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HOLOMORPHIC MAPPINGS
OF COMPLEX MANIFOLDS

by Shiing-shen CHERN

1. A complex manifold is, briefly speaking, a connected
manifold with local complex coordinates defined up to a holo-
morphic transformation. Examples of complex manifolds
include the number space C,, and the projective space P, of
dimensions m. For m = 1 these are known in function theory
as the Gaussian plane and the Riemann sphere respectively.

A holomorphic mapping of a complex manifold M of dimen-
sion m into another one N of dimension n is a continuous mapp-
ing f such that, if g, ..., ¢, are the local coordinates at a point
CeM and z, ..., 3, are local coordinates at the image point
f (Q) € N, the mapping is locally defined by the equations

(1) Z; = Zi(Cl: >Cm) > l é i é n,

where the functions at the right-hand side are holomorphic
functions in their arguments. By this definition, a holomorphic
mapping f: C;— P; 1s precisely a meromorphic function in
classical function theory.

The first question that arises is the question of existence.
For the condition of a holomorphic mapping is so strong that
it is not clear that, for given complex manifolds M, IV, a holo-
morphic mapping f: M — N should exist which is not a constant.
(i.e., one that the image f (M) is not a single point of N). In
fact, if M, NV are compact Riemann surfaces (a Riemann surface
1s a complex manifold of dimension one), then a non-constant.
holomorphic mapping f: M — NNV exists only when g (M) = g (IV),
where g (M), g (V) are the genera of M, N respectively. This
well-known result can be derived as a consequence of the
Riemann-Hurwitz formula (cf. § 2).

A more elementary fact is the result that every holomorphic
function on a compact complex manifold is a constant. From
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this it follows that every holomorphic mapping of P, into a
complex torus of dimension n is a constant, because P, is
simply connected and the complex torus has C, as its universal
covering space.

The above result can be generalized. We recall that an
analytic set on a complex manifold M is a set E satisfying the
condition that, if {,e E, there exist s holomorphic functions
fi, -+, [s In @ neighborhood of ¢, such that the intersection of E
with the neighborhood is defined by the equations f; = ...
= f, = 0. Then the following theorem is known [6, p. 356]:
Let f: M — N be a holomorphic mapping such that M is compact
and that every compact analytic set of /N consists of a finite
number of points. Then f is constant.

2. While these results are of interest, it seems desirable to
formulate some problems of general scope on holomorphic
mappings. [ would consider the following a fundamental one:
Given a holomorphic mapping f: M-~ N. To determine rela-
tions between the invariants of the manifolds M, N and the
invariants which arise from the mapping f.

A first illustration of this problem is the Riemann-Hurwitz
formula on the holomorphic mapping f: M-~ N of compact
Riemann surfaces. The formula can be written .

(2) 2-29(M)+w = d(2-29(N)),

where d is the degree of the mapping and w is the index of rami-
fication, i.e., the sum of the orders of the points of ramification.
The genera g (M), g (V) are invariants of M, N themselves,
while d, w depend on the mapping.

Another set of relations of this nature consists of the Pliicker
formulas for an algebraic curve. Let an algebraic curve be
defined by a holomorphic mapping f: M — P,, where M is a
compact Riemann surface. Suppose that the curve 1s non-
degenerate, i.e., that the image f (M) does not belong to a sub-
space of dimension < n—1. To this curve 1s defined the pih
associated curve f?: M -G (n,p), 0 < p <n—1, formed by
the osculating projective spaces of dimension p, where G (n, p)
is the Grassmann manifold of all p-dimensional projective spaces
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in P, (G (n,0) = P,). f?(M) defines a cycle in G (n, p), which
is homologous to a positive integral multiple v, of the funda-
mental two-cycle of G (n, p). The integer v, = 0 is called the
order of rank p of our algebraic curve. Geometrically it is the
number of points of the curve at which the osculating spaces
of dimension p meet a fixed generic linear space of dimension
n—p—1 of P, A stationary point of order p is one at
which the pth associated curve has a tangent with a contact of
higher order. The stationary points are isolated and a positive
index can be associated to each of them. Let w, = 0 be the
sum of indices at the stationary points of rank p. Then Pliicker’s
formulas are

(3) —W,=V,_ 1 +2v, =V, = 2-29g(M), O=p=n-1.

Here the right-hand side is an invariant of M, while the left-
hand side involves quantities which depend on the mapping.

