Komplex X. Es sei G* (X)
die Menge der Elemente von H* (X; Q), deren 0-dimensionale
Komponente gleich 1 ist und deren ungerade-dimensionale
Komponenten verschwinden. G* (X) ist eine multiplikative
Untergruppe von H* (X; Q). Der Durchschnitt G* (X) A ch K* (X)
= G* (X) n ch K° (X) 18t eine Untergruppe von G* (X). Ist X
eine kompakte orientierte torsionsfreie Mannigfaltigkeit, dann
definieren die normierten Multiplikatoren von X (nach Satz 3.7)
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ein wohlbestimmtes Element
1 (X) € G* (X)/(G* (X) n ch K* (X)) ,

das per definitionem eine ,,Homotopie-Invariante® von X ist
und auch unabhéngig von der Orientierung ist. Das Verhalten
der Multiplikatoren bei Abbildungen soll nun betrachtet werden.

3.9. Esseien X und Y kompakte orientierte Mannigfaltigkeiten
und f: ¥ — X eine stetige Abbildung. Der (additive) Gysin-
Homomorphismus fy: H* (Y;Q)— H* (X; Q) ist definiert, indem
man von einer Cohomologieklasse von Y via Poincaré-Dualitat
zur entsprechenden Homologieklasse iibergeht, diese durch f in
X abbildet und zur entsprechenden Cohomologieklasse von X
iibergeht. f, und der Ring-Homomorphismus f*: H* (X; Q)
— H* (Y; Q) stehen in der Bezichung

(@) fu(f*x-y) =x-f(y) firxe H* (X;Q) und y e H*(Y;Q) .
Unter Verwendung der Bezeichnungen von 3.7 gilt

LeMMA. — Gegeben sev f: Y — X. Ist m ein Multiplikator von Y,
dann ist fom ein Multiplikator von X.

Nach (8) ist ndmlich der Wert von z - f,. (m) auf dem orien-
tierten Grundzyklus von X gleich dem Wert von f* x - m auf
dem orientierten Grundzyklus von Y. Ist x € ch K* (X), dann ist
f*xech K*(Y), also nimmt f* x - m und damit auch z - f, (m)
auf dem jeweiligen Grundzyklus einen ganzzahligen Wert an.

SAtTz. — Gegeben seien kompakte orientierte torsionsfreie Mannig-
faltigkeiten X, Y. Es set f: Y — X eine stetige Abbildung. Es sei
T (Y) bzw. T (X) ein festgewdihlter normierter Multiplikator
pon Y bzw. X. Ist ne K*(Y), dann gibt es ein Element
fi m € K* (X), so dass

) Js(ch(n) - T(Y)) = ch(fym) - T (X) .

Der Beweis folgt sofort aus dem vorstehenden Lemma und
aus Satz 3.7. Da ch: K* (X) » H* (X; Q) injektiv ist (Satz 3.4)
ist f, m durch (9) eindeutig bestimmt.

3.10. In diesem Paragraph haben wir an vielen Stellen voraus-
gesetzt, dass die auftretenden Mannigfaltigkeiten (d.h. ihre
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ganzzahligen Cohomologieringe) keine Torsion haben. Das
geschah um die Darstellung zu vereinfachen. Die Begriffe
,Multiplikator und ,,normierter Multiplikator* lassen sich auch
fiir beliebige kompakte orientierte Mannigfaltigkeiten einfiihren.
Natiirlich bleibt Lemma 3.9 richtig. Fiir die Lemmata 3.6 und 3.7
sowie fiir die Sdtze 3.7 und 3.9 wurde die Torsionsfreiheit
wesentlich benutzt. Jedoch ist uns kein Beispiel bekannt, dass
diese Lemmata und Sétze fiir Mannigfaltigkeiten mit Torsion
falsch werden. Fir differenzierbare Mannigfaltigkeiten siehe den
néchsten Paragraphen.

§ 4. DIFFERENZIERBARE MANNIGFALTIGKEITEN
UND PONTRJAGINSCHE KLASSEN.

4.1. Essei X eine kompakte orientierte differenzierbare Mannig-
faltigkeit. Wir setzen voraus, dass die zweite Stiefel-Whitneysche
Klasse w, € H? (X; Z,) als Reduktion einer ganzzahligen Klasse
¢; € H? (X; Z) auftritt. Das ist z.B. dann der Fall, wenn X keine
Torsion hat. Wir nennen X eine ¢;-Mannigfaltigkeit, wenn ein
Element ¢, (X) e H?2(X; Z), dessen Reduktion mod 2 gleich
wy (X) ist, fest gewihlt ist. Es seien p; e H* (X; Z) die Pontrja-
ginschen Klassen von X. Man definiert dann die totale Toddsche
Klasse 7 (X)e H* (X; Q) der c¢,-Mannigfaltigkeit X durch
folgende Gleichung

(D T (X) = e '_Zofij (P1sees D)) >
=
s L V22 . .
wo { A;} die zur Potenzreihe —— gehorige multiplikative
sinh (v/z/2)
Folge von Polynomen ist
4, =1, 4, = __P_1’ 4, = (—4p, +7p))
24 27.45 2o
Es gilt [3, 4, 6]:
Satz. — Gegeben sei eine ¢, — Mannigfaltigkeit X. Fiir jedes

£ e K* (X) istder Wert von ch (E) - 7 (X) auf dem orientierten
Grundzyklus von X eine ganze Zahl. '
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