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CHARAKTERISTISCHE KLASSEN
UND ANWENDUNGEN

von M. F. Ativan und F. HirzEBRUCH

In diesem Vortrag *) soll iiber die ,,Cohomologie-Theorie“
berichtet werden, die man mit Hilfe der Bottschen Theorie [8, 9]
aus der unitdren Gruppe ableiten kann [4]. In anderen Worten:
Es handelt sich um eine Cohomologie-Theorie, die mit Hilfe
komplexer Vektorraum-Biindel konstruiert wird. Diese Coho-
mologie-Theorie geniigt den iiblichen Axiomen [11] bis auf das
Dimensionsaxiom: Die Cohomologie-Gruppen des einpunktigen
Raumes sind namlich in allen geraden Dimensionen unendlich-
zyklisch. Die charakteristischen Klassen ergeben Beziechungen
zwischen der neuen Cohomologie-Theorie und der iiblichen. Nun
ist bereits auf dem Symposium in Tucson (Arizona), siehe [4],
ausfiihrlicher iiber diese Dinge berichtet worden. Deshalb wollen
wir hier diese Theorie mit etwas anderen Aspekten schildern.
Wir errinnern in einem ersten Paragraphen an die historische
Entwicklung der Theorie der charakteristischen Klassen. In § 2
und § 3 besprechen wir die neue Cohomologie-Theorie, wobei in
§ 3 einige interessante Gesichtspunkte auftreten, die noch nicht
veroffentlicht sind. In § 4 kommt das differenzierbare Analogon
des Riemann-Rochschen Satzes vor [3], aus dem sich Homo-
topieinvarianz-Eigenschaften der Pontrjaginschen Klassen erhal-
ten lassen. Wir benutzen die Gelegenheit, eine bisher noch nicht
veroffentlichte Rechnung, die die Invarianz mod 8 liefert, dar-
zustellen. In § 5 erinnern wir an Einbettungsfragen differenzier-
barer Mannigfaltigkeiten. Diese wurden in einem Vortrag auf
dem Symposium in Lille [5] gebracht. Wir ziehen eine merk-
wiirdige Folgerung fiir Mannigfaltigkeiten M*, die in den Eukli-
dischen Raum der Dimension 4k -4 eingebettet werden konnen.

*) Internationales Kolloquium tiiber Differentialgeometric und Topologie (Ziirich,
Juni 1960). Der Vortrag wurde von F. Hirzebruch gehalten.
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Die vorliegende Arbeit ist direkt aus dem Vortrag hervor-
gegangen. Das erkldrt, warum héufig unnotig starke Voraus-
setzungen gemacht werden. Sie sollten Redner und Zuhorern das
Leben erleichtern. '

Besonders schine Anwendungen der Theorie der charakte-
ristischen Klassen hat Milnor in seinen Untersuchungen iiber die
differenzierbaren Strukturen der Sphiren gegeben. Darauf und
auf viele andere Anwendungen konnte hier nicht eingegangen
werden.

§ 1. EINFUHRUNG.

1.1. Gegeben sei eine kompakte differenzierbare Mannigfaltig-
keit X. Eine klassische Frage ist: Besitzt X ein stetiges FFeld von
Tangentialvektoren, das in keinem Punkte von X verschwindet ?
Die Antwort lautet: X besitzt genau dann ein solches Feld, wenn
die Euler-Poincarésche Charakteristik von X gleich Null ist.
(Satz von Hopf [2].)

1.2. Die Menge aller Tangentialvektoren von X bildet einen
Raum £ mit einer Projektion =: £ — X, die jedem Vektor seinen
Fusspunkt zuordnet. Die obige Frage (1.1) kann auch so formu-
liert werden: Gibt es einen ,,Schnitt* s: X — E mit s (z) # 0 fiir
alle x € X ? Ein Schnitt s in dem Vektorraum-Biindel (£, X, =)
ist dabel eine stetige Abbildung s: X — E, fiir die ros gleich der
identischen Abbildung von X auf X ist.

1.3. Eine der ersten Arbeiten zur Theorie der charakteristischen
Klassen ist die Dissertation von Stiefel [16]. Stiefel verwendet
die Homologietheorie. Die cohomologische Darstellung geht
unmittelbar aus der Stiefelschen Arbeit hervor. Wir wollen hier
die Cohomologie verwenden; das ist ohnehin unerldsslich, wenn
man nicht nur das Tangentialbiindel einer Mannigfaltigkeit
sondern beliebige reelle Vektorraum-Biindel betrachten will.

Stiefel hat einer kompakten differenzierbaren Mannigfaltig-
keit X Cohomologie-Klassen w; € H* (X; Z,) zugeordnet (w, = 1),
welche folgende Eigenschaft haben:

Wenn es ein r-tupel von Schnitten s;: X — E (i=1, ..., r) gibt,
so dass s, (), ..., S, (x) fiir alle x € X als Vektoren des reellen Vek-
torraumes = ' (x) linear-unabhingig sind, dann verschwindet w,
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fir 1 > n—r. (Ist r=n, dann heisst X parallelisierbar. In
diesem Falle ist w, = 0 fiir v > 0.)

Es sei n = dim X. Der Wert von w, auf dem Grundzyklus
[X] e H, (X, Z,) ist gleich der Euler-Poincaréschen Charakte-
ristik von X (reduziert modulo 2), was die gerade erwihnte
Eigenschaft der Stiefelschen Klassen mit dem Satz von Hopf
(1.1) in Verbindung setzt.

1.4.  Wir definieren die totale Stiefel-Whitneysche Klasse
weH*(X;Z,) =Y H(X;Z,), n=dimX,
i=0
durch die Gleichung

(1) w=)>)w =14w+...4+w,.

i

1

Fiir den reellen projektiven Raum P, (R) hat Stiefel [17] die
Klasse w bestimmt. Es gilt

(2) w®,R) = 1+g)""",

wo g das von O verschiedene Element von H! (P, (R); Z,) ist.

Wenn P, (R) parallelisierbar ist, dann miissen die positiv-
dimensionalen Stiefelschen Klassen von P, (R) verschwinden,
oder (gleichbedeutend) es muss w (P, (R)) =1 sein. (2) und
bekannte Eigenschaften der Binomialkoeflizienten ergeben, dass
P, (R) nur dann parallelisierbar sein kann, wenn n-1 eine
Potenz von 2 ist [17]. Also kann die Sphére S" nur dann ,anti-
podentreu” parallelisierbar sein, wenn n-1 eine Potenz von 2 ist.

Uber die Parallelisierbarkeit von S" lasst sich mit der hier
geschilderten Methode keine Aussage erhalten, da die Klasse
w (S") gleich 1 ist. Dennoch ist heute bekannt, dass S* nur fiir
n =1, 3, 7 parallelisierbar ist. Der Beweis erfolgt entweder mit
Hilfe der Resultate von Adams [1] tiber die Hopfsche Invariante
oder mit Hilfe der Bottschen Theorie und der charakteristischen
Klassen [13]. Es werde auf den Vortrag von Bott auf diesem
Symposium verwiesen.

