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174 N. E. STEENROD

A trivial example is provided by any algebra X over R. Note
first that 9 : R ® R -> R defined by 9 (r1 ® r2) rx r2 is an

isomorphism (recall that ® ®^). Set Y =' 9_1: R->R ® i?,
then 9, Y give a natural structure of a Hopf algebra to the ground
ring R. It is easily checked that the natural /^-structure in
X ® X coincides with that defined by Y. Thus any algebra
over the ground ring is an algebra over the ground ring regarded
as a Hopf algebra.

As another example, let X be an algebra over Z?, and let tu

be a group of automorphisms of the algebra X. Let A be the

group ring of 7u over R with the usual multiplication. Define
the diagonal Y : A -> A ® A to be the mapping induced by the
diagonal mapping d: tu-*tu X 7u. Then A becomes a Hopf
algebra. Since any g e tu is an automorphism, g (x1 x2)

— (Sxi) (^2)5 and since dg (g, g), it follows that 8.1 holds.
Thus any algebra is an algebra over the Hopf algebra of its
automorphism group.

9. Universal A-algebras.

The foregoing examples of algebras over Hopf algebras arose

naturally. We now show how to construct them in a wholesale
fashion.

Let A be any Hopf algebra. It is easy to construct many
modules over the algebra A (i.e. take quotients of A by left ideals,
and then take direct sums of these). Let M be any graded
A-module. Let Mn denote the tensor product of n copies of M.
As in section 7, Mn is an A-module. Form the direct sum

00

T(M) - X Mn
n 0

where M° R. Define g: T (M) ® T (M) -> T (M) in terms
of components x e Mr, y e Ms by [i(x0y) x0ye Mr+S

making use of the associative law Mr ® Ms & Mr+S. In this

way T(M) is an associative- algebra. It is called the free
associative algebra generated by M (also, the tensor algebra of M).
Since the associative law Mr ® Ms « Mr+S is an A-mapping,
it follows that T(M) is an algebra over the Hopf algebra A.
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Form now the quotient of T(M) by the ideal N generated

by elements

(9.2) x ® y — — 1 Yq y ® x where x e Mp y e Mq

The quotient, denoted by U(M), is called the free, commutative
and associative algebra generated by M. If we assume that the

diagonal mapping Y of A is commutative, then it is readily
verified that N is an A-submodule of T(M). Hence U(M)
becomes an algebra over the Hopf algebra A.

As is well known, the algebra T(M) is universal in the sense

that any i?-mapping of M into an algebra X extends to a unique
mapping of algebras T(M)-+X. Furthermore, if X is an
algebra over A, and M X is an A-mapping, so also is T(M) -> X.
A similar statement holds for U(M) in case X is commutative.

Additional algebras over A can be constructed by taking a
submodule of T(M) or U(M) forming the A-ideal it generates,
and passing to the quotient algebra. It is easily seen that any
A-algebra can be obtained as such a quotient.

In the special case where A is the algebra s/p of reduced

powers, only certain If s are admissible, namely, those which
satisfy the dimensionality restriction 4.9: PA1 x 0 whenever
2i > dim x. Moreover, in forming U(M), we must increase
the ideal N so as to include all elements of the form

(9.3) 0>kx — (x (x) x ® ® x) (p factors) x e M2k

This insures that the relation 4.8, namely, 0>k y yp is valid
for y e U (M)lk. (It is a pleasant exercise in the use of the
Adem-Cartan relations to show that N is an ^-module.) With
these modifications, the resulting U(M) is meaningful for
algebraic topology.

10. Reformulation of the problem.

We are now in a position to formulate a problem similar to
the one posed in section 2, but having a better chance of a positive

solution. Recall that the algebra F(R, q)<° of section 2 is
small in that it has a single generator but is otherwise as big as
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