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X als Basis definiert. Die in 1.3 erwähnte Eigenschaft der wu die

man heute Stiefel-Whitneysche Klassen nennt, gilt unverändert.

Später hat dann Chern [10] die Chernschen Klassen ct e

H2l(X; Z) für ein komplexes Vektorraum-Bündel über dem Raum

X und Pontrjagin (siehe z.B. [14]) die Pontrjaginschen Klassen

pt e Hu (V; Z) für ein reelles Vektorraum-Bündel über X eingeführt.

Heute definiert man die Pontrjaginsche Klasse pt eines

reellen Vektorraum-Bündels £ als das (— l^-fache der Chernschen

Klasse c2i der komplexen Erweiterung von £ (siehe z.B.

[12]). Man beachte, dass die ct und pt ganzzahlige Cohomologie-
klassen sind, während die wt Klassen mit Koeffizienten in der

Gruppe der Ordnung 2 sind.

1.6. In dem Vortrag von Steenrod auf diesem Symposium ist
von Cohomologie-Operationen die Rede. Die Cohomologie-
Operation Sql zum Beispiel ordnet jedem Element von H* (X; Z2)
ein Element von H* (X; Z2) zu. Die charakteristische Klasse
umordnet jedem reellen Vektorraum-Bündel über X ein Element
von i/*(X;Z2) zu. So wie eine Cohomologie-Operation eine

natürliche Abbildung von der Cohomologietheorie in die Coho-

mologietheorie ist, so ist eine charakteristische Klasse eine
natürliche Abbildung von der Theorie der Vektorraum-Bündel
in die Cohomologietheorie. Diese Analogie hat eine tiefere
Bedeutung. Wir wollen versuchen, das in diesem Vortrag für den
Fall der komplexen Vektorraum-Bündel näher auseinanderzusetzen:

Mit Hilfe aller komplexen Vektorraum-Bündel, die den
gegebenen Raum X als Basis haben, können „Cohomologie-
Gruppen" Kn (X) definiert werden [4] (n beliebige ganze Zahl),
die den Axiomen von Eilenberg-Steenrod [11] genügen bis auf
das „Dimensionsaxiom", welches besagt, dass die Cohomologie-
gruppen des einpunktigen Raumes in den von 0 verschiedenen
Dimensionen verschwinden. Die charakteristischen Klassen
liefern natürliche Abbildungen von dieser neuen Cohomologietheorie

in die übliche Cohomologietheorie.

§ 2. Eine neue Cohomologietheorie [4].

2.1. Es sei X ein endlicher Zellenkomplex (endlicher CW-
Komplex). (Diese Annahme ist viel zu speziell; sie dient der
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Bequemlichkeit der Darstellung.) Wir wollen abelsche Gruppen
Kn (X) definieren (ne Z), siehe 1.6. Zunächst geben wir die
Definition von K° (X), das wir auch einfach K (X) nennen.

G (X) sei die Menge der (Isomorphieklassen von) komplexen
Vektorraum-Bündeln über V, (wobei wir zulassen, dass ein
Vektorraum-Bündel über den verschiedenen Zusammenhangskomponenten

von X verschiedene Faser-Dimensionen hat). F (V) sei

die freie abelsche Gruppe, die von G (V) erzeugt wird. Für
Elemente V, ?" e G (V) ist die Whitneysche Summe die

entsteht, indem man in jedem Punkte von X die direkte Summe
der Fasern von V und E," bildet, ein wohldefiniertes Element
von G (X). Die abelsche Gruppe K (X) wird definiert als F (X)
modulo der Untergruppe, die von allen Elementen der Form
?' © ?" — ?' — ?", wo V, ?" e G (V), erzeugt wird. Die Addition
in K (X) ist also durch die Whitneysche Summe induziert.

2.2. Wir arbeiten in der Kategorie der Paare (V, 7), wo X
endlicher CPU-Komplex und Y Teilkomplex von X ist. Ein
Raum X kann auch als Paar (V, 0), wo 0 die leere Menge ist,
betrachtet werden. Ein Raum X mit ausgezeichnetem
Basispunkt x0 kann als Paar (X, x0) angesehen werden. Zu einem
Raum X gibt es den Raum V+, der die disjunkte Vereinigung
von X mit einem zusätzlichen Punkt ist, welcher in X+
Basispunkt ist. Die 7z-fache Einhängung Sn (X) eines Raumes X mit
Basispunkt (vgl. z.B. [15]) ist wieder ein Raum mit Basispunkt.
Ist in einem Raum ein Basispunkt ausgezeichnet, dann werde
dieser immer mit pt bezeichnet. Ferner soll pt auch den ein-

punktigen Raum andeuten. Für ein Paar (V, Y) ist XjY der

Raum, der entsteht, wenn man Y auf einen Punkt zusammenzieht,

der dann in XjY die Rolle des Basispunktes übernimmt.
Für die übliche Cohomologietheorie (bezüglich festgewählter
Koeffizienten) hat man kanonische Isomorphismen

(1)

(2)

(3)

(4)

H1 (X, pt) ^ Kern [H1 (X) ^Hl (pt)]

Hl (X+, pt) ^ HÜX)

Hl(X, 7) s IT(X/Y pt)

H1 (X, pt) ^ Hi+n (Sn (V), pt)
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Kennt man also den kontravarianten Funktor HJ für Räume X,
dann kennt man Hl (i < j) für Paare (X, Y).