1.5. Unabhingig von Stiefel hat Whitney [18] die Klassen
w, e H' (X; Z,) fiir ein reelles Vektorraum-Biindel (E, X, ) mit
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X als Basis definiert. Die in 1.3 erwihnte Eigenschaft der w;, die
man heute Stiefel-Whitneysche Klassen nennt, gilt unveréndert.

Spiter hat dann Chern [10] die Chernschen Klassen c; €
H? (X Z) tiir ein komplexes Vektorraum-Biindel iiber dem Raum
X und Pontrjagin (siehe z.B.[14]) die Pontrjaginschen Klassen
p; € H* (X; Z) fiir ein reelles Vektorraum-Biindel iiber X einge-
fithrt. Heute definiert man die Pontrjaginsche Klasse p; eines
reellen Vektorraum-Biindels & als das (— 1)-fache der Chern-
schen Klasse ¢,; der komplexen Erweiterung von & (siehe z.B.
[12]). Man beachte, dass die ¢; und p; ganzzahlige Cohomologie-
klassen sind, wihrend die w; Klassen mit Koeffizienten in der
Gruppe der Ordnung 2 sind.

1.6. In dem Vortrag von Steenrod auf diesem Symposium ist
von Cohomologie-Operationen die Rede. Die Cohomologie-
Operation S¢’ zum Beispiel ordnet jedem Element von H* (X; Z,)
ein Element von H* (X; Z,) zu. Die charakteristische Klasse w;
ordnet jedem reellen Vektorraum-Biindel tiber X ein Element
von H* (X;Z,) zu. So wie eine Cohomologie-Operation eine
natiirliche Abbildung von der Cohomologietheorie in die Coho-
mologietheorie ist, so ist eine charakteristische Klasse eine
natiirliche Abbildung von der Theorie der Vektorraum-Biindel
in die Cohomologietheorie. Diese Analogie hat eine tiefere
Bedeutung. Wir wollen versuchen, das in diesem Vortrag fiir den
Fall der komplexen Vektorraum-Biindel ndher auseinanderzu-
setzen: Mit Hilfe aller komplexen Vektorraum-Biindel, die den
gegebenen Raum X als Basis haben, konnen ,,Cohomologie-
Gruppen® K" (X) definiert werden [4] (n beliebige ganze Zahl),
die den Axiomen von Eilenberg-Steenrod [11] geniigen bis auf
das ,,Dimensionsaxiom®, welches besagt, dass die Cohomologie-
gruppen des einpunktigen Raumes in den von O verschiedenen
Dimensionen verschwinden. Die charakteristischen Klassen
liefern natiirliche Abbildungen von dieser neuen Cohomologie-
theorie in die iibliche Cohomologietheorie.

§ 2. EINE NEUE COHOMOLOGIETHEORIE [4].

2.1. Es sei X ein endlicher Zellenkomplex (endlicher CW-
Komplex). (Diese Annahme ist viel zu speziell; sie dient der
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Bequemlichkeit der Darstellung.) Wir wollen abelsche Gruppen
K" (X) definieren (n € Z), siehe 1.6. Zunidchst geben wir die
Definition von K° (X), das wir auch einfach K (X) nennen.

G (X) seil die Menge der (Isomorphieklassen von) komplexen
Vektorraum-Biindeln iiber X, (wobei wir zulassen, dass ein Vek-
torraum-Biindel iiber den verschiedenen Zusammenhangskom-
ponenten von X verschiedene Faser-Dimensionen hat). # (X) sei
die freie abelsche Gruppe, die von G (X) erzeugt wird. Fiir Ele-
mente &, & € G (X) ist die Whitneysche Summe & @ £, die
entsteht, indem man in jedem Punkte von X die direkte Summe
der Fasern von & und &' bildet, ein wohldefiniertes Element
von G (X). Die abelsche Gruppe K (X) wird definiert als /7 (X)
modulo der Untergruppe, die von allen Elementen der Form
E@E —E —E" wo k' t"eG(X),erzeugt wird. Die Addition
in K (X) 1st also durch die Whitneysche Summe induziert.

2.2. Wir arbeiten in der Kategorie der Paare (X, V), wo X
endlicher CW-Komplex und Y Teilkomplex von X ist. Ein
Raum X kann auch als Paar (X, ), wo @ die leere Menge ist,
betrachtet werden. Ein Raum X mit ausgezeichnetem DBasis-
punkt z, kann als Paar (X, z,) angesehen werden. Zu einem
Raum X gibt es den Raum X', der die disjunkte Vereinigung
von X mit einem zusitzlichen Punkt ist, welcher in X' Basis-
punkt ist. Die n-fache Einhingung S" (X) eines Raumes X mit
Basispunkt (vgl. z.B. [15]) ist wieder ein Raum mit Basispunkt.
Ist in einem Raum ein Basispunkt ausgezeichnet, dann werde
dieser immer mit p¢ bezeichnet. Ferner soll pt auch den ein-
punktigen Raum andeuten. Fiir ein Paar (X, Y) ist X/Y der
Raum, der entsteht, wenn man Y auf einen Punkt zusammen-
zieht, der dann in X/Y die Rolle des Basispunktes tibernimmt.
Fiir die iibliche Cohomologietheorie (beziiglich festgewéhlter
Koeffizienten) hat man kanonische Isomorphismen

(1) H' (X, pt) = Kern [H'(X)—>H'(pt)]
(2) H' (X", pt) = H'(X)
(3) H (X,Y) = H(X]Y, pt)

(4) H'(X,pt) = H""(S"(X), pt) -
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Kennt man also den kontravarianten Funktor H’ fiir Riume X,
dann kennt man H' (i < ]) fiir Paare (X, Y).

2.3. Der Funktor K ist kontravariant. Fir eine stetige Ab-
bildung f: ¥ - X haben wir einen Homemorphismus
f: K(X)- K(Y), der durch das Liften von Vektorraum-
Biindeln geméss f induziert wird. Die Gruppe K (pt) ist unend-
lich-zyklisch (G (pt) ist die Halbgruppe der ganzen nicht-
negativen Zahlen). Der Funktor K° ist per definitionem gleich K.
Verlangen wir (1)-(4) per definitionem fiir unsere K", dann 1st
also K" (X, Y) fir n < 0 definiert (vgl. [4] fir Einzelheiten).
Die K" sind fiir n < 0 nicht 0 wie in der iiblichen Cohomologie-
theorie. Das liegt an folgendem (vgl. (4)): In der iiblichen Theorie
ist H° (X, pt) fir zusammenhingendes X gleich 0, wéhrend
K° (X, pt) im allgemeinen von O verschieden ist.

