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X als Basis definiert. Die in 1.3 erwihnte Eigenschaft der w;, die
man heute Stiefel-Whitneysche Klassen nennt, gilt unveréndert.

Spiter hat dann Chern [10] die Chernschen Klassen c; €
H? (X Z) tiir ein komplexes Vektorraum-Biindel iiber dem Raum
X und Pontrjagin (siehe z.B.[14]) die Pontrjaginschen Klassen
p; € H* (X; Z) fiir ein reelles Vektorraum-Biindel iiber X einge-
fithrt. Heute definiert man die Pontrjaginsche Klasse p; eines
reellen Vektorraum-Biindels & als das (— 1)-fache der Chern-
schen Klasse ¢,; der komplexen Erweiterung von & (siehe z.B.
[12]). Man beachte, dass die ¢; und p; ganzzahlige Cohomologie-
klassen sind, wihrend die w; Klassen mit Koeffizienten in der
Gruppe der Ordnung 2 sind.

1.6. In dem Vortrag von Steenrod auf diesem Symposium ist
von Cohomologie-Operationen die Rede. Die Cohomologie-
Operation S¢’ zum Beispiel ordnet jedem Element von H* (X; Z,)
ein Element von H* (X; Z,) zu. Die charakteristische Klasse w;
ordnet jedem reellen Vektorraum-Biindel tiber X ein Element
von H* (X;Z,) zu. So wie eine Cohomologie-Operation eine
natiirliche Abbildung von der Cohomologietheorie in die Coho-
mologietheorie ist, so ist eine charakteristische Klasse eine
natiirliche Abbildung von der Theorie der Vektorraum-Biindel
in die Cohomologietheorie. Diese Analogie hat eine tiefere
Bedeutung. Wir wollen versuchen, das in diesem Vortrag fiir den
Fall der komplexen Vektorraum-Biindel ndher auseinanderzu-
setzen: Mit Hilfe aller komplexen Vektorraum-Biindel, die den
gegebenen Raum X als Basis haben, konnen ,,Cohomologie-
Gruppen® K" (X) definiert werden [4] (n beliebige ganze Zahl),
die den Axiomen von Eilenberg-Steenrod [11] geniigen bis auf
das ,,Dimensionsaxiom®, welches besagt, dass die Cohomologie-
gruppen des einpunktigen Raumes in den von O verschiedenen
Dimensionen verschwinden. Die charakteristischen Klassen
liefern natiirliche Abbildungen von dieser neuen Cohomologie-
theorie in die iibliche Cohomologietheorie.

§ 2. EINE NEUE COHOMOLOGIETHEORIE [4].

2.1. Es sei X ein endlicher Zellenkomplex (endlicher CW-
Komplex). (Diese Annahme ist viel zu speziell; sie dient der
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Bequemlichkeit der Darstellung.) Wir wollen abelsche Gruppen
K" (X) definieren (n € Z), siehe 1.6. Zunidchst geben wir die
Definition von K° (X), das wir auch einfach K (X) nennen.

G (X) seil die Menge der (Isomorphieklassen von) komplexen
Vektorraum-Biindeln iiber X, (wobei wir zulassen, dass ein Vek-
torraum-Biindel iiber den verschiedenen Zusammenhangskom-
ponenten von X verschiedene Faser-Dimensionen hat). # (X) sei
die freie abelsche Gruppe, die von G (X) erzeugt wird. Fiir Ele-
mente &, & € G (X) ist die Whitneysche Summe & @ £, die
entsteht, indem man in jedem Punkte von X die direkte Summe
der Fasern von & und &' bildet, ein wohldefiniertes Element
von G (X). Die abelsche Gruppe K (X) wird definiert als /7 (X)
modulo der Untergruppe, die von allen Elementen der Form
E@E —E —E" wo k' t"eG(X),erzeugt wird. Die Addition
in K (X) 1st also durch die Whitneysche Summe induziert.

2.2. Wir arbeiten in der Kategorie der Paare (X, V), wo X
endlicher CW-Komplex und Y Teilkomplex von X ist. Ein
Raum X kann auch als Paar (X, ), wo @ die leere Menge ist,
betrachtet werden. Ein Raum X mit ausgezeichnetem DBasis-
punkt z, kann als Paar (X, z,) angesehen werden. Zu einem
Raum X gibt es den Raum X', der die disjunkte Vereinigung
von X mit einem zusitzlichen Punkt ist, welcher in X' Basis-
punkt ist. Die n-fache Einhingung S" (X) eines Raumes X mit
Basispunkt (vgl. z.B. [15]) ist wieder ein Raum mit Basispunkt.
Ist in einem Raum ein Basispunkt ausgezeichnet, dann werde
dieser immer mit p¢ bezeichnet. Ferner soll pt auch den ein-
punktigen Raum andeuten. Fiir ein Paar (X, Y) ist X/Y der
Raum, der entsteht, wenn man Y auf einen Punkt zusammen-
zieht, der dann in X/Y die Rolle des Basispunktes tibernimmt.
Fiir die iibliche Cohomologietheorie (beziiglich festgewéhlter
Koeffizienten) hat man kanonische Isomorphismen

(1) H' (X, pt) = Kern [H'(X)—>H'(pt)]
(2) H' (X", pt) = H'(X)
(3) H (X,Y) = H(X]Y, pt)

(4) H'(X,pt) = H""(S"(X), pt) -
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Kennt man also den kontravarianten Funktor H’ fiir Riume X,
dann kennt man H' (i < ]) fiir Paare (X, Y).

