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Die vorliegende Arbeit ist direkt aus dem Vortrag hervor-
gegangen. Das erkldrt, warum héufig unnotig starke Voraus-
setzungen gemacht werden. Sie sollten Redner und Zuhorern das
Leben erleichtern. '

Besonders schine Anwendungen der Theorie der charakte-
ristischen Klassen hat Milnor in seinen Untersuchungen iiber die
differenzierbaren Strukturen der Sphiren gegeben. Darauf und
auf viele andere Anwendungen konnte hier nicht eingegangen
werden.

§ 1. EINFUHRUNG.

1.1. Gegeben sei eine kompakte differenzierbare Mannigfaltig-
keit X. Eine klassische Frage ist: Besitzt X ein stetiges FFeld von
Tangentialvektoren, das in keinem Punkte von X verschwindet ?
Die Antwort lautet: X besitzt genau dann ein solches Feld, wenn
die Euler-Poincarésche Charakteristik von X gleich Null ist.
(Satz von Hopf [2].)

1.2. Die Menge aller Tangentialvektoren von X bildet einen
Raum £ mit einer Projektion =: £ — X, die jedem Vektor seinen
Fusspunkt zuordnet. Die obige Frage (1.1) kann auch so formu-
liert werden: Gibt es einen ,,Schnitt* s: X — E mit s (z) # 0 fiir
alle x € X ? Ein Schnitt s in dem Vektorraum-Biindel (£, X, =)
ist dabel eine stetige Abbildung s: X — E, fiir die ros gleich der
identischen Abbildung von X auf X ist.

1.3. Eine der ersten Arbeiten zur Theorie der charakteristischen
Klassen ist die Dissertation von Stiefel [16]. Stiefel verwendet
die Homologietheorie. Die cohomologische Darstellung geht
unmittelbar aus der Stiefelschen Arbeit hervor. Wir wollen hier
die Cohomologie verwenden; das ist ohnehin unerldsslich, wenn
man nicht nur das Tangentialbiindel einer Mannigfaltigkeit
sondern beliebige reelle Vektorraum-Biindel betrachten will.

Stiefel hat einer kompakten differenzierbaren Mannigfaltig-
keit X Cohomologie-Klassen w; € H* (X; Z,) zugeordnet (w, = 1),
welche folgende Eigenschaft haben:

Wenn es ein r-tupel von Schnitten s;: X — E (i=1, ..., r) gibt,
so dass s, (), ..., S, (x) fiir alle x € X als Vektoren des reellen Vek-
torraumes = ' (x) linear-unabhingig sind, dann verschwindet w,
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fir 1 > n—r. (Ist r=n, dann heisst X parallelisierbar. In
diesem Falle ist w, = 0 fiir v > 0.)

Es sei n = dim X. Der Wert von w, auf dem Grundzyklus
[X] e H, (X, Z,) ist gleich der Euler-Poincaréschen Charakte-
ristik von X (reduziert modulo 2), was die gerade erwihnte
Eigenschaft der Stiefelschen Klassen mit dem Satz von Hopf
(1.1) in Verbindung setzt.

1.4.  Wir definieren die totale Stiefel-Whitneysche Klasse
weH*(X;Z,) =Y H(X;Z,), n=dimX,
i=0
durch die Gleichung

(1) w=)>)w =14w+...4+w,.

i

1

Fiir den reellen projektiven Raum P, (R) hat Stiefel [17] die
Klasse w bestimmt. Es gilt

(2) w®,R) = 1+g)""",

wo g das von O verschiedene Element von H! (P, (R); Z,) ist.

Wenn P, (R) parallelisierbar ist, dann miissen die positiv-
dimensionalen Stiefelschen Klassen von P, (R) verschwinden,
oder (gleichbedeutend) es muss w (P, (R)) =1 sein. (2) und
bekannte Eigenschaften der Binomialkoeflizienten ergeben, dass
P, (R) nur dann parallelisierbar sein kann, wenn n-1 eine
Potenz von 2 ist [17]. Also kann die Sphére S" nur dann ,anti-
podentreu” parallelisierbar sein, wenn n-1 eine Potenz von 2 ist.

Uber die Parallelisierbarkeit von S" lasst sich mit der hier
geschilderten Methode keine Aussage erhalten, da die Klasse
w (S") gleich 1 ist. Dennoch ist heute bekannt, dass S* nur fiir
n =1, 3, 7 parallelisierbar ist. Der Beweis erfolgt entweder mit
Hilfe der Resultate von Adams [1] tiber die Hopfsche Invariante
oder mit Hilfe der Bottschen Theorie und der charakteristischen
Klassen [13]. Es werde auf den Vortrag von Bott auf diesem
Symposium verwiesen.

1.5. Unabhingig von Stiefel hat Whitney [18] die Klassen
w, e H' (X; Z,) fiir ein reelles Vektorraum-Biindel (E, X, ) mit
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X als Basis definiert. Die in 1.3 erwihnte Eigenschaft der w;, die
man heute Stiefel-Whitneysche Klassen nennt, gilt unveréndert.

Spiter hat dann Chern [10] die Chernschen Klassen c; €
H? (X Z) tiir ein komplexes Vektorraum-Biindel iiber dem Raum
X und Pontrjagin (siehe z.B.[14]) die Pontrjaginschen Klassen
p; € H* (X; Z) fiir ein reelles Vektorraum-Biindel iiber X einge-
fithrt. Heute definiert man die Pontrjaginsche Klasse p; eines
reellen Vektorraum-Biindels & als das (— 1)-fache der Chern-
schen Klasse ¢,; der komplexen Erweiterung von & (siehe z.B.
[12]). Man beachte, dass die ¢; und p; ganzzahlige Cohomologie-
klassen sind, wihrend die w; Klassen mit Koeffizienten in der
Gruppe der Ordnung 2 sind.

1.6. In dem Vortrag von Steenrod auf diesem Symposium ist
von Cohomologie-Operationen die Rede. Die Cohomologie-
Operation S¢’ zum Beispiel ordnet jedem Element von H* (X; Z,)
ein Element von H* (X; Z,) zu. Die charakteristische Klasse w;
ordnet jedem reellen Vektorraum-Biindel tiber X ein Element
von H* (X;Z,) zu. So wie eine Cohomologie-Operation eine
natiirliche Abbildung von der Cohomologietheorie in die Coho-
mologietheorie ist, so ist eine charakteristische Klasse eine
natiirliche Abbildung von der Theorie der Vektorraum-Biindel
in die Cohomologietheorie. Diese Analogie hat eine tiefere
Bedeutung. Wir wollen versuchen, das in diesem Vortrag fiir den
Fall der komplexen Vektorraum-Biindel ndher auseinanderzu-
setzen: Mit Hilfe aller komplexen Vektorraum-Biindel, die den
gegebenen Raum X als Basis haben, konnen ,,Cohomologie-
Gruppen® K" (X) definiert werden [4] (n beliebige ganze Zahl),
die den Axiomen von Eilenberg-Steenrod [11] geniigen bis auf
das ,,Dimensionsaxiom®, welches besagt, dass die Cohomologie-
gruppen des einpunktigen Raumes in den von O verschiedenen
Dimensionen verschwinden. Die charakteristischen Klassen
liefern natiirliche Abbildungen von dieser neuen Cohomologie-
theorie in die iibliche Cohomologietheorie.

§ 2. EINE NEUE COHOMOLOGIETHEORIE [4].

2.1. Es sei X ein endlicher Zellenkomplex (endlicher CW-
Komplex). (Diese Annahme ist viel zu speziell; sie dient der
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