2.4. Zu dem Funktor K° gibt es einen universellen Raum T\
Man betrachte die Grassmannsche Mannigfaltigkeit U (2nr)/
(U (r) XU (n)) der n-dimensionalen Teilrdume durch den Ur-
sprung des C*". Man kann ,zum Limes iibergehen® und erhilt
einen Raum

By = 1lim U (2n)/(U (n) xU (n)) .

n—oo

Der Raum I' ist das cartesische Produkt von Z (ganze Zahlen
in diskreter Topologie) mit By. Man wihlt fiir I' einen Basis-
punktin {0} X By. Aus der Theorie der klassifizierenden Riume
folgt, dass K° (X, pt) in eineindeutiger Korrespondenz steht zu
n (X, '), der Menge der Homotopieklassen (beziiglich der
gewdhlten Basispunkte) von stetigen Abbildungen X — I'. Per
definitionem ist fir n > 0

K=" (X, pt) = K°(S"(X), pt) .

Also steht K™" (X, pt) in eineindeutiger Korrespondenz zu
m (8" (X), I') oder, was auf das gleiche hinauskommt, zu
m (X, Q"I"), der Menge der Homotopieklassen (beziiglich der
Basispunkte) von X in den n-fachen Schleifenraum von I
Bisher war es uns nicht gelungen, die Funktoren K" fiir >0
zu definieren. Nun kommt uns die Bottsche Theorie [8, 9] zur

L’Enseigenement mathém.. t. VIT fasr 1 1o
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Hilfe. Bott hat eine Homotopie-Aquivalenz zwischen T' und
Q2" angegeben. Also gibt es die entsprechende Bijektion

(5) K"X,Y) = K-"*2(X,Y), n>0.

Man kann zeigen, dass (b) die Gruppenstruktur respektiert. Also
sind die Funktoren K" und K~ "2 einander ,,gleich®. Verlangt
man (b) fiir alle ganzen Zahlen »n, dann sind alle Funktoren K"
definiert. Die Funktoren K" erfiillen alle Axiome (vgl. [4, 15]
und auch den Vortrag von Eckmann auf diesem Symposium)
bis auf das Dimensionsaxiom. Es ist (n = 0)

K=" (pt) = K™ (pt™, pt) =
K°(S"(pt™), pt) = K°(S", pt) = m, () .

Nach Bott (vgl. (5)) ist =, (I') = Z fiir gerades n und gleich 0
fiir ungerades n. Also gilt (fiir alle n)

(6) K"(pt) =@ Z fiir n gerade, K"(pt) = 0 fiir n ungerade.

2.5. Da K" = K""2, geniigt es, die Funktoren K° und K' zu
betrachten. Wir setzen

(7) K* = KO+ K! .

Fiir einen Raum X ist K° (X) ein kommutativer Ring. Die
Multiplikation wird durch das Tensorprodukt von komplexen
Vektorraum-Biindeln induziert. K* (X) ist iiber Z, graduiert.
(Man betrachte die Indices O und 1 in (7) als die Elemente von
Z,.) Man kann die Ringstruktur von K° (X) so erweitern [4], dass
K* (X) zu einem Z,-graduierten antikommutativen Ring wird.
Fiir a € K (X) und b € K’ (X) ist ab e K7 (X), und es gilt

ab = (—=1)" ba , (i,jel,) .

§ 3. DER CHERNSCHE CHARAKTER.

3.1. Es seien z, ..., 2, Unbestimmte und a, ..., @, die elemen-
tarsymmetrischen Polynome in den zy, ..., 2. Es sel ferner s,
das Polynom in den ay, ay,..., welches die Potenzsumme
zl 4 ...+ a) (k = j) durch die a, a,, ... ausdriickt. Man hat so
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(das % und die z; kann man vergessen), eine wohlbestimmte
Folge sy, Sy, ... von Polynomen in den Unbestimmten a,, a,, ...
mit ganzzahligen Koeffizienten

S = dy, S, = ——2a2+af, cees
(1) s, = (—1)" ' na,+ zusammengesetzte Monome.
3.2. Gegeben sei ein komplexes Vektorraum-Biindel & iiber X.
(Wir machen die Voraussetzungen von 2.1.) Ordnet man jeder
Zusammenhangskomponente von X die Dimension der Fasern
von £ iiber den Punkten dieser Zusammenhangskomponente zu,
dann erhilt man ein Element von H° (X; Z), das wir den Rang

des Vektorraum-Biindels nennen (rg (£)). rg liefert einen Ring-
Homomorphismus

(2) rg: K°(X) - H°(X;Z) .

Nun seien ¢; (£) e H* (X; Z) die Chernschen Klassen von £.
Dann koénnen wir die Elemente

5:(8) = si(c1 (&), .o, () e H (X3 Z)

betrachten (i = 1, 2, ...). Wir fithren nun rationale Koeffizienten
ein, d.h. wir betrachten das Tensorprodukt

H*(X;Z2) @ Q = H*(X;9Q) .
Der Chernsche Charakter von & is so definiert:

3) h(&) = rg(O+ Y E#eH*(X;Q) .

Der Chernsche Charakter ist offensichtlich der Exponentialfunk-
tion nachgebildet. Fundamentale Eigenschaften der Chernschen
Klassen implizieren [6, 12], dass

(4) ch(&" @ L") = ch(&)+ch (L),
ch (& ®&") = ch(¢)ch (&),

wobei es sich hier um die Whitneysche Summe, bzw. um das
Tensorprodukt von Vektorraum-Biindeln handelt. Wegen (4)
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liefert ch einen Ring-Homomorphismus
®) ch: K°(X) - H*(X;Q) .
Offensichtlich ist auch s; (&) fiir £ € K° (X) wohldefiniert.

3.3. Der Ring H* (X;Q) ist ebenfalls iiber Z,-graduiert:
H® (X; Q) sei die direkte Summe der gerade-dimensionalen
Cchomologiegruppen und H* (X; Q) die der ungerade-dimen-
sionalen (,,Even® bzw. ,,0dd“). Dann ist

H* — Hev+Hod ,

wo H¢ die Rolle von K° und H* die von K! in 2.5 iibernommen
hat. ¢k ist ein Ring-Homomorphismus von K° (X) in H® (X; Q).
Man kann ch zu einem Ring-Homomorphismus von K* (X) in
H* (X; Q) erweitern, indem man verlangt, dass ¢k mit den Ein-
hdngungs-Isomorphismen vertriglich ist. ¢2 wird so zu einer
natiirlichen Transformation von K* in H* (rationale Koeffizien-
ten), welche die Z,-Graduierung und die multiplikative Struktur
respektiert (vgl. [4] fir Einzelheiten).

3.4. Es gibt eine Spektralsequenz [4], welche die in § 2 kon-
struierte Cchomologie-Theorie mit der tiblichen (ganzzahligen)
Cchomologie-Theorie in Verbindung setzt. Fiir endliche CW-
Komplexe X, deren ganzzahlige Cochomologie keine Torsion hat,
bricht die Spektralsequenz zusammen, und es ergibt sich fol-
gender Satz.