2.3. Der Funktor K ist kontravariant. Fir eine stetige Ab-
bildung f: ¥ - X haben wir einen Homemorphismus
f: K(X)- K(Y), der durch das Liften von Vektorraum-
Biindeln geméss f induziert wird. Die Gruppe K (pt) ist unend-
lich-zyklisch (G (pt) ist die Halbgruppe der ganzen nicht-
negativen Zahlen). Der Funktor K° ist per definitionem gleich K.
Verlangen wir (1)-(4) per definitionem fiir unsere K", dann 1st
also K" (X, Y) fir n < 0 definiert (vgl. [4] fir Einzelheiten).
Die K" sind fiir n < 0 nicht 0 wie in der iiblichen Cohomologie-
theorie. Das liegt an folgendem (vgl. (4)): In der iiblichen Theorie
ist H° (X, pt) fir zusammenhingendes X gleich 0, wéhrend
K° (X, pt) im allgemeinen von O verschieden ist.

2.4. Zu dem Funktor K° gibt es einen universellen Raum T\
Man betrachte die Grassmannsche Mannigfaltigkeit U (2nr)/
(U (r) XU (n)) der n-dimensionalen Teilrdume durch den Ur-
sprung des C*". Man kann ,zum Limes iibergehen® und erhilt
einen Raum

By = 1lim U (2n)/(U (n) xU (n)) .

n—oo

Der Raum I' ist das cartesische Produkt von Z (ganze Zahlen
in diskreter Topologie) mit By. Man wihlt fiir I' einen Basis-
punktin {0} X By. Aus der Theorie der klassifizierenden Riume
folgt, dass K° (X, pt) in eineindeutiger Korrespondenz steht zu
n (X, '), der Menge der Homotopieklassen (beziiglich der
gewdhlten Basispunkte) von stetigen Abbildungen X — I'. Per
definitionem ist fir n > 0

K=" (X, pt) = K°(S"(X), pt) .

Also steht K™" (X, pt) in eineindeutiger Korrespondenz zu
m (8" (X), I') oder, was auf das gleiche hinauskommt, zu
m (X, Q"I"), der Menge der Homotopieklassen (beziiglich der
Basispunkte) von X in den n-fachen Schleifenraum von I
Bisher war es uns nicht gelungen, die Funktoren K" fiir >0
zu definieren. Nun kommt uns die Bottsche Theorie [8, 9] zur
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Hilfe. Bott hat eine Homotopie-Aquivalenz zwischen T' und
Q2" angegeben. Also gibt es die entsprechende Bijektion

(5) K"X,Y) = K-"*2(X,Y), n>0.

Man kann zeigen, dass (b) die Gruppenstruktur respektiert. Also
sind die Funktoren K" und K~ "2 einander ,,gleich®. Verlangt
man (b) fiir alle ganzen Zahlen »n, dann sind alle Funktoren K"
definiert. Die Funktoren K" erfiillen alle Axiome (vgl. [4, 15]
und auch den Vortrag von Eckmann auf diesem Symposium)
bis auf das Dimensionsaxiom. Es ist (n = 0)

K=" (pt) = K™ (pt™, pt) =
K°(S"(pt™), pt) = K°(S", pt) = m, () .

Nach Bott (vgl. (5)) ist =, (I') = Z fiir gerades n und gleich 0
fiir ungerades n. Also gilt (fiir alle n)

(6) K"(pt) =@ Z fiir n gerade, K"(pt) = 0 fiir n ungerade.

2.5. Da K" = K""2, geniigt es, die Funktoren K° und K' zu
betrachten. Wir setzen

(7) K* = KO+ K! .

Fiir einen Raum X ist K° (X) ein kommutativer Ring. Die
Multiplikation wird durch das Tensorprodukt von komplexen
Vektorraum-Biindeln induziert. K* (X) ist iiber Z, graduiert.
(Man betrachte die Indices O und 1 in (7) als die Elemente von
Z,.) Man kann die Ringstruktur von K° (X) so erweitern [4], dass
K* (X) zu einem Z,-graduierten antikommutativen Ring wird.
Fiir a € K (X) und b € K’ (X) ist ab e K7 (X), und es gilt

ab = (—=1)" ba , (i,jel,) .

§ 3. DER CHERNSCHE CHARAKTER.

3.1. Es seien z, ..., 2, Unbestimmte und a, ..., @, die elemen-
tarsymmetrischen Polynome in den zy, ..., 2. Es sel ferner s,
das Polynom in den ay, ay,..., welches die Potenzsumme
zl 4 ...+ a) (k = j) durch die a, a,, ... ausdriickt. Man hat so
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