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THE COHOMOLOGY ALGEBRA OF A SPACEY)

by N. E. STEENROD

1. INTRODUCTION.

The history of the development of the concept of the coho-
mology algebra of a space is marked by quite a few wrong turns,
blind alleys, and fallacious preconceptions. The purpose of this
article 1s to trace this development with emphasis on the errors
that were made. This may be useful since the story 1s not yet
complete, and the final form of the concept is still to be deter-
mined.

The key to the existence of the multiplication of cohomology
classes lay in the Alexander duality theorem, especially in the
form 1t was given by Pontrjagin in 1934: If X is a closed subset
of the n-sphere §”, then, for any coefficient group G, the singular
homology group H,_,_;(S"— X; G) is isomorphic to char H,
(X; char G) where char means character group, and H, is Cech
homology. This latter group coincides with what we now call
the cohomology group, and we denote it by HYX; G). Since
H(8") = 0 for 0 < i < n, it follows by exactness that

HY(X;G) ~ H,_, (S"—X;G) ~ H,_, (8", S"—X; G)

for 0 < ¢ < n—1, the latter isomorphism being given by the
boundary operator. If G is a ring R, the relative groups
H.(5" 8" — X; R) admit an intersection theory in the sense of
Lefschetz, because $"1s amanifold. Thisinduces a multiplication

(1.1) H?(X;R) ® HY(X; R) —» H?*%(X; R) .

To obtain a fully satisfactory duality theorem, it was necessary
to show that this multiplication is independent of the imbedding
and of n. During the years 1935 to 1938 this was achieved in
papers by Alexander, Cech, Gordon and Whitney. A direct

1) Talk delivered at the Zurich Colloquium on Differential Geometry and Topology,
June 1960.
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internal description was given of the groups H?, and of the mul-
tiplication 1.1. Their constructions were triumphs of ingenuity,
and it was puzzling that something so basic should be so difficult.
The difficulty was dissipated by Lefschetz in 1942 when he
showed that the multiplication is the composition of the cross-
product with values in H?*9 X x X; R) followed by the homo-
morphism induced by the diagonal mapping X — X x X.

The upshot was a readily defined product, easily proved to
be associative, to have a unit in dimension 0, and to satisfy the
commutation law

(1.2) xy =(—1"xy, xeHP?, yeH?.

With this success there was great hope that the multiplication
would lead to deeper insight into the topology of spaces. To
give this hope a precise formulation, one spoke of the cohomology
algebra H*(X; R). It was defined to be the direct sum
=0 H%X; R) with the multiplication determined by the mul-
tiplications of the component parts. It is clearly an associative
algebra with unit. And now one can ask if the theory of algebras
can be brought to bear on topological problems via A* (X; R).
The above definition of A* constituted a wrong turn into a
blind alley. It is an error which has not yet been fully erased.
The mistake lay in forming the direct sum over the dimensional
index ¢g. No one has yet found a valid geometric reason for
adding cohomology classes of different dimensions. The only
algebraic reason for doing so was to make H* into a familiar
algebraic object. This was a forcing of the mathematics into a
preconceived pattern. There was no gain in doing so. For
example, the interesting part of the algebra is the sum 2., H?;
but if X is a finite complex, this part lies in the radical of H*.
Unfortunately, algebraic theory has little to say about the
radical. Its major results concern the quotient by the radical.
Even worse, H* i1s badly non-commutative in spite of the fact
that the rule 1.2 for commuting two elements is just as useful as
the commutative law 2y = yz.
It has now come to be recognized that the proper algebraic
concept, to which the cohomology of a space conforms, 1s that
of a graded algebra. A graded algebra A is, first of all, a sequence
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{47}, ¢ =0,1,2, .., of R-modules. Thus, an element of 4 1s
an element of some A% and ¢ is called its degree. Elements may
be added only if they have the same degree. In addition, homo-
morphisms A? ® A% — AP" are given for all p, ¢ = 0. These
define a bilinear product zy for all z,y € A. The product 1s
required to be associative.

An ordinary algebra C is converted into a graded algebra A4
by setting A° = C and 4?2 = 0 for ¢ > 0. In this way, a graded
algebra is a generalization of the notion of an algebra. Thus
we are free to generalize the properties of algebras to graded
algebras in any convenient manner which conforms in degree O.

In particular, a graded algebra A4 is called commutative if
xy = (— 1) yx for allx € AP and y € A%. Thus, what was once
called the anti-commutative law is now called the commutative
law. And the cohomology algebra of a space is an associative,
commutative, graded algebra.

A unit of a graded algebra A is an element 1 € A° such that
lr =2 =2zl forallzx € 4. An augmentation ¢ of 4 is a homo-
morphism e: 4 -~ R of graded algebras with unit. Thuse (49)=0
for ¢ > 0, and (1) = 1. In case ¢ gives an isomorphism in
degree 0, A° ~ R, then A is called connected.

If P is a space consisting of a single point, it is clear that
H*(P; R) = R as a graded algebra. For any space X, the
mapping n: X — P induces a monomorphism n*: R - H*(X; R)
and %* (1) is the unique unit of H*(X; R). Finally, any mapp-
ing P— X induces an augmentation of H*(X; R). Clearly X
1s arcwise connected if and only if H*(X; R) is connected; and
then the augmentation is unique.