Satz. — Es sei X ein endlicher CW-Komplex, dessen ganzzahlige
Cohomologie keine Torsion habe. Dann ist

ch: K*(X) - H*(X;Q)

injektip. H* (X; Z) und K* (X) = ch K* (X) sind Unterringe
von H* (X; Q). Diese beiden Unterringe stehen in folgender
Beziehung :

a) Ist a e ch K* (X), dann gehirt die erste nicht verschwin-
dende Komponente der rationalen Cohomologieklasse a zu

H* (X; Z);



CHARAKTERISTISCHE KLASSEN UND ANWENDUNGEN 197

b) Zu jedem x e H" (X; Z), n beliebig, gibt es ein Element
a € ch K* (X), dessen erste nicht verschwindende Kompo-
nente gleich x ist.

Eine Folgerung aus dem vorstehenden Satz ist, dass K* (X)
und H*(X; Z) fiir torsionsfreies X (unter Erhaltung der Z,-
Graduierungen) additiv-isomorph sind. Beide sind also freie
abelsche Gruppen vom Range b, wo b die Summe der Bettischen
Zahlen von X 1st.

3.5. Aus dem vorstehenden Satz erhilt man fiir X = $*" fol-
genden Satz von Bott, der bei einem systematischen Aufbau der
Theorie als direkte Folge der Bottschen Periodizitdt natiirlich
viel frither auftritt.

Sarz. — Ist £ ein komplexes Vektorraum-Biindel iiber $*", dann
ist die Chernsche Klasse c, (8)eH*" (S*";Z) =~ Z durch
(n — 1) ! teulbar.

Wegen H° (X;Z) < ch K°(X) und da H'(8*;Q) fir
0 < i < 2n verschwindet, ist ndmlich s, (E)/n ! nach 3.4 a) eine
ganzzahlige Klasse. Also ist ¢, (§) wegen 3.1 (1) durch (n —1)!
teilbar.

Aus dem Bottschen Satz kann man schliessen, dass S™ fir
m # 1, 3, 7 nicht parallelisierbar 1st (1.4).

3.6. Es sei X nun eine kompakte orientierte Mannigfaltigkeit.
Wir setzen sie nicht als differenzierbar voraus, nehmen aber im
folgenden immer an, dass die auftretenden Mannigfaltigkeiten
endliche CW-Komplexe sind, damit wir im Rahmen der von uns
gewihlten Kategorie von Rdumen bleiben. Wir setzen ferner in
diesem Abschnitt 3.6 voraus, dass die ganzzahlige Cohomologie von
X keine Torsion habe. Dann konnen wir ndmlich den Satz 3.4
anwenden.

Wir betrachten den rationalen Vektorraum H* (X ; Q) und auf
ihm die folgende rationale Bilinearform B: Fiir z, y € H* (X; Q)
1st B (z, y) der Wert von zy auf dem orientierten Grundzyklus
von X. (Dabei nehmen die Komponenten von xy, deren Dimen-
sion nicht gleich der von X ist, den Wert 0 an). Wir konnen die
Bilinearform B auf die beiden ,,Gitter H* (X; Z) und ck K* (X)
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beschrinken. Die Beschriankungen bezeichnen wir mit By bzw.
Bg. Es ist sinnvoll, von der Determinante von By bzw. By zu
sprechen.

LemmA. — Es ist det By = det By = +1.

Aus dem Poincaréschen Dualitédtssatz folgt, dass det By
= + 1. Wahlt man in H* (X; Z) eine Basis z, ..., 2, derart,
dass xy, ..., 2, eine Basis von A1 (X; Z) ist, 2, 11, ..., Zp,+p, €iNeE
Basis von H?(X;Z) 1st usw. (b; = i—te Bettische Zahl
b = b, + e b,; dim X =n), dann wird By durch -eine
Matrix folgender Gestalt gegeben

) Mo ,

M, O
wo M, eine quadratische ganzzahlige Matrix der Zeilenzahl
b; = b,_; ist. Nach 3.4 b) gibt es Elemente ay, ..., a, € ch K* (X)),
deren erste nicht verschwindende Komponenten gleich zy, ..., 7,
sind. Die a; bilden wegen 3.4 a) eine Basis des Gitters ch K* (X)
und By wird durch eine Matrix folgender Gestalt gegeben

* M1
M
(7 o ,

M. O

n

wo * irgendwelche rationale (i.a. nicht ganze) Zahlen andeutet.
Die Gleichheit von det By und det By folgt aus (6) und (7).

3.7. Wie in 3.6 nehmen wir an, dass X eine kompakte, orteniierte,
torsionsfreie Mannigfaltigheit ist. Ein Element m e H* (X; Q)
heisst Multiplikator, wenn B (a, m) fiir jedes a € ch K* (X) ganz-
zahlig ist. Ein Multiplikator m heisst normiert, wenn seine
0-dimensionale Komponente gleich 1 ist und seine ungerade-
dimensionalen Komponenten verschwinden (m e H® (X; Q)).
Ein normierter Multiplikator. ist ein invertierbares Element des
Ringes H*’ (X; Q).
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LeMMA. — Es gibt einen normierten Multiplikator m.

Es sei ay, ..., a, wie in 3.6 eine Basis von ¢k K* (X), wobel
a, = x, das zur Orientierung gehorige erzeugende Element von
H" (X Z) sei (n = dim X). Die a; kénnen so gewdéhlt werden,
dass (in den Bezeichnungen von 3.6) a;ech K°(X), wenn
dim x; gerade, und a; € ch K' (X), wenn dim z; ungerade. Die
a, bilden eine Q-Basis von H* (X; Q). Wegen der Poincaréschen
Dualitit gibt es ein m, € H* (X; Q), so dass B (a;, my) gleich
vorgegebenen Werten ist. Wir verlangen B (a,, m,) = 1, ferner
B (a;, m,) ganzzahlig (i =1, ...,b6) und B (a; my) =0, wenn
dim X —dim z; ungerade.

Dann ist m, in der Tat ein normierter Multiplikator.

Wir wihlen nun einen normierten Multiplikator m, und
definieren mit seiner Hilfe die Bilinearform By, auf dem
Gitter ch K* (X). Wir setzen

BK,mO (xa y) = B(X, ynlO) ] x)yECh K* (X) .

