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CHARAKTERISTISCHE KLASSEN
UND ANWENDUNGEN

von M. F. Atiyah und F. Hirzebruch

In diesem Vortrag *) soll über die „Cohomologie-Theorie"
berichtet werden, die man mit Hilfe der Bottschen Theorie [8, 9]
aus der unitären Gruppe ableiten kann [4]. In anderen Worten:
Es handelt sich um eine Cohomologie-Theorie, die mit Hilfe
komplexer Vektorraum-Bündel konstruiert wird. Diese

Cohomologie-Theorie genügt den üblichen Axiomen [11] bis auf das

Dimensionsaxiom: Die Cohomologie-Gruppen des einpunktigen
Raumes sind nämlich in allen geraden Dimensionen unendlich-
zyklisch. Die charakteristischen Klassen ergeben Beziehungen
zwischen der neuen Cohomologie-Theorie und der üblichen. Nun
ist bereits auf dem Symposium in Tucson (Arizona), siehe [4],
ausführlicher über diese Dinge berichtet worden. Deshalb wollen
wir hier diese Theorie mit etwas anderen Aspekten schildern.
Wir errinnern in einem ersten Paragraphen an die historische
Entwicklung der Theorie der charakteristischen Klassen. In § 2

und § 3 besprechen wir die neue Cohomologie-Theorie, wobei in
§ 3 einige interessante Gesichtspunkte auftreten, die noch nicht
veröffentlicht sind. In § 4 kommt das differenzierbare Analogon
des Riemann-Rochschen Satzes vor [3], aus dem sich Homo-
topieinvarianz-Eigenschaften der Pontrjaginschen Klassen erhalten

lassen. Wir benutzen die Gelegenheit, eine bisher noch nicht
veröffentlichte Rechnung, die die Invarianz mod 8 liefert,
darzustellen. In § 5 erinnern wir an Einbettungsfragen differenzierbarer

Mannigfaltigkeiten. Diese wurden in einem Vortrag auf
dem Symposium in Lille [5] gebracht. Wir ziehen eine

merkwürdige Folgerung für Mannigfaltigkeiten Tf4fc, die in den
Euklidischen Raum der Dimension 4/c+4 eingebettet werden können.

*) Internationales Kolloquium über Differentialgeometrie und Topologie (Zürich,
Juni 1960). Der Vortrag wurde von F. Hirzebruch gehalten.



CHARAKTERISTISCHE KLASSEN UND ANWENDUNGEN 189

Die vorliegende Arbeit ist direkt aus dem Vortrag
hervorgegangen. Das erklärt, warum häufig unnötig starke
Voraussetzungen gemacht werden. Sie sollten Redner und Zuhörern das

Leben erleichtern.
Besonders schöne Anwendungen der Theorie der charakteristischen

Klassen hat Milnor in seinen Untersuchungen über die

differenzierbaren Strukturen der Sphären gegeben. Darauf und
auf viele andere Anwendungen konnte hier nicht eingegangen
werden.

§ 1. Einführung.

1.1. Gegeben sei eine kompakte differenzierbare Mannigfaltigkeit

X Eine klassische Frage ist: Besitzt A ein stetiges Feld von
Tangentialvektoren, das in keinem Punkte von A verschwindet
Die Antwort lautet: X besitzt genau dann ein solches Feld, wenn
die Euler-Poincarésche Charakteristik von X gleich Null ist.
(Satz von Hopf [2].)

1.2. Die Menge aller Tangentialvektoren von X bildet einen
Raum E mit einer Projektion n: EV, die jedem Vektor seinen

Fusspunkt zuordnet. Die obige Frage (1.1) kann auch so formuliert

werden: Gibt es einen „Schnitt" s: X-^E mit s (x) ^ 0 für
alle x e X Ein Schnitt «9 in dem Vektorraum-Bündel (A, V, tu)

ist dabei eine stetige Abbildung «9: A-> E, für die nos gleich der
identischen Abbildung von X auf V ist.

1.3. Eine der ersten Arbeiten zur Theorie der charakteristischen
Klassen ist die Dissertation von Stiefel [16]. Stiefel verwendet
die Homologietheorie. Die cohomologische Darstellung geht
unmittelbar aus der Stiefeischen Arbeit hervor. Wir wollen hier
die Cohomologie verwenden; das ist ohnehin unerlässlich, wenn
man nicht nur das Tangentialbündel einer Mannigfaltigkeit
sondern beliebige reelle Vektorraum-Bündel betrachten will.

Stiefel hat einer kompakten differenzierbaren Mannigfaltigkeit
A Cohomologie-Klassen wi e H1 (A; Z2) zugeordnet (w0 1),

welche folgende Eigenschaft haben:

Wenn es ein r-tupel von Schnitten st: X E (£=1, r) gibt,
so dass s1 (x), sr (x) für alle x e X als Vektoren des reellen
Vektorraumes tu-1 (x) linear-unabhängig sind, dann verschwindet wt



190 M. F. ATI YAH UND F. HIRZEBRUCH

für i> n—r. (Ist r=n, dann heisst X parallelisierbar. In
diesem Falle ist =0 für i > 0.)

Es sei n dim X. Der Wert von wn auf dem Grundzyklus
[A] g Hn V, Z2) ist gleich der Euler-Poincaréschen Charakteristik

von X (reduziert modulo 2), was die gerade erwähnte
Eigenschaft der Stiefeischen Klassen mit dem Satz von Hopf
(1.1) in Verbindung setzt.

1.4. Wir definieren die totale Stiefel-Whitneysche Klasse

n

w e H*(X;Z2)]jT H'{X;Z2) dim*,
i 0

durch die Gleichung
n

(1) w £w; 1 + Wj +... + w„
i — 0

Für den reellen projektiven Raum Pn (R) hat Stiefel [17] die
Klasse w bestimmt. Es gilt

(2) w(P„(R)) (1 +g)n+1

wo g das von 0 verschiedene Element von H1 (P„ (R) ; Z2) ist.
Wenn P„ (R) parallelisierbar ist, dann müssen die positiv-

dimensionalen Stiefeischen Klassen von p,(R) verschwinden,
oder (gleichbedeutend) es muss w (Pn (R)) 1 sein. (2) und
bekannte Eigenschaften der Binomialkoeffizienten ergeben, dass

nur dann parallelisierbar sein kann, wenn n+1 eine
Potenz von 2 ist [17]. Also kann die Sphäre Sn nur dann
„antipodentreu'4 parallelisierbar sein, wenn n-f-1 eine Potenz von 2 ist.