2. REALIZING A GRADED ALGEBRA AS A COHOMOLOGY
ALGEBRA.

Let Z denote the ring of integers. It is well known that,
if Bis a graded Z-module such that B® = Z, B! is free, and B"
1s finitely generated for each n, then there is a space X which
realizes B in that H*(X;Z) ~ B. One solves this problem, for
a single dimension n, by a cluster C, of n-spheres and (n + 1)-
cells; and then the general case is solved by a union of the C,’s
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with a common point. If Z is replaced by another of the simpler
ground rings, there are no serious difficulties in solving the
realization problem.

Suppose however that B is a graded, commutative, asso-
ciative and connected algebra over R. A realization of B is a
space X such that H*(X; R) ~ B as graded algebras. The -
problem of deciding when a given B is realizable has not been
solved, and 1s very difficult. To make the problem precise, we
shall use singular cohomology groups, and require X to be a
CW-complex. A natural attack on the problem is to consider
first the case of certain simple B’s, and then pass to more
complicated ones.

Let F(R,n)” denote the graded, free, commutative, asso-
ciative, and connected algebra over R on one generator z of
dimension n; and let F(R, n)" be the quotient algebra obtained
by setting z" = 0 (h = height of z). Thus, if n is even,
F(R, n)” is the “ polynomial ” algebra of x, i.e. the monomials
1 = 2° 2%, ..., 2% ... form a module basis; and it is a free R-mo-
dule. If nis odd, the commutative law demands that 22* = 0,
so 22 =0 for all £ = 2. Thus the kn dimensional part is
isomorphic to R/2R for k = 2. Setting z" = 0 replaces all
component groups in dimensions = An by zero.

We will discuss the problem of realizing F(R, n)* in the
special cases where R is the ring Z of integers, or the field Z,
of integers reduced modulo a prime p. First, we will list three
trivial cases.

The space consisting of a single point realizes [F(R, n)! for
all R and n.

The n-sphere S" realizes F(R, n)? for all R and n.

If n is odd, S" also realizes F(R,n)* for all 2 £ h £ o
providing R/2R = 0, because the relation 2z®> = 0 must then
imply that z* = 0; so his effectively 2. The condition R/2R = 0
holds for R = Z,, p > 2.

The projective spaces over the real numbers, complex
numbers and quaternions provide realizations of quite a few of
the F’s. Consider first the real projective n-space P". Taking
R=12Z, H/(P)~Z, for 0=<¢g =<n, and the non-trivial
element is represented by any subspace P? < P". Now any P?
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can be made the intersection of n— ¢ projective (n — 1)-sub-
spaces. The duality between intersections of cycles and pro-
ducts of cocycles shows that H*(P"; Z,) ~ F(Z,, 1)""*. Let
P® be the union of a sequence P° < Plc..cP'c...
Then P* realizes F(Z,, 1)”. ‘

The complex projective n-space CP" has real dimension 2n.
It has no torsion, its odd dimensional Betti numbers are zero,
and its Betti number is 1 in each even dimension < 2n. A
generator of H,,(CP"; R) is provided by any projective subspace
CP? < CP". Again, the duality between intersections and
products shows that H*(CP"; R) ~ F(R,2)""' for any R.
Forming CP%, as above, realizes F(R, 2)”.

The quaternionic projective n-space QP" has real dimension
4n, no torsion, and non-zero Betti numbers equal to 1 in dimen-
sions 4¢ < 4n. A similar argument shows that QP" realizes
F(R, 4)""* for each R and each n < oo.

The Cayley numbers (on 8 units) is non-associative. As a
result the usual notion of the equivalence of two sets of homo-
geneous coordinates fails to be transitive; hence there is no
Cayley projective n-space. An exception i1s n = 2, because any
two Cayley numbers generate an associative subalgebra. Using
this, Hopf [11] constructed a Cayley projective plane M of real
dimension 16. It has no torsion, and its non-zero Betti numbers
are equal to 1 in dimensions 0, 8 and 16. An appropriate
argument shows that M realizes F(R, 8)° for any R,

The preceding results are very encouraging, a great many of
the [’s are realized by spaces which are not too complicated.
One might be led by these to expect that any /' can be realized.
A bit of ingenuity in putting spaces together should do the trick.
Once the case of one generator 1s thus solved, the special case of
many generators given by a tensor product of F’s for various n’s
and #’s, can be solved by cartesian products of the separate
realizations. Thus 1t begins to appear likely that any graded,
commutative and associative algebra can be realized.

The historical fact is that topologists were lulled to sleep by
the above considerations. Their preconception of the nature of
the cohomology algebra appeared to be justified. However they
were awakened abruptly in 1952 by the result of Adem [2] which
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states: If n is not a power of 2, and 3 < & < oo, then F(Z,, n)"*
cannot be realized. A

Subsequent revelations showed that the situation is even
worse: the preceding examples of realizations of F’s are nearly
all that exist. The. method for proving this uses the fact that
the cyclic reduced p'™ powers, which operate in the algebra
H*(X; Z,), satisfy certain relations. In the next three sections
we will discuss these operations, and their implications for the
realization problem.

3. (CONSTRUCTION OF THE SQUARING OPERATIONS.

Before presenting the algebra of the reduced power opera-
tions, it may be worthwhile to give a recently improved form
of the definition of the operations themselves. For simplicity
we restrict ourselves to the case of the prime 2.