Diese Bilinearform nimmt (im Gegensatz zu By) ganzzahlige
~ Werte an. Thre Determinante ist gleich det B, = + 1, denn Bk,
lasst sich durch eine Matrix geben, die wieder von der Form (7)
ist. Es folgt sofort der Satz

Sarz. — Es sei my € H* (X ; Q) ein normierter Multiplikator der
kompakten orientierten torsionsfreten Mannigfaltigkeit X. Ein
Element z € H* (X ; Q) gehirt dann und nur dann zu ch K* (X),
wenn B (x, zmg) fiir alle x € ch K* (X) ganzzahlig ist. Ein
Element m € H* (X ; Q) ist dann und nur dann Multiplikator,
wenn m/mgy € ch K* (X). |

3.8. Gegeben sei ein endlicher CW-Komplex X. Es sei G* (X)
die Menge der Elemente von H* (X; Q), deren 0-dimensionale
Komponente gleich 1 ist und deren ungerade-dimensionale
Komponenten verschwinden. G* (X) ist eine multiplikative
Untergruppe von H* (X; Q). Der Durchschnitt G* (X) A ch K* (X)
= G* (X) n ch K° (X) 18t eine Untergruppe von G* (X). Ist X
eine kompakte orientierte torsionsfreie Mannigfaltigkeit, dann
definieren die normierten Multiplikatoren von X (nach Satz 3.7)
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ein wohlbestimmtes Element
1 (X) € G* (X)/(G* (X) n ch K* (X)) ,

das per definitionem eine ,,Homotopie-Invariante® von X ist
und auch unabhéngig von der Orientierung ist. Das Verhalten
der Multiplikatoren bei Abbildungen soll nun betrachtet werden.

3.9. Esseien X und Y kompakte orientierte Mannigfaltigkeiten
und f: ¥ — X eine stetige Abbildung. Der (additive) Gysin-
Homomorphismus fy: H* (Y;Q)— H* (X; Q) ist definiert, indem
man von einer Cohomologieklasse von Y via Poincaré-Dualitat
zur entsprechenden Homologieklasse iibergeht, diese durch f in
X abbildet und zur entsprechenden Cohomologieklasse von X
iibergeht. f, und der Ring-Homomorphismus f*: H* (X; Q)
— H* (Y; Q) stehen in der Bezichung

(@) fu(f*x-y) =x-f(y) firxe H* (X;Q) und y e H*(Y;Q) .
Unter Verwendung der Bezeichnungen von 3.7 gilt

LeMMA. — Gegeben sev f: Y — X. Ist m ein Multiplikator von Y,
dann ist fom ein Multiplikator von X.

Nach (8) ist ndmlich der Wert von z - f,. (m) auf dem orien-
tierten Grundzyklus von X gleich dem Wert von f* x - m auf
dem orientierten Grundzyklus von Y. Ist x € ch K* (X), dann ist
f*xech K*(Y), also nimmt f* x - m und damit auch z - f, (m)
auf dem jeweiligen Grundzyklus einen ganzzahligen Wert an.

SAtTz. — Gegeben seien kompakte orientierte torsionsfreie Mannig-
faltigkeiten X, Y. Es set f: Y — X eine stetige Abbildung. Es sei
T (Y) bzw. T (X) ein festgewdihlter normierter Multiplikator
pon Y bzw. X. Ist ne K*(Y), dann gibt es ein Element
fi m € K* (X), so dass

) Js(ch(n) - T(Y)) = ch(fym) - T (X) .

Der Beweis folgt sofort aus dem vorstehenden Lemma und
aus Satz 3.7. Da ch: K* (X) » H* (X; Q) injektiv ist (Satz 3.4)
ist f, m durch (9) eindeutig bestimmt.

3.10. In diesem Paragraph haben wir an vielen Stellen voraus-
gesetzt, dass die auftretenden Mannigfaltigkeiten (d.h. ihre
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ganzzahligen Cohomologieringe) keine Torsion haben. Das
geschah um die Darstellung zu vereinfachen. Die Begriffe
,Multiplikator und ,,normierter Multiplikator* lassen sich auch
fiir beliebige kompakte orientierte Mannigfaltigkeiten einfiihren.
Natiirlich bleibt Lemma 3.9 richtig. Fiir die Lemmata 3.6 und 3.7
sowie fiir die Sdtze 3.7 und 3.9 wurde die Torsionsfreiheit
wesentlich benutzt. Jedoch ist uns kein Beispiel bekannt, dass
diese Lemmata und Sétze fiir Mannigfaltigkeiten mit Torsion
falsch werden. Fir differenzierbare Mannigfaltigkeiten siehe den
néchsten Paragraphen.

§ 4. DIFFERENZIERBARE MANNIGFALTIGKEITEN
UND PONTRJAGINSCHE KLASSEN.

4.1. Essei X eine kompakte orientierte differenzierbare Mannig-
faltigkeit. Wir setzen voraus, dass die zweite Stiefel-Whitneysche
Klasse w, € H? (X; Z,) als Reduktion einer ganzzahligen Klasse
¢; € H? (X; Z) auftritt. Das ist z.B. dann der Fall, wenn X keine
Torsion hat. Wir nennen X eine ¢;-Mannigfaltigkeit, wenn ein
Element ¢, (X) e H?2(X; Z), dessen Reduktion mod 2 gleich
wy (X) ist, fest gewihlt ist. Es seien p; e H* (X; Z) die Pontrja-
ginschen Klassen von X. Man definiert dann die totale Toddsche
Klasse 7 (X)e H* (X; Q) der c¢,-Mannigfaltigkeit X durch
folgende Gleichung

(D T (X) = e '_Zofij (P1sees D)) >
=
s L V22 . .
wo { A;} die zur Potenzreihe —— gehorige multiplikative
sinh (v/z/2)
Folge von Polynomen ist
4, =1, 4, = __P_1’ 4, = (—4p, +7p))
24 27.45 2o
Es gilt [3, 4, 6]:
Satz. — Gegeben sei eine ¢, — Mannigfaltigkeit X. Fiir jedes

£ e K* (X) istder Wert von ch (E) - 7 (X) auf dem orientierten
Grundzyklus von X eine ganze Zahl. '
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(Dieser Satz wird in [6, Part I11] nur firr geradedimensionale
Mannigfaltigkeiten bewiesen, wo man ohne Einschrinkung der
Allgemeinheit annehmen kann, dass £ e K° (X).)

Ist X eine projektive algebraische Mannigfaltigkeit, dann
wahlt man fiir ¢; (X) die erste Chernsche Klasse. Der vorstehende
Satz wird durch den Satz von Riemann-Roch [12] motiviert, der
fiir ein holomorphes Vektorraum-Biindel £ iiber X besagt, dass
der Wert von ch (£) - 7 (X) auf dem orientierten Grundzyklus
von X gleich der Euler-Poincaréschen Charakteristik von X mit
Koeffizienten in der Garbe der Keime von holomorphen Schnitten
von & ist.

Der obige Satz geht in den Satz von Bott (3.5) iiber, wenn X
eine gerade-dimensionale Sphére ist, da man ¢; (X) = 0 wihlen
kann und da dann J (X) = 1. Der allgemeine Fall wird auf den
Bottschen Satz zuriickgefithrt, indem man X in eine Sphére S*"
einbettet und unter Verwendung gewisser Darstellungen aus &
und dem Normalbiindel von X ein Element & e K° (S*") kons-

truiert, auf das man den Bottschen Satz anwendet [3].