2.3. Der Funktor K ist kontravariant. Für eine stetige
Abbildung /: Y -> X haben wir einen Homomorphismus

f : K (X) h* K (Y), der durch das Liften von Vektorraum-
Bündeln gemäss / induziert wird. Die Gruppe K (pt) ist
unendlich-zyklisch (G (pt) ist die Halbgruppe der ganzen nicht-
negativen Zahlen). Der Funktor K° ist per definitionem gleich K.
Verlangen wir (l)-(4) per definitionem für unsere Kn, dann ist
also Kn (X, Y) für n ^ 0 definiert (vgl. [4] für Einzelheiten).
Die Kn sind für n < 0 nicht 0 wie in der üblichen Cohomologie-
theorie. Das liegt an folgendem (vgl. (4)): In der üblichen Theorie
ist H° (X, pt) für zusammenhängendes X gleich 0, während
K° (X, pt) im allgemeinen von 0 verschieden ist.

2.4. Zu dem Funktor K° gibt es einen universellen Raum T.
Man betrachte die Grassmannsche Mannigfaltigkeit U (2n)f
(U (n) xU (n)) der ft-dimensionalen Teilräume durch den

Ursprung des C2n. Man kann „zum Limes übergehen" und erhält
einen Raum

Bv lim U (2n)/(U (n) x U (n))
«-> CO

Der Raum T ist das cartesische Produkt von Z (ganze Zahlen
in diskreter Topologie) mit Bv.Man wählt für T einen
Basispunkt in { 0} X Bv. Aus der Theorie der klassifizierenden Räume
folgt, dass K° X,pt) in eineindeutiger Korrespondenz steht zu
7T (X,T), der Menge der Homotopieklassen (bezüglich der
gewählten Basispunkte) von stetigen Abbildungen T. Per
definitionem ist für n>0K-"(X,pt) K

Also steht K~n (X, pt) in eineindeutiger Korrespondenz zu
n (Sn (X),P) oder, was auf das gleiche hinauskommt, zu
n (X,O" T), der Menge der Homotopieklassen (bezüglich der
Basispunkte) von X in den n-fachen Schleifenraum von T.

Bisher war es uns nicht gelungen, die Funktoren K" für re>0
zu definieren. Nun kommt uns die Bottsche Theorie [8, 9] zur

L'Enseienement rn;il.hPni t "VTT fasp \
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Hilfe. Bott hat eine Homotopie-Äquivalenz zwischen F und
Q2 T angegeben. Also gibt es die entsprechende Bijektion

(5) K~n(X, Y) z K~(n + 2)(X, Y) n>0.

Man kann zeigen, dass (5) die Gruppenstruktur respektiert. Also
sind die Funktoren K~n und X~(n+2) einander „gleich". Verlangt
man (5) für alle ganzen Zahlen zz, dann sind alle Funktoren Kn

definiert. Die Funktoren Kn erfüllen alle Axiome (vgl. [4, 15]
und auch den Vortrag von Eckmann auf diesem Symposium)
bis auf das Dimensionsaxiom. Es ist (n N 0)

K~n(pt) - K~n(pt\pt)

K°(S"(pt+),pt)K(S",tr„(0

Nach Bott (vgl. (5)) ist izn (T) — Z für gerades n und gleich 0

für ungerades n. Also gilt (für alle n)

(6) Kn (pt) Z für n gerade, Kn (pt) 0 für n ungerade.

2.5. Da Kn — Kn+21 genügt es, die Funktoren K° und K1 zu
betrachten. Wir setzen

(7) K* K° + K1

Für einen Raum X ist K° (X) ein kommutativer Ring. Die

Multiplikation wird durch das Tensorprodukt von komplexen
Vektorraum-Bündeln induziert. A* (X) ist über Z2 graduiert.
(Man betrachte die Indices 0 und 1 in (7) als die Elemente von
Z2.) Man kann die Ringstruktur von K° (X) so erweitern [4], dass

A * (X) zu einem Z2-graduierten antikommutativen Ring wird.
Für a g K1 (X) und b e KJ (Z) ist ab e Kl+J (Z), und es gilt

ab — l)17 ba (ij eZ2)

§ 3. Der Chernsche Charakter.

3.1. Es seien x1, xk Unbestimmte und a1? ak die

elementarsymmetrischen Polynome in den ...,%. Es sei ferner Sj

das Polynom in den a1? a2, welches die Potenzsumme

x[ + + x]k (k ^ /) durch die aly a2, ausdrückt. Man hat so
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