Let = be a cyclic group of order 2 with generator 7' (7% = 1).
Let W be an acyclic complex on which = acts freely. Alge-
braically, W is a free resolution of Z over =. Geometrically,
W can be taken to be the union of an infinite sequence of spheres
S0 c St ... 28" < ... where each 1s the equator of its
successor, and 7 is the antipodal transformation. Identifying
equivalent points under = gives the infinite dimensional real
projective space P with W as its 2-fold covering. Recall that
H*(P; Z,) is the polynomial ring F(Z,, 1)* on the one dimen-
sional generator U.

Let K be any space, form the cartesian product W x K X K,
and let = act in this space by T'(w,x,y) = (Tw, y,x). Then
T has no fixed points. Identifying equivalent points gives a
space, denoted by W x , K2 which is covered twice by W x K2
Imbed W x Kin W x K2 by (w, z) - (w, z, ). Then w trans-
forms W x K into itself with T (w, x) = (Tw, x). It follows
that W x K covers a subspace P X K imbedded in W X, K2
This gives the diagram

(3.1) Px K—Wx,K*<Wx K2-% K>

where ¢ is the inclusion, % is the covering, and g i1s the obvious
projection.
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The squaring operations will be defined by the following
diagram of cohomology with coefficients Z,:

(3.2)  HU(K)— H* (W x , K*)—> H*(P x K) =
2q
Y H*7(P) ® H/(K) .
j=0
The function ¥ is still to be defined. The equality on the
right is the standard decomposition of the Kiinneth theorem
H*(P X K) = H*(P) @ H*(K).
To define ¥, recall that 2 defines an isomorphism

H*(W x  K* ~ HX¥(W x K?)

where H} denotes the cohomology of W x K2 based on cochains
which are invariant under the action of w. This isomorphism
was studied first by Eilenberg [10] who called it the equivariant
cohomology. To define W, it suffices therefore to define
W HY(K)—~ H2(W x K?. For simplicity, assume K is a
cell complex, and that W x K2 has as cells the products of cells
of 1ts factors. Then g in 3.1 1s a cellular mapping. Let u; be
a g-cocycle representing u € H4(K). Then u; ® u; is an inva-
riant 2¢g-cocycle of K X K where = acts by 7T (z,y) = (y, x).
Since ¢ is cellular, it induces a cochain mapping g7. Since
gT = Tg, it follows that g7 (u,; ® u,) is an invariant cocyecle,
and it thereby represents an element ¥ u in H2Y(W x K?2).
The fact that the w-cohomology class of g7 (u; ® u,) depends
only on the class of u; can be proved using Lemma 5.2 in [19].
This completes the definition of ¥ and hence of ¥,

If x e HY(K), by 3.2 the composition i* Wa decomposes into
a sum. Since H*(P) i1s the polynomial ring in U, this sum
has the form X; U**7/ @ v; where v; e H/(K) is a uniquely
defined function of z. It can be shown that, for j < ¢, each

v; = 0. The remaining v; are called the reduced squares of x.
Thus

q
(3.3) i*¥x =Y U1 @ Sq'x .
i=0

The advantage of this definition is that it analyzes the
previous definition in terms of two standard operations (the i*
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and the Kiinneth formula) and the single new operation V.
This simplifies the derivation of the properties of the Sq’, and
illuminates their origin.

Note that the projection W x, K2 — P is a fibration
with fibre K2, For each x € HY(K), x ® xz 1s a cohomology class
of the fibre. The element Wz is a canonical extension of x ® «
to a class on the total space.

4. THE ALGEBRAS OF REDUCED POWER OPERATIONS.

The definition of the reduced powers, given above for com-
plexes, extends to the Cech cohomology of general spaces by
taking direct limits of the operations in the nerves of coverings.
The extension to the singular theory, by the method of acyclic
models, has been carried through by Araki [4].

The main property of the squares 1s that

Sq': H(X; Z,) » H* ' (X; Z,)
15 @ homomorphism for each space X and each1=0,and1f f: X=Y

is a mapping, Sq’ commutes with the induced homomorphism f*
of cohomology. The principal algebraic properties are

(4.1) Sq°® = identity.

(4.2) Sq' = the Bockstein operator B of the coefficient
sequence
O—>Zz _">Z4_"‘>Zz_)0.

(4.3) If dim x = n, then Sq"z = z2.
(4.4) 1If dim z = n, then Sq'z = 0 for all ¢ > n.
(4.5) The Adem relations [2]: If a < 2b, then
'b—1 2/2l/p —j—1 o
a b __ atb atb—j Jj

(4.6) The Cartan formula [6]: If z,y € H*(X; Z,), then

Sa' () = Y54/ Sa /)

[ s X
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The generalization of the reduced powers to primes p > 2
takes on a somewhat unexpected form. Many of the terms in
the formula corresponding to 3.3 prove to be zero. The remain-
ing terms can be expressed using a sequence of homomorphisms

P HY(X;Z,) —> HPPeU(X;Z2,), i=0,1,2,..

and the Bockstein operator B of the coefficient sequence
0-2,-2,,—72,—0.

(The analogy with p = 2 associates 2, with Sa*.) Their alge-
braic properties are

(4.7) P — identity.
(4.8) If dim x = 2n, then 2" x = z”.
(4.9) If 2i > dim z, then 2z = 0.
(4.10) The Adem-Cartan relations [3, 9]: If a < pb, theu
J— :fi“ﬁ(’)](_l)a+i<(p—1l<f;;i> —1>gw+b_ig,i |
If a < pb + 1, then

a _[a/P] a+i /(p— 1) (b—l) atb—i gpi
ppr = 3 (=aynt (P70 g

f[a—1/p]

: et (=D B=i) =1\ oy
- i;O (=1 K a—ip—1 )‘@ p7".