For non-singular algebraic varieties a much more profound
relation between invariants of manifolds and quantities depend-
ing on a holomorphic mapping is given by Grothendieck’s
Riemann-Roch theorem [1]. We will not dwell on a discussion
of this theorem. It suffices to say that the theorem contains
as a special case the Riemann-Hurwitz formula. Applying the
theorem of Grothendieck and the classification of singularities
by Thom, I. R. Porteous [b] derived relations between the
characteristic classes of non-singular algebraic varieties under
the following simple types of mappings: «) dilatations; b) rami-
fied coverings with singularities of a relatively simple type.

It will be natural to expect that the relations answering our
fundamental problem have a bearing on the existence problem
of holomorphic mappings. An example is the non-existence
theorem of holomorphic mappings between compact Riemann
surfaces in § 1 derived as a consequence of the Riemann-Hurwitz
formula. But our fundamental problem seems to be wider
In scope.

A natural counter-part of the existence problem is the unique-
ness problem, namely the determination of a holomorphic
mapping by its restriction to a certain subset of the original
manifold. Very little seems to be known along this line. As
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an example I wish to state the following so-called Riemann’s
theorem [6, p. 343]: Let f: M — N be a continuous mapping of
a complex manifold M into another V. Let £ be a nowhere
dense analytic set in M. If the restriction of f to M — E is holo-
morphic, the same is true for f itself.

3. Another important problem on holomorphic mappings is
the study of the properties of the image set. If f: M — N is a
holomorphic mapping and M is compact, then f (M) is an analytic
set. If N = P,, then a famous theorem of Chow says that f (M)
1s an algebraic set. (We recall that a subset £ < P, is called
algebraic, if there exist ¢ polynomials gy, ..., g, in the n + 1
homogeneous coordinates of P, such that E is defined by the
equations g; = ... = g, = 0.)

The case that M, N are of the same dimension has particular
properties for the following reasons: 1) M, IV are oriented mani-
folds and f preserves orientation; 2) it will be possible to compare
the local degree of the mapping with the global degree. The
results so obtained are valid for more general mappings. In
fact, the following theorem was proved by S. Sternberg and
R. G. Swan [9]: Let M, N be two oriented n-dimensional dif-
ferentiable manifolds, with M compact and NN connected. Let
f: M- N be a differentiable mapping, whose Jacobian J (f) is
non-negative. Then either J(f) =0 or N is also compact,
f is onto, and f has a positive degree on each component of M
on which J (f) £ 0.

In particular, suppose M be connected and compact, and
J(f) £ 0. Then IV is compact, the degree d (f) of the mapping
is positive, and every point a € NV is covered d (f) times when
counted with the proper multiplicity. Since [V i1s compact, we
can equip it with a riemannian metric, so that the total volume
of Vis 1. Let ¢ (M) be the volume of the image of M under f,
and let n (a) be the local degree of f at a, i.e., the number of
times that « is covered by f (M). Then we have

4 d(f) = n(a) =v(M).

These results should be considered as a starting-point of the
theory of value distributions in complex function theory, the
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essential difference being that, in the latter case, M 1s non-
compact.

4. The study of mappings f: M —~N where M is non-
compact is radically different from the compact case and much
finer analytical considerations will be necessary. The natural
idea is to exhaust M by a family of compact domains with
boundary, D,, as t— o0, and to study the restriction of f to D,.
The asymptotic behavior of the geometrical quantities intro-
duced for the restricted mappings f| D, as t— oo will then be
the main concern of the problem.

The problem which generalizes (4) to the case of a domain
with boundary can be stated as follows: Let M and IV be two
connected, oriented n-dimensional C*-manifolds with M non-
compact and NV compact. Let f: M — N be a C®-differentiable
mapping, whose Jacobian J (f) is = 0 and # 0. Let a e NV, and
let f| D be the restriction of f to a compact domain D < M,
such that the image of the boundary 3D of D does not contain a.
Equip NV with a riemannian metric with total volume 1, and
denote by ¢ (D) the volume of f (D) =« N. Let n (a, D) be the
number of times that the point a is covered by f (D). Our
problem is to express the difference n (a, D) — ¢ (D) as an
integral over d.D.