4.2. Es seien X, Y kompakte orientierte torsionsfreie differen-
zierbare c;-Mannigfaltigkeiten. Wir haben in 4.1 gesehen, dass
die totale Toddsche Klasse 7 (X) bzw. J (Y) ein normierter
Multiplikator von X bzw. Y 1st. Also gilt Satz 3.9 mit diesen
Klassen. Das ist das differenzierbare Analogon der Grothen-
dieckschen Verallgemeinerung des Riemann-Rochschen Satzes
[7]. Dieses Analogon kann ohne Voraussetzung der Torsions-
freiheit bewiesen werden [3, 4].

4.3. Es seien X und X’ kompakte orientierte differenzierbare
Mannigfaltigkeiten vom gleichen Homotopietyp. (Man nehme an,
dass eine Homotopie-Aquivalenz von X und X' gegeben ist.)

Es sei p=7) p; baw. p’ =Y p; die totale Pontrjaginsche
i=0 i=0

Klasse von X bzw. X'. Wegen der gegebenen Homotopie-
Aquivalenzen fassen wir auch p’ als Element von #* (X; Z) auf.
Setzen wir X (und X') als torsionsfrei voraus, dann kénnen wir X
und X’ zu ¢,-Mannigfaltigkeiten machen. Da w, eine Homotopie-
Invariante ist, konnen wir annehmen, dass bei der Homotopie-
daquivalenz ¢; (X) in ¢; (X’) tibergeht. Es folgt aus 3.8, 3.9, dass

R R A SR o o LT e T Tk
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@ ZAJ«pl,...,p,->/zAj<p1,...,p,->ech1< x) .
/=0 j=0

Wir setzen p/p’ =q =Y ¢, mit ¢; € H* (X; Z). Da {4;} eine
$i=0

multiplikative Folge von Polynomen ist, kann (2) auch so
geschrieben werden

(3) iﬁj(ql, ...y q;) €ch K°(X) .

Wir wollen sehen, was man daraus iiber die ¢; schliessen kann.

4.4 Im Rahmen dieses Vortrags hatten wir (2) fiir torsionsfreie
Mannigfaltigkeiten erhalten. Man kann jedoch (2) und damit (3)
fiir beliebige, kompakte differenzierbare homotopie-dquivalente
Mannigfaltigkeiten X und X’ nachweisen [3], die auch nicht
orientierbar zu sein brauchen. Also ist auch in diesem allgemeine-
ren Fall

.ZOA‘j (qla uid &y qj) = Ch (6) ) €€Ko (X) )

und daher (siehe 3.2)

(4) QR Ay (qys s @) = 524 (8)

wo S, (&) von einer ganzzahligen Klasse kommt. Nun kann man
zeigen [3], dass £ sogar als Element des Unterrings von A° (X)
gewdhlt werden kann, der von den komplexen Vektorraum-
Biindeln erzeugt wird, die komplexe Erweiterung eines reellen
Vektorraum-Biindels sind. In diesem Fall kommt sogar s, (£)/2
von einer ganzzahligen Klasse und wir erhalten also die Aussage

(5) 271 (2! A (ay, ., 1)

ist ewne ganzzahlige Klasse (oder genauer: die angegebene ratio-
nale Klasse kommt bei dem Koeffizienten-Homomorphismus
Z — Q von einer ganzzahligen Klasse).

4.5. Wir wollen jetzt etwas néaher erldutern, was die Aussage (5)
fiir Cohomologieklassen ¢; € H* bedeutet.
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Das Polynom A, (¢, ..., q;) ist von folgender Gestalt

a(k)—4k

(k)

wo D, ein Polynom mit ganzzahligen teilerfremden Koeffizienten
1st, o (k) die Anzahl der Einsen in der dyadischen Entwicklung
von k ist und wo

@) k() = T1 o171

(Produkt iiber alle ungeraden Primzahlen p.)
Siehe hierzu [12, § 1.6] und [5, § 3.8].
Wir setzen

(6) Ak(quﬂqu) = .Dk(Q1a--~7qk) ’

(8) Mk — /’L(k) ‘2—a(k)+4k+1 .
(2k) !

Fiir jede rationale Zahl r schreiben wir

r = + npvp(r) ’

wo p iiber alle Primzahlen lauft und der Exponent v, (r) ganz-
zahlig ist.

LemmaA. — Dre rationale Zahl M, ist ganzzahlig.

Es ust
V2 (Mk) - 2k+1

2k
% ( 1)] fiir p ungerade,

vp (Mk) = [

wo o, (n) die Summe der Koeffizienten in der p-adischen Ent-
wicklung von n ist.

(Die Zahl «, () wurde oben mit « (n) bezeichnet).

Zum Beweis erinnern wir an die bekannte Formel

r—o,(r)
Vp(r ') = 7—%1———
Also 1st

v,(M,) = —a(k)+4k+1—(2k —a(2k))

= 2k+1,
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da « (k) = « (2k). Ferner ist fiir eine ungerade Primzahl p

2k ] | 2k—a, (26)

M) =|—
vp( k) l:p_l p—l

Daraus folgt die Behauptung, da

Die Aussage (5) ist dquivalent zu
(9 Dy(q1s---q0) =0 (mod M),

d.h. D,/ M, kommt von einer ganzzahligen Klasse. Fiir k =1, 2, 3
haben wir
g; =0 (mod 24),
4q,—7q% = 0 (mod 480),
16g5 —44q, g, +31q; = 0 (mod 2688) .

4.6. Im néchsten Abschnitt (4.7) wollen wir zeigen, dass aus (5)
oder, was auf dasselbe hinauskommt, aus (9) rein formal die
Kongruenz '

g = 0 (mod 8), k=1,2,3,...,

abgeleitet werden kann. Wir benotigen dazu das folgende zahlen-
theoretische Lemma.

LemMA. — Es seien a4, @y, ag, ... Unbestimmie iiber dem Korper Q
der rationalen Zahlen. Das Polynom

(10) 271 (2k)! - 4, (8ay, 84ay,, ..., 8a,) (val. (5))

ist ganz beziiglich 2, d.h. alle Koeffizienten dieses Polynoms sind
rationale Zahlen, die 2 nicht im Nenner enthalten.