(4.11) The Cartan formula [18]: If x,y € H*(X; Z,), then

P (xy) = ZO(@" NP7y, Bexy) = Bx)y+ (=1 x(By).

J
The algebra 7/, of the squaring operations is defined to be
the graded -associative algebra over Z, generated by the Sq*
(t =0,1,2,..) subject to the relations 4.1 and 4.5. Similarly,
for p > 2, o, is the graded associative algebra over Z, generated

by B and the 2 subject to the relations 4.7, 4.10 and P2 = 0.
Degrees are defined by deg (Sq) = ¢, deg (B) = 1, deg (2

IL’Enseignement mathém., t. VII, fasc. 1. 11
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= 2i(p — 1); and the degree of a monomial in the generators
1s the sum of the degrees of the factors. After these definitions,
it follows readily that, for each p, the cohomology H* (X; Z )
of a space X 1s a graded 7 ,-module.

As an abstract algebra, o7, has a complicated structure. It
is, of course, non-commutative. The Adem-Cartan relations
give a kind of commutation law. A monomial in the generators

Boo P fE gpra || PTE R (¢, =0 or 1)

1s called admissible if r; = prijy, +¢;forj=1,2, ...,k —1 and
re = 1. The Adem-Cartan relations are rules for expressing
inadmissible monomials in terms of admissible ones. Cartan
has shown [9] that the admissible monomials form a vector space
basis for o/ ,. Thus there is a normal form for an element of o7 ,.

Another consequence of the relations is the following result

of Adem [3]:

4.12. The algebra s, is generated by B and the 27 for
1= 0,1,2,..;and o, is generated by the Sq* fori = 0,1, 2, ... .

Let us see how this is proved for «7,. Assume, inductively,
that, for j < n, each Sq’ is in the subalgebra generated by
the Sq?. 1If n is not a power of 2, then n = a + 2* where
0 <a < 2k Set b = 2¥ and apply 4.5. The coefficient in 4.5
of Sq*"® = Sq" is congruent to 1 mod 2. It follows that Sq"
is decomposable as a sum of products of Sq’ witk j < n. The
‘nductive hypothesis now implies that Sq” is in the subalgebra
of the Sq2'.

5. NON-REALIZABILITY AS COHOMOLOGY ALGEBRAS.

The preceding results will now be used to show that many
of the graded algebras F (R, n)" on one generator of dimension n
and height & are not realizable. Recall that F(R, n)? is realized
by the n-sphere for each n and any ring R. So we shall restrict
attention to the cases 2 < 2 £ oo.

First let R = Z,, and assume that F(Z,, n)* is realized by
a space X. Letz e fi"(X; Z,) be the generator of H*(X; Z,).
Since h > 2, x? is not zero. By 4.3, Sq"z = 22 is not zero,
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By 4.12, Sq" is a sum of monomials in the Sq' (i =0,1,2,...).
This implies that Sq?’ z is not zero for some 2' < n. Its dimen-
sion n 4+ 2¢ is < 2n. Since the groups HY(X; Z,) = 0 for
n < q < 2n, it follows that 2 = n. This proves
5.1.  Ifnis not a power of 2, and 2 < h < o, then F(Z,, n)*

cannot be realized. |

Now let p be a prime > 2, and consider F(Z,, 2n)". Sup-
pose it is realized by a space X for a certain n and 2 > p. Then
the generator x € A*(X; Z,) is such that z? is non-zero In
H*""(X; Z,). By 4.8, 2"z = x? is not zero. By 4.12, 2" is
a sum of monomials in the 27" (1 = 0, 1, 2, ...). It follows that
some PP x # 0 where p' < n. Therefore the dimension
on + 2p' (p — 1) of 2" z must coincide with one of the non-
zero dimensions 2ns of H*(X; Z,). Then

n(s—1) = p'(p—1).

Since p' £ n, and n divides p’ (p — 1), it follows that n = p'm
where m divides p — 1. This proves

5.2.  If n is not of the form pi m where m divides p — 1, and
p <h =< oo, then F(Z,, 2n)" cannot be realized.

Passing to integer coefficients, we shall derive the following
complete result:

5.3. If 3 <h £ oo, then F(Z, 2n)" is realizable if and only
if n =1 or 2.

We have seen in § 2 that F(Z,2)* (F(Z, 4)") is realized by
the complex (quaternionic) projective (h— 1)-space. Conver-
sely, suppose X realizes F(Z,2n)". As H*(X; Z) has no tor-
sion, the universal coefficient theorem states that

H*(X;Z) ® Z, ~ H¥(X; Z,) .

Since the reduction mod p: H*(X; Z) -~ H*(X; Z,) is a ring
homomorphism, it follows that X realizes F(Z,, 2n)*. Taking
p = 2, 5.1 asserts that 2n = 2° for some s. Taking p = 3,
5.2 asserts that n = 3" or 2.3' for some ¢. Since both hold, we
have 2°7! = 3" or 2.3". This implies ¢ = 0, and therefore n = 1
or 2.
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If we knew only that 22 # 0, the above argument with p = 2
shows that n is a power of 2. Therefore

5.4. If n is not a power of 2, then F(Z, 2n)3 is not realizable.

Recall, by § 2, that F(Z, 8)3 and F(Z,, 8)® are realized by
the Cayley projective plane. However, by 5.3, F(Z, 8)* is not
realizable. This is in accord with the fact that there is no pro-
jective 3-space over the Cayley numbers (due to non-associat-
1vity).