Über die Parallelisierbarkeit von Sn lässt sich mit der hier
geschilderten Methode keine Aussage erhalten, da die Klasse

w (Sn) gleich 1 ist. Dennoch ist heute bekannt, dass S" nur für
n 1, 3, 7 parallelisierbar ist. Der Beweis erfolgt entweder mit
Hilfe der Resultate von Adams [1] über die Hopfsche Invariante
oder mit Hilfe der Bottschen Theorie und der charakteristischen
Klassen [13]. Es werde auf den Vortrag von Bott auf diesem

Symposium verwiesen.

1.5. Unabhängig von Stiefel hat Whitney [18] die Klassen

Wi eW (X; Z2) für ein reelles Vektorraum-Bündel (E, V, n) mit
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X als Basis definiert. Die in 1.3 erwähnte Eigenschaft der wu die

man heute Stiefel-Whitneysche Klassen nennt, gilt unverändert.

Später hat dann Chern [10] die Chernschen Klassen ct e

H2l(X; Z) für ein komplexes Vektorraum-Bündel über dem Raum

X und Pontrjagin (siehe z.B. [14]) die Pontrjaginschen Klassen

pt e Hu (V; Z) für ein reelles Vektorraum-Bündel über X eingeführt.

Heute definiert man die Pontrjaginsche Klasse pt eines

reellen Vektorraum-Bündels £ als das (— l^-fache der Chernschen

Klasse c2i der komplexen Erweiterung von £ (siehe z.B.

[12]). Man beachte, dass die ct und pt ganzzahlige Cohomologie-
klassen sind, während die wt Klassen mit Koeffizienten in der

Gruppe der Ordnung 2 sind.

1.6. In dem Vortrag von Steenrod auf diesem Symposium ist
von Cohomologie-Operationen die Rede. Die Cohomologie-
Operation Sql zum Beispiel ordnet jedem Element von H* (X; Z2)
ein Element von H* (X; Z2) zu. Die charakteristische Klasse
umordnet jedem reellen Vektorraum-Bündel über X ein Element
von i/*(X;Z2) zu. So wie eine Cohomologie-Operation eine

natürliche Abbildung von der Cohomologietheorie in die Coho-

mologietheorie ist, so ist eine charakteristische Klasse eine
natürliche Abbildung von der Theorie der Vektorraum-Bündel
in die Cohomologietheorie. Diese Analogie hat eine tiefere
Bedeutung. Wir wollen versuchen, das in diesem Vortrag für den
Fall der komplexen Vektorraum-Bündel näher auseinanderzusetzen:

Mit Hilfe aller komplexen Vektorraum-Bündel, die den
gegebenen Raum X als Basis haben, können „Cohomologie-
Gruppen" Kn (X) definiert werden [4] (n beliebige ganze Zahl),
die den Axiomen von Eilenberg-Steenrod [11] genügen bis auf
das „Dimensionsaxiom", welches besagt, dass die Cohomologie-
gruppen des einpunktigen Raumes in den von 0 verschiedenen
Dimensionen verschwinden. Die charakteristischen Klassen
liefern natürliche Abbildungen von dieser neuen Cohomologietheorie

in die übliche Cohomologietheorie.

§ 2. Eine neue Cohomologietheorie [4].

2.1. Es sei X ein endlicher Zellenkomplex (endlicher CW-
Komplex). (Diese Annahme ist viel zu speziell; sie dient der
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Bequemlichkeit der Darstellung.) Wir wollen abelsche Gruppen
Kn (X) definieren (ne Z), siehe 1.6. Zunächst geben wir die
Definition von K° (X), das wir auch einfach K (X) nennen.

G (X) sei die Menge der (Isomorphieklassen von) komplexen
Vektorraum-Bündeln über V, (wobei wir zulassen, dass ein
Vektorraum-Bündel über den verschiedenen Zusammenhangskomponenten

von X verschiedene Faser-Dimensionen hat). F (V) sei

die freie abelsche Gruppe, die von G (V) erzeugt wird. Für
Elemente V, ?" e G (V) ist die Whitneysche Summe die

entsteht, indem man in jedem Punkte von X die direkte Summe
der Fasern von V und E," bildet, ein wohldefiniertes Element
von G (X). Die abelsche Gruppe K (X) wird definiert als F (X)
modulo der Untergruppe, die von allen Elementen der Form
?' © ?" — ?' — ?", wo V, ?" e G (V), erzeugt wird. Die Addition
in K (X) ist also durch die Whitneysche Summe induziert.

2.2. Wir arbeiten in der Kategorie der Paare (V, 7), wo X
endlicher CPU-Komplex und Y Teilkomplex von X ist. Ein
Raum X kann auch als Paar (V, 0), wo 0 die leere Menge ist,
betrachtet werden. Ein Raum X mit ausgezeichnetem
Basispunkt x0 kann als Paar (X, x0) angesehen werden. Zu einem
Raum X gibt es den Raum V+, der die disjunkte Vereinigung
von X mit einem zusätzlichen Punkt ist, welcher in X+
Basispunkt ist. Die 7z-fache Einhängung Sn (X) eines Raumes X mit
Basispunkt (vgl. z.B. [15]) ist wieder ein Raum mit Basispunkt.
Ist in einem Raum ein Basispunkt ausgezeichnet, dann werde
dieser immer mit pt bezeichnet. Ferner soll pt auch den ein-

punktigen Raum andeuten. Für ein Paar (V, Y) ist XjY der

Raum, der entsteht, wenn man Y auf einen Punkt zusammenzieht,

der dann in XjY die Rolle des Basispunktes übernimmt.
Für die übliche Cohomologietheorie (bezüglich festgewählter
Koeffizienten) hat man kanonische Isomorphismen

(1)

(2)

(3)

(4)

H1 (X, pt) ^ Kern [H1 (X) ^Hl (pt)]

Hl (X+, pt) ^ HÜX)

Hl(X, 7) s IT(X/Y pt)

H1 (X, pt) ^ Hi+n (Sn (V), pt)
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Kennt man also den kontravarianten Funktor HJ für Räume X,
dann kennt man Hl (i < j) für Paare (X, Y).

2.3. Der Funktor K ist kontravariant. Für eine stetige
Abbildung /: Y -> X haben wir einen Homomorphismus

f : K (X) h* K (Y), der durch das Liften von Vektorraum-
Bündeln gemäss / induziert wird. Die Gruppe K (pt) ist
unendlich-zyklisch (G (pt) ist die Halbgruppe der ganzen nicht-
negativen Zahlen). Der Funktor K° ist per definitionem gleich K.
Verlangen wir (l)-(4) per definitionem für unsere Kn, dann ist
also Kn (X, Y) für n ^ 0 definiert (vgl. [4] für Einzelheiten).
Die Kn sind für n < 0 nicht 0 wie in der üblichen Cohomologie-
theorie. Das liegt an folgendem (vgl. (4)): In der üblichen Theorie
ist H° (X, pt) für zusammenhängendes X gleich 0, während
K° (X, pt) im allgemeinen von 0 verschieden ist.