Bewets : Der Koeffizient «; ; von a; ...q; (j;+...+], = k)
in dem Polynom (10) ist gegeben durch :

(11) Ocjl'"j,. = 2—1 (2k)' ) 23)‘ ) Z(jla --':jr) ]
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wo = (jy, ..., j,) die symmetrische Funktion mit Hauptterm
(81)" ... (B,)’" in den PB; bezeichnet, wobei die B; die formalen
Wurzeln der charakteristischen Potenzreihe

\/2/2

- 1. [12,§ 1.4
b D (vgl. [12, § 1.4])

sind. Wir setzen s, = X (7). Bekanntlich ist X (j;, ..., j,) ein
Polynom in den s; mit ganzzahligen Koeffizienten dividiert durch

d =n,!n,!...n!,

falls in der Folge (j4, ..., j,) ny-mal eine Zahl &, n,-mal eine Zahl
R, ..., n-mal eine Zahl h, vorkommt. Die #; sollen distinkt sein,
ferner

t
Yn =r.
i=1

In dem erwihnten Polynom fir X (jy, ..., j,) treten nur Monome
(12) Sy, Sy oee Sy, Mt My +...+my, =j +...+j, =kund p=r

auf. Vgl. hierzu z.B. [19, S. 220] und die dort angegebene Litera-
tur. Nun ist

— B,
2-(20)!° [12,§1.6,§ 1.7],

(13) S; =

wo B; die i-te Bernoullische Zahl ist. Es geniigt zu zeigen, dass
(14) : 227 (2K - Sy e S /d

ganz ist beziiglich 2, sofern die Bedingung (12) erfiillt ist. Die
in (14) angegebene Zahl ist aber wegen (13) gleich

(2k)!

+ 23r-p~ L. ‘B, ..
2m)!...(2m,)! !

B, /d .

Da der Polynomialkoeffizient ganz ist und da v, (B;) nach dem
von Staudtschen Satz gleich — 1 ist, geniigt es zu zeigen, dass

(15) 3r—2p—1 =2 v,(d) .
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Nun ist in der Tat (siehe 4.5)
t t t '
vy (d) = Zni—za(ni) = Zni -1 =r—-1,
i=1  i=1 i=1

womit (15) wegen p < r (siche (12)) bewiesen ist.

4.7. Gegeben sei nun fir k =1,2,3, ... die Aussage (5). Wir
wollen daraus ¢, = 0 (mod 8) herleiten. Fiir £ = 1 erhalten wir

g, = 0 (mod 8) (siehe (9)) .

Nehmen wir an, dass

(16) g, = 0 (mod 8)

bereits fiir alle £ mit 1 < & < k, bewiesen ist. Dann folgt aus
Lemma 4.6, aus (5) und aus (13), dass

—B,,

271+ (2ko)! Sko " Ky = 1 dk,

ganz beziiglich 2 ist. Da v, (B, ) = —1, folgt (16) fir k = k,.

4.8. Die vorstehenden Rechnungen haben ergeben, dass
g = p/p’ = 1 (mod 8), wo 1 € H°. Also ergibt sich (vgl. 4.4)

Satz. — Man fasse die Pontrjaginschen Klassen einer kompakten
differenzierbaren Mannigfaltigkeit als Elemente des durch das
Torsionsideal dividierten ganzzahligen Cohomologieringes auf.
Diese Ponirjaginschen Klassen sind modulo 8 Inyarianten des
Homotopietyps der Mannigfaltigkeit.

Wu Wen-Tsun hat im Jahre 1954 fiir die Pontrjaginschen
Klassen die Homotopie-Invarianz modulo 12 nachgewiesen.
(On Pontrjagin classes I1I, American Math. Soc. Translations,
Series 2, Vol. 11, S. 155-172 (1959).) Die Invarianz mod 3 ist
eine Folgerung aus der Theorie der Steenrodschen reduzierten
Potenzen. Die Invarianz modulo 4 folgt aus der Tatsache, dass
die Pontrjaginschen Klassen modulo 4 aus den (bekanntlich
homotopie-invarianten) Stiefel-Whitneyschen Klassen mit Hilfe
der Pontrjaginschen Quadrate berechnet werden kénnen.
Beziiglich der Primzahl 2 haben wir also das Resultat von Wu
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verbessert: Die Pontrjaginschen Klassen (im Sinne des obigen
Satzes) sind Homotopie-Invarianten mod 24. (Die Invarianz
modulo 12 gilt tbrigens fiir die ganzzahligen Pontrjaginschen
Klassen. Man braucht sie nicht modulo des Torsionsideals zu
reduzieren.) Es ist anzunehmen, dass die Invarianz modulo 3
ebenfalls rein formal aus (5) hergeleitet werden kann. Diese
formale Herleitung wiirde uns gelingen, wenn wir analog zum
Lemma 4.6 nachweisen konnten, dass das Polynom

(2k)! * Ak(3a1, N 3ak)

ganz beziiglich der Primzahl 3 ist.

Natiirlich liefert unsere Methode viel stédrkere Invarianz-
aussagen als den vorstehenden Satz. Aber sie lassen sich nicht
so leicht formulieren (vgl. (9)).

Zum Beispiel ergibt (9), dass fiir eine kompakte differenzier-
bare Mannigfaltigkeit X, fiir die H* (X; Q) = 0, die Pontrja-
ginsche Klasse der Dimension 8 (modulo Torsion) eine Homo-
tople-Invariante mod 120 ist.

Es sei noch erwihnt, dass die Methoden von [3] auch folgen-
den Satz ergeben.

Satz. — Es set £ ein reelles Vektorraum-Biindel iiber dem endlichen
CW-Komplex X. Man nehme an, dass der stabile Faser-
Homotopie-Typ von & gleich dem des trivialen reellen Vektor-
raum-Biindels ist. Die 4i-dimensionale ganzzahlige Pontrja-
ginsche Klasse von & moge mit q; bezeichnet werden. Dann ist

.Zofij(Q1> KR q_]) = Ch (77) >
j=

wo = ein Element des von den reellen Vektorraum-Biindeln
bestimmien Unterringes von K° (X) ist (4.4). Insbesondere
geniigen die q; den Relationen (9).

Vgl. hierzu M. F. Atiyah, Thom complexes (Proc. London Math.
Soc., (3), 11, 291-310 (1961)).

Wendet man den vorstehenden Satz auf die reellen Vektor-
raum-Biindel iiber der Sphire S* an, dann erhidlt man ein
Resultat von J. Milnor und M. Kervaire iiber die stabile Homo-

i N R T A5 i A, T
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topiegruppe Tsa—1 (") (Proc. Intern. Congress of Math.,
Edinburgh, 1958, pp. 454-458).

§ 5. EINBETTUNGSFRAGEN.

5.1. Es sei M* eine kompakte orientierte differenzierbare Man-
nigfaltigkeit der Dimension 4k. Das A-Geschlecht A (M*) ist
definiert als der Wert von 2* A, (py, ..., px) = Ax (p1, -, Pi) auf
dem orientierten Grundzyklus von M*. Dabei sind py, ps, ... die
Pontrjaginschen Klassen von M*, (p;e H* (M*; Z)). In
[6, Part 1I] wurde gezeigt, dass A (M*) eine ganze Zahl ist.
In [5] wurde folgender Satz bewiesen.