We turn next to the case of odd dimensional generators.
Recall that F(Z, 2rn + 1)" is zero except for a Z in dimensions 0
and 2n + 1, and a Z, in dimensions (2n + 1)k for 1 < k < h.

5.5. If 2 <h £ oo, then F(Z,1)" is not realizable.

Assume X realizes F(Z, 1)". Let v: H¥(X; Z)~ H*(X; Z,)
be reduction mod 2, and let z € HY(X; Z) be the generator.
Then 22 is not zero and 22% = 0. It follows that xnz and
7n(2?) = (nx)? are not zero. By 4.3 and 4.2,

(nx)* = Sq' nx = Pnx .

But By is identically zero by the definition of 8. This contra-
diction proves 5.5.

A second proof of 5.5 is based on the Hopf theorem that there
exists a mapping f: X — ST (assuming X 1s a complex) such that
x = f* y where y generates H' (S, Z). Since y? = 0, it follows
that 22 = 0.

5.6. F(Z, 3) is realizable.

To see this, let Y be the suspension of the complex projective
plane CP2 If the latter is represented in the form 52 u e,
(a 2-sphere with a 4-cell attached by the Hopf mapping 53— §2),
then Y = §% U e; where ¢, 1s attached by the suspension of the
Hopf mapping. As this has order 2 in w,(53), the 5-cycle 2e;
is spherical. Hence we may adjoin a 6-cell to Y obtaining a
space X = S U e U ¢gsuch that deg = 2e;. It 1s easily checked
that H*(X; Z) has Z in dimensions 0 and 3, Z, in dimension 6,
and is otherwise 0. We must show that the square of the
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generator x € H3(X; Z) is non-zero in H® (X; Z). It is easily
checked that the diagram

g

H¥(X;Z2) - H*(X;Z,) 2 H3Y;Z,)
L f S¢? )/ . Sq® | Sq?
HS(X;Z) 2> HO(X; Z,) < HY (X; Z,) %> H(Y; Z,)

is commutative where f is the squaring operation, v and n’ are
reduction mod 2, and g, g’ are induced by the inclusion ¥ < X.
The relation BSq2 = Sq* Sq? = Sq? follows from 4.2, 4.5. All
of the indicated groups except H3(X; Z) are isomorphic to Z,.

It follows that = is an epimorphism, and %’ is an isomorphism.
Since Y has the same 5-skeleton as X, g is an isomorphism and
g’ is a monomorphism. But both groups being Z,, g’ is an iso-
morphism. Since de; = 2e;, it follows that £ is an isomorphism.
Because Sq? commutes with suspension and is an isomorphism
in CP?, it gives an isomorphism in Y. Thus all the mappings
of the diagram excepting f and v are isomorphisms. Since 7 is
an epimorphism, commutativity implies that fx = 22 is not zero.

The preceding results are about as far as one can go using
only the primary cohomology operations. There are secondary
cohomology operations corresponding to the relations among the
primary operations, and they are defined on a cohomology class
on which certain primary operations are zero. The secondary
operations have been exploited by J. F. Adams [1] to show that
there are no mappings S$**~!— S§" of Hopf invariant 1 in cases
other than n = 1, 2, 4 and 8. He proves this by showing that
Sq?’, which is not decomposable in «7,,is decomposable in terms
of secondary operations for each ¢ = 4. Using an argument
similar to the proof of 5.1, Adams obtains the result

57. If iz4 and 2 <h £ oo, then F(Zy 2 is not
realizable.

This and preceding results settle all cases for F(Z,, n)".
It is realizable precisely in the cases n = 1,2, and 4 with
3=h = o, and n = 8 with A = 3.

The result of Adams has been extended to primes p > 2 by
Liulevicius [13] and Shimada [17]. They have shown that 27’
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is decomposable in terms of secondary operations for each i > 1.
Using this result, 5.2 can be improved as follows:

5.8. If n is not a divisor of p—1, and p < h £ oo, then
F(Z,, 2n)" cannot be realized.

This leaves a good many unsettled cases. For example can
F(Z, 2 (p—1))® be realized for some p >5? Can F(Z;, 8)
be realized ? The cohomology of such a space would necessarily
have torsion involving the prime 3. Likewise unsettled are the
cases of F(Z,2n 4+ 1)" where n > 1, h > 2 and n =1, A > 3.
In view of the preceding results, it seems unlikely that any of
these can be realized.

For a rough summary, let us exclude the trivial cases 2 = 1, 2.
Then the only n’s for which F(R, n)* is known to be realizable
are Included among the integers 1, 2, 4 and 8. If R = Z, Z,,
or Z; it 1s not realizable for any other n. If R = Z , it is not
realizable for A > p and n > 2 (p — 1). In short, F (R, n)* is
not realizable except in rare cases involving small values of n
or h.

These negative conclusions have interesting implications in
algebra. The successful realizations were obtained by using
projective spaces over the real numbers, complex numbers,
quaternions, and Cayley numbers. If there 1s a real division
algebra on n units, we can use 1t to realize I'(Z,, n)?; hence our
non-existence results imply that n = 1, 2, 4 or 8. Again, since
F(Z;, 8)* is not realizable, it follows that there is no real,
associative division algebra on 8 units.