2.4. Zu dem Funktor K° gibt es einen universellen Raum T.
Man betrachte die Grassmannsche Mannigfaltigkeit U (2n)f
(U (n) xU (n)) der ft-dimensionalen Teilräume durch den

Ursprung des C2n. Man kann „zum Limes übergehen" und erhält
einen Raum

Bv lim U (2n)/(U (n) x U (n))
«-> CO

Der Raum T ist das cartesische Produkt von Z (ganze Zahlen
in diskreter Topologie) mit Bv.Man wählt für T einen
Basispunkt in { 0} X Bv. Aus der Theorie der klassifizierenden Räume
folgt, dass K° X,pt) in eineindeutiger Korrespondenz steht zu
7T (X,T), der Menge der Homotopieklassen (bezüglich der
gewählten Basispunkte) von stetigen Abbildungen T. Per
definitionem ist für n>0K-"(X,pt) K

Also steht K~n (X, pt) in eineindeutiger Korrespondenz zu
n (Sn (X),P) oder, was auf das gleiche hinauskommt, zu
n (X,O" T), der Menge der Homotopieklassen (bezüglich der
Basispunkte) von X in den n-fachen Schleifenraum von T.

Bisher war es uns nicht gelungen, die Funktoren K" für re>0
zu definieren. Nun kommt uns die Bottsche Theorie [8, 9] zur

L'Enseienement rn;il.hPni t "VTT fasp \
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Hilfe. Bott hat eine Homotopie-Äquivalenz zwischen F und
Q2 T angegeben. Also gibt es die entsprechende Bijektion

(5) K~n(X, Y) z K~(n + 2)(X, Y) n>0.

Man kann zeigen, dass (5) die Gruppenstruktur respektiert. Also
sind die Funktoren K~n und X~(n+2) einander „gleich". Verlangt
man (5) für alle ganzen Zahlen zz, dann sind alle Funktoren Kn

definiert. Die Funktoren Kn erfüllen alle Axiome (vgl. [4, 15]
und auch den Vortrag von Eckmann auf diesem Symposium)
bis auf das Dimensionsaxiom. Es ist (n N 0)

K~n(pt) - K~n(pt\pt)

K°(S"(pt+),pt)K(S",tr„(0

Nach Bott (vgl. (5)) ist izn (T) — Z für gerades n und gleich 0

für ungerades n. Also gilt (für alle n)

(6) Kn (pt) Z für n gerade, Kn (pt) 0 für n ungerade.

2.5. Da Kn — Kn+21 genügt es, die Funktoren K° und K1 zu
betrachten. Wir setzen

(7) K* K° + K1

Für einen Raum X ist K° (X) ein kommutativer Ring. Die

Multiplikation wird durch das Tensorprodukt von komplexen
Vektorraum-Bündeln induziert. A* (X) ist über Z2 graduiert.
(Man betrachte die Indices 0 und 1 in (7) als die Elemente von
Z2.) Man kann die Ringstruktur von K° (X) so erweitern [4], dass

A * (X) zu einem Z2-graduierten antikommutativen Ring wird.
Für a g K1 (X) und b e KJ (Z) ist ab e Kl+J (Z), und es gilt

ab — l)17 ba (ij eZ2)

§ 3. Der Chernsche Charakter.

3.1. Es seien x1, xk Unbestimmte und a1? ak die

elementarsymmetrischen Polynome in den ...,%. Es sei ferner Sj

das Polynom in den a1? a2, welches die Potenzsumme

x[ + + x]k (k ^ /) durch die aly a2, ausdrückt. Man hat so
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(das k und die xt kann man vergessen), eine wohlbestimmte

Folge s±, s2, von Polynomen in den Unbestimmten a2,

mit ganzzahligen Koeffizienten

— (X^ S2 2^2 5 •••

(1) sn —zusammengesetzte Monome.

3.2. Gegeben sei ein komplexes Vektorraum-Bündel E, über X.
(Wir machen die Voraussetzungen von 2.1.) Ordnet man jeder
Zusammenhangskomponente von X die Dimension der Fasern

von £, über den Punkten dieser Zusammenhangskomponente zu,
dann erhält man ein Element von H° (X; Z), das wir den Rang
des Vektorraum-Bündels nennen (rg (£)). rg liefert einen Ring-
Homomorphismus

(2) rg: K° (X) - H° (X; Z)

Nun seien ct (£) e H21 (X; Z) die Chernschen Klassen von
Dann können wir die Elemente

Si(0 .«.c;(9)ek2i(I;Z)
betrachten (i 1, 2, Wir führen nun rationale Koeffizienten
ein, d.h. wir betrachten das Tensorprodukt

H* (X;Z) 0 Q H*(X;Q)

Der Chernsche Charakter von Ï; is so definiert:

00 sTcD
(3) ch(Q rg(Ç)+ £ A-^eh*(X;Q)

i i j!
Der Chernsche Charakter ist offensichtlich der Exponentialfunktion

nachgebildet. Fundamentale Eigenschaften der Chernschen
Klassen implizieren [6, 12], dass

(4) ch or © n cÄ(o+cÄ(n,
® n Chilenin,

wobei es sich hier um die Whitneysche Summe, bzw. um das
Tensorprodukt von Vektorraum-Bündeln handelt. Wegen (4)
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liefert ch einen Ring-Homomorphismus

(5) ch: K° (X) -> X*(X;Q)

Offensichtlich ist auch st (£) für Ç e X° (X) wohldefmiert.

3.3. Der Ring H* (X; Q) ist ebenfalls über Z2-graduiert:
Xeü(X;Q) sei die direkte Summe der gerade-dimensionalen
Cchomologiegruppen und Hod (X; Q) die der ungerade-dimen-
sionalen („Even" bzw. „Odd"). Dann ist

Hev + Hod

wo Hev die Rolle von X° und Hod die yon K1 in 2.5 übernommen
hat. ch ist ein Ring-Homomorphismus von X° (X) in Hev (X; Q).
Man kann ch zu einem Ring-Homomorphismus von X* (X) in
X* (X; Q) erweitern, indem man verlangt, dass ch mit den Ein-
hängungs-Isomorphismen verträglich ist. ch wird so zu einer
natürlichen Transformation von X* in X* (rationale Koeffizienten),

welche die Z2-Graduierung und die multiplikative Struktur
respektiert (vgl. [4] für Einzelheiten).