An explicit formula solving this problem, which will then be
a generalization of (4), 1s called the first main theorem. A most
convenient way to derive such a formula is by applying the
theory of harmonic differential forms on a compact riemannian
manifold [7] and proceeds as follows:

We consider the manifold NV and denote by @ its volume
element. Let 6, be the Dirac measure with singularity at a.
Then ® and 6, are both currents of dimension zero and their
difference @ — o, is orthogonal to the harmonic form &. It
follows from the fundamental existence theorem on harmonie
integrals on a compact riemannian manifold that the equation

®) AS = 6,— &

where § 1s a current of dimension zero and 4 is the Laplacian,
has a solution in § and that § is a differential form of degree
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nin N—a. Moreover, the solution S is defined up to an additive
harmonic form. Put

(6) A =068,

where 0 is the codifferential. Then, under the above hypotheses,
we have the “ first main theorem ”

(7) n(a,Dy—v(D) = | 4.
S(oD)

In order to derive geometrical consequences from (7), it will
be necessary to study the integral at its right-hand side, parti-
cularly its asymptotic behavior. Formula (7) contains as a
special case the classical first main theorem in the theory of
value distributions of meromorphic functions, but is of course
much more general in scope. One can say that the reason which
accounts more than any other for the properties of value dis-
tributions of meromorphic functions is the remarkable behavior
of the boundary integral in (7).

I have carried out the study of the boundary integral in (7)
for the case that M = C,, N = P,. Let ¢, ..., {, be the coor-
dinates in C,, and let D, be the ball defined by

(8) Cl Zl ++ann é t2;~
Let
9) Q, = %(dcl Ay + ... +dl, AdT)

and let Q be the fundamental two-form of the elliptic Hermitian
metric in P, such that [, Q" =1. We put

(10) 0. (1) = [pS* @ EADs, 0Zk=n,

so that ¢, (£) is the volume of f (D,). By estimating the boundary
integral in (7) and applying integral-geometric considerations,
the following geometrical result is derived [3]:

Let f: C,— P, be a holomorphic mapping which satisfies the
Vo (1) dt

following conditions: 1) The function T'(f) = f; —-— o 7 03
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2) fi (v () d7)/x®™ = o (T (). Then the set P, —[(C,) is of
measure Zzero.

It is well-known that for an arbitrary holomorphic mapping
f: C,— P,, the set P,— f(C,) may contain some open subset
of P,, so that the conclusion will certainly not be true without
some supplementary condition. On the other hand, it is not
necessary to suppose the holomorphy of f, for even in the
classical case of value distributions the main results are true for
quasi-meromorphic functions. 1t would be an interesting pro-
blem to find the proper restrictions on f for the above conclusion
to be true.

5. The fundamental problem posed in the beginning of § 2
has a meaning also for the case of a holomorphic mapping
f: M — N, where M, N are compact complex manifolds, M being
now with boundary. If both M and N are Riemann surfaces,
the result so obtained forms a generalization of the Riemann-
Hurwitz formula. Such a result is easily derived as a conse-
quence of the Gauss-Bonnet formula. In the particular case
when N = P,, this is called the second main theorem of the
theory of wvalue distributions of meromorphic functions and
constitutes the core of the theory.

By simply writing down the generalized Riemann-Hurwitz
formula, one can derive in a purely differential-geometric way
the following theorem *): Let f: D— N be a holomorphic mapping,
where D is the pointed disk 0 < || <1 and NV is a compact
Riemann surface of genus > 1. Then f can be extended as a
holomorphic mapping of the whole disk | {| < 1 into V.

Similarly, by a combination of the first and second main
theorems, one can generalize the defect relations on meromorphic
functions to holomorphic mappings f: M — P,, where M is a
non-compact Riemann surface such that it can be compactified,
as a Riemann surface, by the addition of a finite number of
points. In the case that the image Riemann surface NV is a
complex torus, one derives in this way the result that the defect
at every pomnt @ € IV 1s zero. Geometrically the latter means
that V is “ evenly ” covered by the image of M.

*) I am indebted to J.-P. Serre for pointing out this conclusion to me.
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All these seem to justify the emphasis we have put on our
fundamental problem. Unfortunately, for higher dimensions,
even when the image manifold is P,, our knowledge on the
problem is still very limited. For a holomorphic mapping
f: M— P, with M compact, this leads us back to the old theory
of projective invariants in algebraic geometry. With recent
advances in algebraic geometry, it might be possible and worth-
while to organize the classical results in a better form. The
case of non-compact M awaits much further work.

I hope to have pointed out a few guiding ideas on the subject
of holomorphic mappings. Only the future can tell whether
the topic will lead to results of general mathematical interest.
I cannot help to feel, however, that so long as the complex
structure remains a subject of investigation, the study of holo-
morphic mappings should be a logical objective.

In conclusion I wish to say that, while I have discussed the
subject from a geometrical viewpoint, there has been an extensive
literature to which I am indebted and which it would be im-
possible to quote in detail. Many of the ideas in geometrical
function theory in one variable originated from L. Ahlfors.
In the case of high dimensions I should mention in particular
the works of H. Schwartz and W. Stoll [8, 10], although they
do not seem to have a close contact with the viewpoints envisaged
here.
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