6. HoPF ALGEBRAS.

Historically, we started with the preconception that the
cohomology of a space is nothing more than a graded algebra,
and we asked if certain simple graded algebras could be realized.
On the whole we found that the answer was negative; and this
was shown by using the fact that the algebra o/, of reduced
powers operates in H*(X; Z,)). Our preconception was mis-
leading, the cohomology algebra of a space is something more
than a graded algebra. Just how much more is not yet clear.
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However a certain part of this additional structure can be
clarified ; and we shall do so in this and subsequent sections.

Let us recall the concept of a Hopf algebra A. In the first
place A is a graded, associative algebra over the ground ring R
with a unit and an augmentation e: A — R. The unit is regarded
as a homomorphism of algebras #: R — A defined by 5 (1) = 1,4
Define 4 ® A to be the graded module whose component of
degree r is given by

(A ® A, = ZoAq ® Ay -
=

The multiplication mappings A, ® A,—~ A4,,, are the com-
ponents of a mapping ¢: A ® A — A of graded R-modules. Define
an algebra structure in A ® 4 by

(@ ®@b)(a’ ®b) = (—1)""(aa’) ® (bD")

where ¢ = deg b, and r = deg @’. The final element of structure
is a “ diagonal mapping ”

Y4404

which is required to be a homomorphism of algebras with unit,
and to satisfy the conditions

(@Y =1®a, (I1®eVPa=a®1

as mappings A—~R ® A, and A—- A ® R.

Furthermore, ¥ is usually required to be associative, i.e. the
mappings (1 @ V)WV and (Y @ 1)¥ of 4 into A ® 4 ® 4
coincide. Sometimes ¥ is required to be commutative, 1.e.
TY =Y where T: A ® A~ A ® A 1s defined by T (¢ ® b)
= (—1)"Mb ® a where p = dega, ¢ = degb. In most appli-
cations, ¢ or ¥ is commutative, but rarely both.

The Hopf algebra structure thereby consists of the mappings

AL 4@Ad>4, RLA4SR.

The asymmetry in ¥ ¢ and v, € gives rise to a duality. The
graded module A together with a mapping ¥: 4 -4 ® 4 1is
called a coalgebra and e: A — R is called a unit for the coalgebra.
The requirement that ¥ be a homomorphism of algebras is
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equivalent to demanding that ¢ be a homomorphism of coalge-
bras. This compatibility of ¢, W is expressed in a neutral
fashion by requiring that the following diagram be commutative:

A® A iy A
1YY l
ARARAR®A '
N I®T®L l

ARARAR®ALLEAR A

The concept of Hopf algebra arose first in Hopf’s study [12]
of the homology of a group manifold G. The diagonal mapping
and the multiplication mapping

GGx G-%G
induce homomorphisms of homology over a field of coefficients
!I,* *
H,(G)— H,(G) ® H,(G) = H,.(G)

and the group homomorphisms 1 -G - 1 induce the unit and
augmentation. In this case ¥, is commutative. If, instead,
we pass to cohomology, then ¢* becomes the diagonal mapping,
and the multiplication ¥'* is commutative.

Because of this application to Lie groups, Hopf algebras
have been studied extensively. One of the best results, due to
Borel [5], assumes that R 1s a perfect field of characteristic p
and A has a commutative multiplication 4, ~ R and A4, is of
finite rank for each ¢. The conclusion is that, as an algebra,
A is a tensor product of subalgebras Bl, B2, ... each on a single
generator by, by, .... If p>2 and deg b; is odd, B* is an exterior
algebra (b = 0); and if p = 2, or if p >2 and deg b;is even, B
is either the polynomial ring on b;, or the polynomial ring trun-
cated by the relation b = 0 where % is a power of p.

It was Milnor [14] who observed that the reduced power
algebra &/, is a Hopf algebra with the diagonal mapping
defined by

PP = PRQPT, VY=BR1+1®p.

[ TS O S e B
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That ¥ is a homomorphism of algebras follows from 4.11. In
this case ¥ is commutative; so the dual Hopf algebra o, has
a commutative multiplication. Milnor found an explicit and
simple analysis of the structure of </ as a tensor product of
an exterior algebra and a polynomial algebra. Using an equally
explicit form for the diagonal of /), he was able to obtain
results on the structure of o/, as an algebra. In particular, it
is nilpotent.

It 1s to be emphasized that Hopf algebras have arisen in
algebraic topology in these two very natural but quite different
ways. This suggests that the concept is even more fundamental
than had been thought. The next sections are devoted to
developing the theme that Hopf algebras are basic because there
are strong, purely algebraic reasons for introducing them.

7. MopurLes ovER HoPF ALGEBRAS.

As a preliminary, let us review certain facts about the
category C'(R) of graded modules over the ground ring R. The
two functors X ® Y and Hom (X, Y), where ® and Hom are
taken over R, have values in C(R) when X, Y are in C(R).
The gradings of X ® Y and Hom (X, Y) are defined by

X®Y),= > X, ®Y,

ptg=r

Hom (X, Y), = [] Hom(X,,Y) .
b=

q r

The index of the gradings ranges over all integers.
Furthermore, there are natural equivalences

(7.1) RX~X~X®R, Hom(R,X)xX

obtained by identifying r @ 2 = rz =2z @ r, and f = f (1) for
f e Hom(R, X). The commutative law

(7.2) T XY ~xY QX

is a natural equivalence defined by 7(z @ y) = (— DMy @z
where z € X, and y € Y. The associative law
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(7.3) XR®Y)®Z~XQ®(Y ®2)

1s a natural equivalence obtained by identifying (z ® y) ® z
with 2 ® (y ® 2).