3.4. Es gibt eine Spektralsequenz [4], welche die in § 2

konstruierte Cchomologie-Theorie mit der üblichen (ganzzahligen)
Cchomologie-Theorie in Verbindung setzt. Für endliche CW-
Komplexe X, deren ganzzahlige Cohomologie keine Torsion hat,
bricht die Spektralsequenz zusammen, und es ergibt sich
folgender Satz.

Satz. — Es sei X ein endlicher CW-Komplex, dessen ganzzahlige
Cohomologie keine Torsion habe. Dann ist

ch: K*(X) H*(X;Q)

injektiv. X* (X; Z) und X* (X) ch X* (X) sind Unterringe
con X* (X; Q). Diese beiden Unterringe stehen in folgender
Beziehung :

a) Ist a ech X* (X), dann gehört die erste nicht oerschwin¬

dende Komponente der rationalen Cohomologieklasse a zu
H*(X;Z);
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b) Zu jedem xeHn(X; Z), gibt es ein Element

a eck K*(X),dessen erste nicht verschwindende

nente gleich x ist.

Eine Folgerung aus dem vorstehenden Satz ist, dass K* (X)
und if* (X; Z) für torsionsfreies X (unter Erhaltung der Z2-

Graduierungen) additiv-isomorph. sind. Beide sind also freie

abelsche Gruppen vom Range è, wo b die Summe der Bettischen

Zahlen von X ist.

3.5. Aus dem vorstehenden Satz erhält man für X S2n

folgenden Satz von Bott, der bei einem systematischen Aufbau der

Theorie als direkte Folge der Bottschen Periodizität natürlich
viel früher auftritt.

Satz. — Ist \ ein komplexes Vektorraum-Bündel über S2", dann

ist die Chernsche Klasse cn (£) eH2n (S2"; Z) Z durch

(n — 1) teilbar.

Wegen (X; Z) a eh K° (X) und da H1 (S2"; Q) für
0 < i < 2n verschwindet, ist nämlich sn (Z)/n nach 3.4 a) eine

ganzzahlige Klasse. Also ist cn (£) wegen 3.1 (1) durch (n — 1)

teilbar.
Aus dem Bottschen Satz kann man schliessen, dass Sm für

m ^ 1, 3, 7 nicht parallelisierbar ist (1.4).

3.6. Es sei X nun eine kompakte orientierte Mannigfaltigkeit.
Wir setzen sie nicht als differenzierbar voraus, nehmen aber im
folgenden immer an, dass die auftretenden Mannigfaltigkeiten
endliche CW-Komplexe sind, damit wir im Rahmen der von uns
gewählten Kategorie von Räumen bleiben. Wir setzen ferner in
diesem Abschnitt 3.6 voraus, dass die ganzzahlige Cohomologie von
X keine Torsion habe. Dann können wir nämlich den Satz 3.4
anwenden.

Wir betrachten den rationalen Vektorraum ZT* (X; Q) und auf
ihm die folgende rationale Bilinearform B: Für x, y eZT* (X; Q)
ist B (x, y) der Wert von xy auf dem orientierten Grundzyklus
von X. (Dabei nehmen die Komponenten von xy, deren Dimension

nicht gleich der von X ist, den Wert 0 an). Wir können die
Bilinearform B auf die beiden „Gitter" H* (X; Z) und eh X* (X)
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beschränken. Die Beschränkungen bezeichnen wir mit BH bzw.
Bk. Es ist sinnvoll, von der Determinante von Bn bzw. BK zu
sprechen.

Lemma. — Es ist det BH det BK +1.

Aus dem Poincaréschen Dualitätssatz folgt, dass det BH

± 1. Wählt man in H* (X; Z) eine Basis xb derart,
dass xl7 xbl eine Basis von H1 (X; Z) ist, xbl + u %bl+b2 eine
Basis von X2(X; Z) ist usw. (bt i~ te Bettische Zahl,
b -f + #„; dim X ft), dann wird durch eine
Matrix folgender Gestalt gegeben

(6)

wo Mt eine quadratische ganzzahlige Matrix der Zeilenzahl
bt bn-i ist. Nach 3.4 b) gibt es Elemente a±1 ab g ch K* (X),
deren erste nicht verschwindende Komponenten gleich xb
sind. Die at bilden wegen 3.4 a) eine Basis des Gitters ch X* (X)
und Bk wird durch eine Matrix folgender Gestalt gegeben

(7)

wo * irgendwelche rationale (i.a. nicht ganze) Zahlen andeutet.
Die Gleichheit von det Bn und det BK folgt aus (6) und (7).

3.7. Wie in 3.6 nehmen wir an, dass X eine kompakte, orientierte,
torsionsfreie Mannigfaltigkeit ist. Ein Element m e if* (X; Q)

heisst Multiplikator, wenn B (a, m) für jedes a g ch X* (X)
ganzzahlig ist. Ein Multiplikator m heisst normiert, wenn seine

O-dimensionale Komponente gleich 1 ist und seine ungerade-
dimensionalen Komponenten verschwinden (m g Hev (X; Q)).
Ein normierter Multiplikator ist ein invertierbares Element des

Ringes Hev (X; Q).
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Lemma. — Es gibt einen normierten Multiplikator m0.

Es sei al5 ab wie in 3.6 eine Basis von eh K* (X), wobei

ab xb das zur Orientierung gehörige erzeugende Element von
Hn (X; Z) sei (n dim X). Die a% können so gewählt werden,

dass (in den Bezeichnungen von 3.6) aiechKÇ)(X)1 wenn

dim xt gerade, und at e ch K1 (X), wenn dim xt ungerade. Die

at bilden eine Q-Basis von H* (X; Q). Wegen der Poincaréschen

Dualität gibt es ein m0 e H* (X; Q), so dass B (<% m0) gleich

vorgegebenen Werten ist. Wir verlangen B (ab1 m0) 1, ferner

B (ah mQ) ganzzahlig (i 1, b) und B (ah m0) 0, wenn
dim X — dim xt ungerade.

Dann ist m0 in der Tat ein normierter Multiplikator.
Wir wählen nun einen normierten Multiplikator ?n0 und

definieren mit seiner Hilfe die Bilinearform BK>mQ auf dem

Gitter ch X* (X). Wir setzen

BK,m0 (x y) B (*> ymo) i x, y ech X* (X)

Diese Bilinearform nimmt (im Gegensatz zu BK) ganzzahlige
Werte an. Ihre Determinante ist gleich det Bk — ± 1, denn BK mQ

lässt sich durch eine Matrix geben, die wieder von der Form (7)

ist. Es folgt sofort der Satz

Satz. — Es sei m0 e 77* (X ; Q) ein normierter Multiplikator der

kompakten orientierten torsionsfreien Mannigfaltigkeit X. Ein
Element z eH* (X; Q) gehört dann und nur dann zu ch X* (X),
wenn B (x, zm0) für alle x e ch K* (X) ganzzahlig ist. Ein
Element m e H* (X; Q) ist dann und nur dann Multiplikator,
wenn mfm0 e ch K* (X).