SaTz. — Es sei M** eine kompakte orientierte differenzierbare Man-
nigfaltigkeit. Wenn M** in den Euklidischen Raum der Dimen-
sion 8k — 2q differenzierbar einbettbar ist, dann ist A (M*)
durch 281 ieilbar. Wenn ausserdem noch ¢ = 2 mod 4 ist,
dann ist A (M**) durch 297 tetlbar.

Der Beweis verlauft, indem man annimmt, dass X in der
Sphére der Dimension 8k — 2¢ eingebettet ist. Mit Hilfe geeigne-
ter Darstellungen der orthogonalen Gruppe konstruiert man aus
dem Normalbiindel von X ein Element von K° (S%729) auf das
man den Bottschen Satz anwendet (3.5).

5.2. Wie in 5.1 sei M** kompakt orientiert differenzierbar. Wir
nehmen einmal an, dass M* in den Euklidischen Raum der
Dimension 4k-4 differenzierbar eingebettet werden kann. Dann
kénnen wir Satz 5.1 mit ¢ = 2k — 2 anwenden und erhalten,
dass A (M*) durch 2**7! und fiir gerades k sogar durch 2% teil-
bar ist.

5.3. Die Mannigfaltigkeit M** (siehe 5.2) sei in der Sphire
S**4 eingebettet. Die Pontrjaginschen Klassen des Normal-
biindels sollen mit p; e H* (M**; Z) bezeichnet werden. Da das
Normalbiinde! die Faser R* hat, verschwindet p; fiir i > 2.
Ferner ist p, das Quadrat der FEulerschen Klasse des Normal-
biindels, welche bei jeder Einbettung einer Mannigfaltigkeit in
eine Sphire verschwindet. Also ist p; = 0 fiir 7 = 2. Nun ist

L’Enseignement mathém., t. VI, fasc. 1. 14
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{ A, } die multiplikative Folge von Polynomen mit der charak-
teristischen Potenzreihe

(2/z)/sinh (2V/2) .

Es sei { B,} die multiplikative Folge von Polynomen mit der
charakteristischen Potenzreihe

sinh (2v/2)/(2Vz) .
Dann 1st

A (pys -5 P = B (pgs> oo P1) s
fallsp-p=1, (=Ypn, P=31p.

In unserer besonderen Situation ist p; = 0 fiir t = 2. Deshalb ist

i ® - sinhZ\/p:
ZAj(pla""pj) = ZBj(plsO:“'aO) = ”—_'-_:—E_'_l
j=0 §=0 2\/p1

und damit
22k (*ﬁ;)k
Qk+1)!

Ak(pla £y pk) =
Also ist nach 5.2 die Klasse

2-(py)f

kT D! e H* (M*; Q) ganzzahlig .

(1)

Fiir gerades k ist sogar

(P

(2k + 1)! € H4k(M4k;Q) ganzzahlig )

(2)

5.4. Der Index 7 (M*) einer kompakten orientierten differen-
zierbaren Mannigfaltigkeit ist die Anzahl der positiven minus
die Anzahl der negativen Eigenwerte der quadratischen Form
B (z, z) (fir x € H** (M*;R)), wo B (z,z) der Wert von z-x
auf dem orientierten Grundzyklus von M* ist. Es gilt [12]

(3) T (M*) = L, (py, .., p) [M*] ,
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Vz
tgh\/ z
gehorige multiplikative Folge von Polynomen ist. Macht man

wieder die Annahme, dass M* in der Sphére der Dimension
4k+4 eingebettet ist, dann folgt &hnlich wie in 5.3, dass

tgh\/_z—)—:
Vs

wo { Ly (py, ---, pi)} die zur charakteristischen Potenzreihe

ZLj(pla "'>pj) =
i=0
und damit

(4) Ly (p1s s D) = T 1"

wo t, die (2k-+1)-te Ableitung von tg () fiir x = 0 ist. Bekannt-
lich ist ¢, eine gerade ganze Zahl (k = 1). Aus (1)-(4) folgt

5.5. Satz. — Die kompakte orientierte diﬁerenzierbaie Mannig-
faltigkett M** mdige sich differenzierbar in den Euklidischen
Raum der Dimension 4k -4 einbeiten lassen (k = 1). Dann ist

L
der Index © (M**) durch —; teilbar, wo t, die (2k-+1)-Ableitung

von tg (x) fur x =0 ist. Ist ausserdem k gerade, dann ist
T (M**) sogar durch t, teilbar.

Fiir die ganzen Zahlen ¢, hat man folgende Formel

22k (22k _ 1) Bk
tk—l = )

2k

wo B, die k-te Bernoullische Zahl ist. Es gilt
t1=2, t2=16, t3=24'17, t4=28'31.

Fiir &k = 1 ist der vorstehende Satz trivial (Jede M* kann in den
R® eingebettet werden.) Fiir k = 2 besagt er, dass eine M2, die
in den Euklidischen Raum der Dimension 12 einbettbar ist,
einen durch 16 teilbaren Index hat.

5.6. Sarz. — Es gibt eine kompakte orientierte differenzierbare
Mannigfaltigkeit V¥, die sich differenzierbar in den Eukli-
dischen Raum der Dimension 4k 3 einbetten lisst, und deren
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Index gleich =+t ist (4, = (2k+1)-Ableitung von tg (x)
fiir x = 0).

Zum Beweis benotigen wir zunachst ein Lemma, das bereits

bei Kervaire (Courbure intégrale généralisée et homotopie, Math.
Ann., 131, 219-252 (1956), siehe S. 247) vorkommt.

LeMmMa. — Das cartesische Produkt S™ X ... X S" von Sphdren
kann in den Euklidischen Raum der Dimension ny~+...+n,-+1
differenzierbar eingebettet werden.

Das Lemma ist richtig fiir r = 1. Wir beweisen es durch
Induktion iiber r. Offensichtlich kann S" mit trivialem Normal-
biindel in den euklidischen Raum der Dimension n;+...+n,+1
eingebettet werden. Die Faser des Normalbiindels ist ein R? mit
d = n;+...4n,_; +1. Nach Induktionsannahme ist 8" x... x §"1
differenzierbar in R? einbettbar. Daraus folgt die Behauptung
des Lemmas.

In[12, § 9.4] wird erwihnt, dass es in S2x... xS? (2k+1 Fak-
toren) eine Untermannigfaltigkeit V** der Codimension 2 gibt,
die mit jedem Faktor S? die Schnittzahl 1 hat.

Nach dem Lemma ist V** in den Euklidischen Raum der Di-
mension 4k--3 differenzierbar einbettbar. Nach [12, § 9.4] ist der
Index von V* in der Tat gleich der (2k--1)-ten Ableitung von
tgh z fir z = 0, q.e.d.

Der vorstehende Satz zeigt, dass Satz 5.5 fiir gerades k scharf
ist. Fiir k& = 3, 5, ... ist uns keine M** bekannt, die in R*** ein-
bettbar ist und deren Index gleich t;/2 ist.
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