There are three more associative laws involving ® and Hom.
The first is a natural equivalence

(7.4) U:Hom (X ® Y,Z) ~ Hom (X, Hom (Y, Z))

defined by ((Uf)z)y = f(x ® y). The.second is a natural
transformation

(7.5) V:X ® Hom(Y,Z) - Hom (Hom (X, Y), Z)

defined by (V (z ® g)) h = (— 1)?@™") g (h (z)) where p = deg «z,
q = deg g, r = deg h. In case each X, is free and finitely
generated, then V is an isomorphism. The third is a natural
transformation

(7.6) W:Hom(X,Y)®Z - Hom(X, Y® Z)

defined by (W (h ® z)) v = (— 1)" (hx) ® z where z e X,
zeZ, and he Hom(X, Y). If X or Z is free and finitely
generated in each degree, then W is an isomorphism.

The fact that there are precisely four basic associative laws
involving ® and Hom may seem strange at first sight. But with
a modest change of notation, the strangeness disappears. Write
XY for X ® Y,and X\ 'Y for Hom (X, Y). Thinking of these
operations as multiplication and division, the associative laws take
on familiar forms, e.g. (7.4) becomes (XY)\Z = X\ (Y \ 2).
In case R is a field and everything is finitely generated, we can.
set X! = Hom (X, R), Hom (X, Y) = X ! ®Y; and then the
analogy becomes a strict equivalence.

Now let A be a graded associative algebra over R with a
unit, and let C(A) be the category of A-modules and A-ho-
momorphisms. Precisely, an object X of C(A4) is a graded
R-module together with a multiplication 4 ® X — X (i.e.
A, ® X,—~ X,,, for all p, q) satistying a,(a, ) = (a; a;) x and
1z = 2. An A-homomorphism f: X — Y satisfies f(ax) = af (x).

If X,YeC(A), then X ® Y 1s, in a natural way, an
(A ® A)-module (® means ®pg);

PR E S INE SR SRR QS R S e
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(7.7)  (@®a)(x®y) =(—-D"(ax) ® (@"y) ,

!/
a'ed,, xekX,.

The problem we shall consider is to give to X ® Y the structure
of an A-module so that the resulting tensor product 1s a functor
of two variables from C(4) to C(A) such that the isomorphisms
7.1 to 7.3 are also in C(A4). Stated briefly, can we convert the
tensor product to an internal operation in C'(4) so as to preserve
standard properties ?

The answer is that each diagonal mapping ¥: 4 -4 ® 4
which makes A into a Hopf algebra converts the tensor product
to an internal operation. In general, a homomorphism ¥':
A - B of algebras with unit defines a functor from C(B) to
C(A4) by the rule

A® X2 B®X - X foreach XeC(B).

Thus the condition for a Hopf algebra that W': A~ A4 ® A be
a homomorphism of algebras follows naturally from this general
principle.

If the isomorphism R ® X ~ X of 7.1 is to be meaningful
in C(A), then R as well as X must be an A-module. This means
a mapping A ® R— R of degree 0. Combining this with the
natural isomorphism A4 ~ A ® R vyields a homomorphism
e: A— R of algebras with unit. Thus a realization of Rin C(A)
coincides with an augmentation of A. Assume now that
R®A~A~AQ®R are A-mappings. It follows quickly
that ¢ is a left and right unit for the coalgebra defined by ¥
And this implies that R @ X ¥ X ~ X ® R are A-mappings
for each X € C(A).

Let us assume now that 7.2 is an A-mapping in the special
case X = Y = 4. Since Ya =a (1 ® 1), we have

TV = T@(1®1) =aTOlR®1) =a(1l1®1) = ¥Ya.

Therefore W' is commutative; and this implies that 7.2 is an
A-mapping for all X, Y e C(A).

Assume next that 7.3 is an A-mapping in the special case
X =Y =72Z=A. The statement “¥" is a homomorphism of
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algebras ” is easily seen to be equivalent to: “ ¥ is an A-mapp-
ing ”. Therefore

1®¥V)¥Y =1®¥)a(1®1) =a(1Q¥)(1Q1)
=a(1l1®(1®1)=a(1®DR1 =(¥Y1)¥a.

It follows that W is associative; and this implies that 7.3 is an
A-mapping for all X, ¥, Z e C(A).

We turn now to the functor Hom. If X, Y € C(4), then
Hom(X, Y) 1s an (A" ® A)-module where A’ denotes the
opposite algebra of A. The action is given by

(@ ®@a)f)x = (=1 af (a’ x)

where ¢, r, s are the degrees of a’, a, f, respectively. Assume
that A i1s a connected Hopf algebra, 1.e. A, ~ R. By a theorem
of Milnor and Moore [15], there is a unique isomorphism of
Hopf algebras c: A ~ A’ which satisfies the identity ¢ (¢ ® 1) ¥
= me. It follows that (c ® 1) ¥: 4+ 4" ® 4 i1s a homomor-
phism of algebras with unit, thereby reducing Hom (X, Y) to
an A-module. With no further assumptions on A, it can be
verified (by tedious calculations) that each of the natural trans-
formations 7.4, 7.5 and 7.6 are A-mappings for any X, Y, Z
in C(A).