3.8. Gegeben sei ein endlicher CTF-Komplex X. Es sei G* (X)
die Menge der Elemente von X* (X; Q), deren 0-dimensionale
Komponente gleich 1 ist und deren ungerade-dimensionale
Komponenten verschwinden. G* (X) ist eine multiplikative
Untergruppe von X* (X; Q). Der Durchschnitt G* (X) n ch X* (X)

G* (X) n ch X° (X) ist eine Untergruppe von G* (X). Ist X
eine kompakte orientierte torsionsfreie Mannigfaltigkeit, dann
definieren die normierten Multiplikatoren von X (nach Satz 3.7)
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ein wohlbestimmtes Element

Ii (X) e G* (X)/(G* (X) n ch K* (X))

das per definitionem eine „Homotopie-Invariante" von X ist
und auch unabhängig von der Orientierung ist. Das Verhalten
der Multiplikatoren bei Abbildungen soll nun betrachtet werden.

3.9. Es seien X und Y kompakte orientierte Mannigfaltigkeiten
und /: Y -> X eine stetige Abbildung. Der (additive) Gysin-
Homomorphismus /* : X* Y ; Q) -> X* X ; Q) ist definiert, indem
man von einer Cohomologieklasse von Y via Poincaré-Dualitât
zur entsprechenden Homologieklasse übergeht, diese durch / in
X abbildet und zur entsprechenden Cohomologieklasse von X
übergeht. /* und der Ring-Homomorphismus /*: H* (X; Q)

-> X* Y ; Q) stehen in der Beziehung

(8) /* (/* * * y) x •/* (y) für x e X* (X; Q) und y e X* Y; Q)

Unter Verwendung der Bezeichnungen von 3.7 gilt

Lemma. — Gegeben sei f : Y -> X. Ist m ein Multiplikator von Yf
dann ist ein Multiplikator von X.

Nach (8) ist nämlich der Wert von x • /* (m) auf dem
orientierten Grundzyklus von X gleich dem Wert von f*x-m auf
dem orientierten Grundzyklus von Y. Ist x e ch A* (X), dann ist
f* x e eh K* 7), also nimmt f*X'm und damit auch x • /* (m)
auf dem jeweiligen Grundzyklus einen ganzzahligen Wert an.

Satz. — Gegeben seien kompakte orientierte torsionsfreie
Mannigfaltigkeiten X, Y. Es sei f : Y-> X eine stetige Abbildung. Es sei

(Y) bzw. ET (X) ein festgewählter normierter Multiplikator
von Y bzw. X. Ist vj e X* Y), dann gibt es ein Element

/, 7] e A* (X), so dass

(9) /* (ch (n) • «r Y)) ch (/, n) • r (X) •

Der Beweis folgt sofort aus dem vorstehenden Lemma und
aus Satz 3.7. Da ch: X* (X) -» X* (X; Q) injektiv ist (Satz 3.4)
ist /, 7] durch (9) eindeutig bestimmt.

3.10. In diesem Paragraph haben wir an vielen Stellen
vorausgesetzt, dass die auftretenden Mannigfaltigkeiten (d. h. ihre
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ganzzahligen Cohomologieringe) keine Torsion haben. Das

geschah um die Darstellung zu vereinfachen. Die Begriffe
„Multiplikator" und „normierter Multiplikator" lassen sich auch

für beliebige kompakte orientierte Mannigfaltigkeiten einführen.
Natürlich bleibt Lemma 3.9 richtig. Für die Lemmata 3.6 und 3.7
sowie für die Sätze 3.7 und 3.9 wurde die Torsionsfreiheit
wesentlich benutzt. Jedoch ist uns kein Beispiel bekannt, dass

diese Lemmata und Sätze für Mannigfaltigkeiten mit Torsion
falsch werden. Für differenzierbare Mannigfaltigkeiten siehe den
nächsten Paragraphen.

§ 4. Differenzierbare Mannigfaltigkeiten
UND PONTRJAGINSCHE KLASSEN.

4.1. Es sei X eine kompakte orientierte differenzierbare
Mannigfaltigkeit. Wir setzen voraus, dass die zweite Stiefel-Whitneysche
Klasse w2 e H2 (X; Z2) als Reduktion einer ganzzahligen Klasse
c1 e H2 (X; Z) auftritt. Das ist z.B. dann der Fall, wenn X keine
Torsion hat. Wir nennen X eine q-Mannigfaltigkeit, wenn ein
Element c1(X)eH2(X; Z), dessen Reduktion mod 2 gleich
w2 (X) ist, fest gewählt ist. Es seien pt e H4i (X; Z) die Pontrja-
ginschen Klassen von X. Man definiert dann die totale Toddsche
Klasse TT (X) e H* (X; Q) der q-Mannigfaltigkeit X durch
folgende Gleichung

00

(1) ST{X) e^'2--ZÂJ(p1,...,pJ)
jo

c - Vz/2
wo {Ajj die zur Potenzreihe -=— gehörige multiplikative

sinh (V z/2)

Folge von Polynomen ist

Â0 1 Ât — — A2 — — 4p2 + 7pl)

Es gilt [3, 4, 6] :

Satz. — Gegeben sei eine cx - Mannigfaltigkeit X. Für jedes
£ e X* (X) ist der Wert von eh (Ç) • F (X) auf dem orientierten
Grundzyklus von X eine ganze Zahl.
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(Dieser Satz wird in [6, Part III] nur für geradedimensionale
Mannigfaltigkeiten bewiesen, wo man ohne Einschränkung der
Allgemeinheit annehmen kann, dass Ç g K° (X).)

Ist X eine projektive algebraische Mannigfaltigkeit, dann
wählt man für cx (X) die erste Chernsche Klasse. Der vorstehende
Satz wird durch den Satz von Riemann-Roch [12] motiviert, der
für ein holomorphes Vektorraum-Bündel Ç über X besagt, dass

der Wert von ch (Ç) • ZT (X) auf dem orientierten Grundzyklus
von X gleich der Euler-Poincaréschen Charakteristik von X mit
Koeffizienten in der Garbe der Keime von holomorphen Schnitten
von Ç ist.

Der obige Satz geht in den Satz von Bott (3.5) über, wenn X
eine gerade-dimensionale Sphäre ist, da man cx (X) 0 wählen
kann und da dann ZT (X) — 1. Der allgemeine Fall wird auf den
Bottschen Satz zurückgeführt, indem man X in eine Sphäre S2n

einbettet und unter Verwendung gewisser Darstellungen aus Ç

und dem Normalbündel von X ein Element V e X° (S2n)

konstruiert, auf das man den Bottschen Satz anwendet [3].

4.2. Es seien X, Y kompakte orientierte torsionsfreie differenzierbare

q-Mannigfaltigkeiten. Wir haben in 4.1 gesehen, dass

die totale Toddsche Klasse ZT (X) bzw. ZT (Y) ein normierter
Multiplikator von X bzw. Y ist. Also gilt Satz 3.9 mit diesen
Klassen. Das ist das differenzierbare Analogon der Grothen-
dieckschen Verallgemeinerung des Riemann-Rochschen Satzes

[7]. Dieses Analogon kann ohne Voraussetzung der Torsionsfreiheit

bewiesen werden [3, 4].

4.3. Es seien X und X' kompakte orientierte differenzierbare
Mannigfaltigkeiten vom gleichen Homotopietyp. (Man nehme an,
dass eine Homotopie-Äquivalenz von X und X' gegeben ist.)

00 00

Es sei p Yj Pi hzw. p' =Yj Pi die totale Pontrjaginsche
i 0 i — 0

Klasse von X bzw. X'. Wegen der gegebenen Homotopie-
Äquivalenzen fassen wir auch p' als Element von H* (X; Z) auf.
Setzen wir X (und X') als torsionsfrei voraus, dann können wir X
und X' zu crMannigfaltigkeiten machen. Da w2 eine Homotopie-
Invariante ist, können wir annehmen, dass bei der Homotopie-
äquivalenz cx (X) in cx (X') übergeht. Es folgt aus 3.8, 3.9, dass
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00 / 00

(2) I^Äjipu...,Pj)/,...,p'j)ech
j=o / j o

co
^ ^

Wir setzen p/pf Ç =Yi Qt e (V; Z). Da eine
i o

multiplikatiye Folge von Polynomen ist, kann (2) auch so

geschrieben werden

00

(3) YjÄjiqi, qj) e ch K° (X)
j c

Wir wollen sehen, was man daraus über die qt schliessen kann.

4.4 Im Rahmen dieses Vortrags hatten wir (2) für torsionsfreie

Mannigfaltigkeiten erhalten. Man kann jedoch (2) und damit (3)

für beliebige, kompakte differenzierbare homotopie-äquivalente
Mannigfaltigkeiten X und X' nachweisen [3], die auch nicht
orientierbar zu sein brauchen. Also ist auch in diesem allgemeineren

Fall
00

« Ch (0 Ç e K° (X)
j o

und daher (siehe 3.2)

(4) (2/c)! Äk(ql, qk) s2k(0

w0 sik von einer ganzzahligen Klasse kommt. Nun kann man
zeigen [3], dass Ç sogar als Element des Unterrings von K° (X)
gewählt werden kann, der von den komplexen Vektorraum-
Bündeln erzeugt wird, die komplexe Erweiterung eines reellen
Vektorraum-Bündels sind. In diesem Fall kommt sogar s2k (?)/2
von einer ganzzahligen Klasse und wir erhalten also die Aussage

(5) 2-1-(2 k)\Äk{qy, ...,qk)

ist eine ganzzahlige Klasse (oder genauer: die angegebene rationale

Klasse kommt bei dem Koeffizienten-Homomorphismus
Z -> Q von einer ganzzahligen Klasse).

4.5. Wir wollen jetzt etwas näher erläutern, was die Aussage (5)
für Cohomologieklassen qt e H41 bedeutet.
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Das Polynom Âk (q±, qk) ist von folgender Gestalt

~ 4k

(6) Äk(ql9 ...9q£ —— 'Dk(ql9 qk)
p(k)

wo Dk ein Polynom mit ganzzahligen teilerfremden Koeffizienten
ist, oc (k) die Anzahl der Einsen in der dyadischen Entwicklung
von k ist und wo

T—1
a) »(to n pu~iJ

(Produkt über alle ungeraden Primzahlen p.)
Siehe hierzu [12, § 1.6] und [5, § 3.8].
Wir setzen

(8) Mk AN. 1

' k
(2k)

Für jede rationale Zahl r schreiben wir

i TT vpü)r ± Up
wo p über alle Primzahlen läuft und der Exponent vp (r)
ganzzahlig ist.

Lemma. — Die rationale Zahl Mk ist ganzzahlig.

Es ist
v2(Mk) 2k+ 1

vp(M, _ pxp (2k)
k) — ~Lp-I _

für p ungerade,

wo <xp (n) die Summe der Koeffizienten in der p-adischen
Entwicklung von n ist.

(Die Zahl oc2 (n) wurde oben mit a (n) bezeichnet).
Zum Beweis erinnern wir an die bekannte Formel

vp(r
r - ccp (r)

p- 1

Also ist

v2 (Mk) -a(fc) + 4fe + l-(2fe-a(2fe))
2k + 1
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da oc (Ä) oc (2k). Ferner ist für eine ungerade Primzahl p

yP(Mk)
2k

_p-l
Daraus folgt die Behauptung, da

2k — ocp (2k)

p-l

0 <
2k ; 2k '

p~l.
< 1.

Die Aussage (5) ist äquivalent zu

(9) Dk(qu ...,qk) 0 (mod Mk)

d.h. DkIMk kommt von einer ganzzahligen Klasse. Für k — 1, 2, 3

haben wir

qx 0 (mod 24)

4q2 — lql 0 (mod 480)

16q3—44q2q1+31ql 0 (mod 2688)

4.6. Im nächsten Abschnitt (4.7) wollen wir zeigen, dass aus (5)

oder, was auf dasselbe hinauskommt, aus (9) rein formal die

Kongruenz

qk 0 (mod 8) k 1,2, 3,

abgeleitet werden kann. Wir benötigen dazu das folgende
zahlentheoretische Lemma.

Lemma. — Es seien a1? a2, a3, Unbestimmte über dem Körper Q

der rationalen Zahlen. Das Polynom

(10) • (2k)! • Âk (8a1, 8a29 8ak) (vgl. (5))

ist ganz bezüglich 2, d.h. alle Koeffizienten dieses Polynoms sind
rationale Zahlen, die 2 nicht im Nenner enthalten.

Beweis : Der Koeffizient otji jr von aji ajr (/i + +/V k)
in dem Polynom (10) ist gegeben durch

(11) aJt...Jr2-M2/c)!-23'-X(,V,...,;,),
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wo S (/j, jr) die symmetrische Funktion mit Hauptterm
(ßi)Jl (ßr)Jr in den ßf bezeichnet, wobei die ß- die formalen
Wurzeln der charakteristischen Potenzreihe

Vz/2
(vgl. [12, § 1.4])

sinh (Vz/2)

sind. Wir setzen st S (i). Bekanntlich ist S (/1? /r) ein

Polynom in den st mit ganzzahligen Koeffizienten dividiert durch

à n1 n2\ nt\

falls in der Folge (/1? /r) %-mal eine Zahl Al5 ^2-mal eine Zahl
A2, 72rmal eine Zahl ht vorkommt. Die ht sollen distinkt sein,
ferner

t

X ni r
i= 1

In dem erwähnten Polynom für S (ju jr) treten nur Monome

(12) smi sm2 smp mit m1+...+mp =j1 + +jr k und p^r
auf. Vgl. hierzu z.B. [19, S. 220] und die dort angegebene Literatur.

Nun ist

(13) "

wo Bt die i-te Bernoullische Zahl ist. Es genügt zu zeigen, dass

(14) 23r_1 • (2fc)! • smi smJd

ganz ist bezüglich 2, sofern die Bedingung (12) erfüllt ist. Die
in (14) angegebene Zahl ist aber wegen (13) gleich

(2fc)!
+ 23r~p~1- — •Bm Bm jd

(2m1)!...(2mp)! mi mpl

Da der Polynomialkoeffizient ganz ist und da v2 (Z?f) nach dem

von Staudtschen Satz gleich — 1 ist, genügt es zu zeigen, dass

(15) 3r-2p-l ^ vi(d)
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Nun ist in der Tat (siehe 4.5)

v2 (d)X>;-Za(«i) ^ Zn> _1 -
i l i 1 i—1

womit (15) wegen p S r (siehe (12)) bewiesen ist.

4.7. Gegeben sei nun für k 1,2, 3, die Aussage (5). Wir
wollen daraus qk 0 (mod 8) herleiten. Für A 1 erhalten wir

0 (mod 8) (siehe (9))

Nehmen wir an, dass

(16) qk 0 (mod 8)

bereits für alle k mit 1 ^ k < k0 bewiesen ist. Dann folgt aus

Lemma 4.6, aus (5) und aus (13), dass

2~1 * (2fc0)! sko
•

qko =^qk0

ganz bezüglich 2 ist. Da v2 (Du0) — — 1? folgt (16) für k A0.

4.8. Die vorstehenden Rechnungen haben ergeben, dass

q — pjp' ~ 1 (mod 8), wo 1 e 77°. Also ergibt sich (vgl. 4.4)

Satz. — Man fasse die Pontrjaginschen Klassen einer kompakten
differenzierbaren Mannigfaltigkeit als Elemente des durch das

Torsionsideal dividierten ganzzahligen Cohomologieringes auf.
Diese Pontrjaginschen Klassen sind modulo 8 Invarianten des

Homotopietyps der Mannigfaltigkeit.

Wu Wen-Tsun hat im Jahre 1954 für die Pontrjaginschen
Klassen die Homotopie-Invarianz modulo 12 nachgewiesen.
(On Pontrjagin classes III, American Math. Soc. Translations,
Series 2, Vol. 11, S. 155-172 (1959).) Die Invarianz mod 3 ist
eine Folgerung aus der Theorie der Steenrodschen reduzierten
Potenzen. Die Invarianz modulo 4 folgt aus der Tatsache, dass

die Pontrjaginschen Klassen modulo 4 aus den (bekanntlich
homotopie-invarianten) Stiefel-Whitneyschen Klassen mit Hilfe
der Pontrjaginschen Quadrate berechnet werden können.
Bezüglich der Primzahl 2 haben wir also das Resultat von Wu
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verbessert: Die Pontrjaginschen Klassen (im Sinne des obigen
Satzes) sind Homotopie-Invarianten mod 24. (Die Invarianz
modulo 12 gilt übrigens für die ganzzahligen Pontrjaginschen
Klassen. Man braucht sie nicht modulo des Torsionsideals zu
reduzieren.) Es ist anzunehmen, dass die Invarianz modulo 3

ebenfalls rein formal aus (5) hergeleitet werden kann. Diese
formale Herleitung würde uns gelingen, wenn wir analog zum
Lemma 4.6 nachweisen könnten, dass das Polynom

(2k)! * Âk (3a1, 3ak)

ganz bezüglich der Primzahl 3 ist.
Natürlich liefert unsere Methode viel stärkere Invarianzaussagen

als den vorstehenden Satz. Aher sie lassen sich nicht
so leicht formulieren (vgl. (9)).

Zum Beispiel ergibt (9), dass für eine kompakte differenzierbare

Mannigfaltigkeit X, für die H4 (X; Q) 0, die Pontrja-
ginsche Klasse der Dimension 8 (modulo Torsion) eine Homo-
topie-Invariante mod 120 ist.

Es sei noch erwähnt, dass die Methoden von [3] auch folgenden

Satz ergeben.

Satz. — Es sei \ ein reelles Vektorraum-Bündel über dem endliehen

CW-Komplex X. Man nehme an, dass der stabile Faser-

Homotopie-Typ von Ç gleich dem des trivialen reellen
Vektorraum-Bündels ist. Die di-dimensionale ganzzahlige Pontrja-
ginsche Klasse von i; möge mit qt bezeichnet werden. Dann ist

00

•••> ij) c/îO) >

J o

wo 7] ein Element des von den reellen Vektorraum-Bündeln
bestimmten Unterringes von K° (X) ist (4.4). Insbesondere

genügen die qt den Delationen (9).

Vgl. hierzu M. F. Atiyah, Thom complexes (Proc. London Math.
Soc., (3), 11, 291-310 (1961)).

Wendet man den vorstehenden Satz auf die reellen
Vektorraum-Bündel über der Sphäre S4fc an, dann erhält man ein

Resultat von J. Milnor und M. Kervaire über die stabile Homo-
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topiegruppe nn+4.k-1 (S") (Proc. Intern. Congress of Math.,

Edinburgh, 1958, pp. 454-458).

§ 5. Einbettungsfragen.

5.1. Es sei M4k eine kompakte orientierte differenzierbare
Mannigfaltigkeit der Dimension 4k. Das Al-Geschlecht A (M4k) ist
definiert als der Wert von 24k Äk (p^ pk) Ah (p^ pk) auf
dem orientierten Grundzyklus von M4k. Dabei sind p±, p2, die

Pontrjaginschen Klassen von M4k, (pt e H4x (M4k; Z)). In
[6, Part II] wurde gezeigt, dass A (M4k) eine ganze Zahl ist.
In [5] wurde folgender Satz bewiesen.

Satz. — Es sei M4k eine kompakte orientierte differenzierbare
Mannigfaltigkeit. Wenn M4k in den Euklidischen Raum der Dimension

8k — 2q differenzierbar einbettbar ist, dann ist A (M4k)
durch 2q+1 teilbar. Wenn ausserdem noch q ~ 2 mod 4 ist,
dann ist A (M4k) durch 2q+1 teilbar.

Der Beweis verläuft, indem man annimmt, dass X in der
Sphäre der Dimension 8k — 2q eingebettet ist. Mit Hilfe geeigneter

Darstellungen der orthogonalen Gruppe konstruiert man aus
dem Normalbündel von X ein Element von K° (S8k~2q), auf das

man den Bottschen Satz anwendet (3.5).

5.2. Wie in 5.1 sei M4k kompakt orientiert differenzierbar. Wir
nehmen einmal an, dass M4k in den Euklidischen Raum der
Dimension 4A+4 differenzierbar eingebettet werden kann. Dann
können wir Satz 5.1 mit q=2k — 2 anwenden und erhalten,
dass A (M4k) durch 22k~1 und für gerades k sogar durch 22k teilbar

ist.

5.3. Die Mannigfaltigkeit M4k (siehe 5.2) sei in der Sphäre
S4/£+4 eingebettet. Die Pontrjaginschen Klassen des Normalbündels

sollen mit fi e H4i (M4k ; Z) bezeichnet werden. Da das
Normalbündel die Faser R4 hat, verschwindet ~Pi für i > 2.
Ferner ist Yi das Quadrat der Eulersehen Klasse des Normalbündels,

welche bei jeder Einbettung einer Mannigfaltigkeit in
eine Sphäre verschwindet. Also ist pï 0 für i X 2. Nun ist

L'Enseignement nialhém., t. VI, fasc. 14



210 M. F. ATIYAH UND F. HIRZEBRUCH

{Ak} die multiplikative Folge von Polynomen mit der
charakteristischen Potenzreihe

(2 Vz)/sinh (2 z)

Es sei {A} die multiplikative Folge von Polynomen mit der
charakteristischen Potenzreihe

sinh (2 Vz)/(2 Vz)

Dann ist

00 00

falls p p1 (p YjPi > P E Ä) •

i 0 i 0

In unserer besonderen Situation ist p] 0 für i ^ 2. Deshalb ist

22, ® sinh 2 Vpï
Pj) Y,Bj(Pl>Q> - )°) 7EEE—

j' o j'=o 2 v px

und damit
22fc (^)fc

^fcCPl* jPfc) •

(21c+ 1)!

Also ist nach 5.2 die Klasse

(1)
(2k + l)l

e H*k ^M*k; ® §anzzallli? •

Für gerades k ist sogar

(~F~)k
(2)

(2k + l)l
6 "4k (M4k; Q) ganzzahIi§ •

5.4. Der Index t (ilf4fc) einer kompakten orientierten
differenzierbaren Mannigfaltigkeit ist die Anzahl der positiven minus
die Anzahl der negativen Eigenwerte der quadratischen Form
B (x, x) (für x e H2k (Af4fc; R)), wo B (x, x) der Wert von x • x
auf dem orientierten Grundzyklus von M4k ist. Es gilt [12]

(3) t(M«) Lk(Pl,..:,Pk)\_M4k]
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wo {Lk (plr..., pk)} die zur charakteristischen Potenzreine ——

gehörige multiplikative Folge von Polynomen ist. Macht man
wieder die Annahme, dass M4k in der Sphäre der Dimension

4A+4 eingebettet ist, dann folgt ähnlich wie in 5.3, dass

£ T \ tghV?I
LLj(Pu >Pj)=~

j=o V Pl
und damit

—k
(4) Lk(Pl,...,Pk) ±tk-

1

(2k+ 1)1

wo tk die (2&+l)-te Ableitung von tg (x) für x 0 ist. Bekanntlich

ist tk eine gerade ganze Zahl (k ^ 1). Aus (l)-(4) folgt

5.5. Satz. — Die kompakte orientierte differenzierbare Mannigfaltigkeit

M4k möge sich differenzierbar in den Euklidischen
Raum der Dimension 4/c+4 einbetten lassen (k ^ 1). Dann ist

der Index r (M4k) durch ~ teilbar, wo tk die (2k+1)-Ableitung

von tg (x) für x 0 ist. Ist ausserdem k gerade, dann ist

t (M4k) sogar durch tk teilbar.

Für die ganzen Zahlen tk hat man folgende Formel

_
2lk (l2k — 1) Bk

h~l 2k '

wo Bh die A:-te Bernoullische Zahl ist. Es gilt

t± 2 t2 — 16, f3 24 • 17 u 28 • 31

Für k 1 ist der vorstehende Satz trivial (Jede M4 kann in den
R8 eingebettet werden.) Für k 2 besagt er, dass eine AT8, die
in den Euklidischen Raum der Dimension 12 einbettbar ist,,
einen durch 16 teilbaren Index hat.

5.6. Satz. — Es gibt eine kompakte orientierte differenzierbare
Mannigfaltigkeit F4fc, die sich differenzierbar in den
Euklidischen Raum der Dimension 4A+3 einbetten lässt, und deren
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Index gleich ± tk ist (tk (2k +1)-Ableitung von tg (x)
für x 0).

Zum Beweis benötigen wir zunächst ein Lemma, das bereits
bei Kervaire (Courbure intégrale généralisée et homotopie, Math.
Ann., 131, 219-252 (1956), siehe S. 247) vorkommt.

Lemma. — Das cartesische Produkt S"1 x X S"r von Sphären
kann in den Euklidischen Raum der Dimension n1-\-—JrnrJr/^
differenzierbar eingebettet werden.

Das Lemma ist richtig für r 1. Wir beweisen es durch
Induktion über r. Offensichtlich kann S"r mit trivialem Normalbündel

in den euklidischen Raum der Dimension 721+...+ft,.+l
eingebettet werden. Die Faser des Normalbündels ist ein Rd mit
d nx~\~...+ ttr-i +1. Nach Induktionsannahme ist S"1 x... xS"r_1

differenzierbar in Rd einbettbar. Daraus folgt die Behauptung
des Lemmas.

In [12, § 9.4] wird erwähnt, dass es in S2x... xS2 (2&+1
Faktoren) eine Untermannigfaltigkeit V4k der Codimension 2 gibt,
die mit jedem Faktor S2 die Schnittzahl 1 hat.

Nach dem Lemma ist V4k in den Euklidischen Raum der
Dimension 4A+3 differenzierbar einbettbar. Nach [12, § 9.4] ist der
Index von V4k in der Tat gleich der (2/c + l)-ten Ableitung von
tgh x für x 0, q.e.d.

Der vorstehende Satz zeigt, dass Satz 5.5 für gerades k scharf
ist. Für k 3, 5, ist uns keine M4k bekannt, die in R4/c+4

einbettbar ist und deren Index gleich U/2 ist.
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