To summarize, a Hopf algebra structure in A is precisely what
s needed to convert ® and Hom to internal operations tn C(A)
with the customary properties.

An important example of a category of modules over a Hopf
algebra is the category of chain complexes and chain mappings.
In this case the algebra A is the exterior algebra on one generator
) of degree — 1, 1.e. Ay =R, A_; ~ R with d as basis element,
and 20 = 0. A graded A-module 1s easily identified with the
concept of chain complex, and A-mappings with chain mappings.
In order that the tensor product of chain complexes shall have
the usual A-structure, we must define 'byPo=2® 1 + 1 ® .
But this is the only choice which makes A a Hopf algebra.

In the literature, various combinations of signs have been
used in defining the boundary operator in Hom(X, Y) where
X, Y are chain complexes. The point of view of this section
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leads to the formula

(@f)x = a(fx)+ (=D f(0x), r=degf.

8. ALGEBRAS OVER HOPF ALGEBRAS.

We have seen that a graded algebra is a graded R-module
X and an R-mapping w: X ® X— X. Suppose now that X
is also an A-module where A is a Hopf algebra over R. Then
X ® X is an A-module as defined in section 7. We define X
to be an algebra over the Hopf algebra A (briefly, an A-algebra)
if the multiplication mapping p: X ® X— X is an A-mapping.

In terms of elements a € A and x,, z, € X, the condition for p
to be an A-mapping takes the form

(8.1) a(xyx;) = Y (=D (a; %) (a7 x5)
where
Ya = %0, ®a; , p =deg x;, ¢; = deg a; .

It is to be observed that this concept of an algebra over a
Hopf algebra has arisen in a natural way. The discussion of
section 7 demonstrates its inevitability. This being true there
ought to be numerous examples.

The first, and for us the most important example, is the
cohomology algebra of a space H*(X; Z,) over the Hopf
algebra &/, of reduced power operations. The cup-product
formula

P* (X1 X,) = i (@ixﬂ (g)k—ixz) 5

k .
and the diagonal mapping ¥Y#* = Y 2' @ 2% show that
i=0

8.1 is satisfied.

Another example is provided by the differential, graded,
augmented algebras of Cartan [8]. In this case, X is an aug-
mented chain complex (i.e. a module over E (3, — 1), see § 7),

and a chain mapping u.: X ® X — X defines an algebra structure
in X.
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A trivial example is provided by any algebra X over R. Note
first that ¢: R ® R—~ R defined by ¢ (r; ® ry) = ryry, is an
isomorphism (recall that ® = ®z). Set¥ = ¢ ': R—~R Q@ R,
then ¢, ¥ give a natural structure of a Hopf algebra to the ground
ring R. It is easily checked that the natural R-structure in
X ® X coincides with that defined by ¥. Thus any algebra
over the ground ring is an algebra over the ground ring regarded
as a Hopf algebra.

As another example, let X be an algebra over R, and let =
be a group of automorphisms of the algebra X. ILet A be the
group ring of w= over R with the usual multiplication. Define
the diagonal ¥': A -4 ® A to be the mapping induced by the
diagonal mapping d: 71— X ®. Then A becomes a Hopf
algebra. Since any gem is an automorphism, g (z;z,) =
= (gx,) (gx,); and since dg = (g, g), it follows that 8.1 holds.
Thus any algebra is an algebra over the Hopf algebra of its auto-
morphism group.

9. UNIVERSAL A-ALGEBRAS.

The foregoing examples of algebras over Hopf algebras arose
naturally. We now show how to construct them in a wholesale
fashion.

Let A be any Hopf algebra. It is easy to construct many
modules over the algebra 4 (i.e. take quotients of A by left ideals,
and then take direct sums of these). Let M be any graded
A-module. Let M" denote the tensor product of n copies of M.
As in section 7, M" is an A-module. Form the direct sum

T(M) ~ i M"

where M° = R. Define p: T(M) @ T(M)—- T(M) in terms
of components ze M", ye M* by p2@®y) =2QyeM™*
making use of the associative law M" ®@ M° =~ M s, In this
way T (M) is an associative algebra. It is called the free asso-
ctative algebra generated by M (also, the tensor algebra of M).
Since the associative law M" ® M* ~ M""* is an A-mapping,
it follows that 7'(M) is an algebra over the Hopf algebra A.
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Form now the quotient of 7(M) by the ideal V generated
by elements

(9.2) x®y—(—1D"My ® x where xeM,, yeM,.

The quotient, denoted by U (M), is called the free, commutative
and assoctative algebra generated by M. If we assume that the
diagonal mapping ¥ of A is commutative, then it is readily
verified that NV is an A-submodule of 7 (M). Hence U(M)
becomes an algebra over the Hopf algebra A.

As is well known, the algebra 7' (M) is universal in the sense
that any R-mapping of M into an algebra X extends to a unique
mapping of algebras 7T (M)— X. Furthermore, if X 1s an
algebra over A, and M - X is an A-mapping, so alsois 7'(M)— X.
A similar statement holds for U (M) in case X 1s commutative.

Additional algebras over A can be constructed by taking a
submodule of T'(M) or U(M) forming the A-ideal it generates,
and passing to the quotient algebra. It is easily seen that any
A-algebra can be obtained as such a quotient.

In the special case where A is the algebra «/, of reduced
powers, only certain M’s are admissible, namely, those which
satisfy the dimensionality restriction 4.9: 2z = 0 whenever
2t > dim z. Moreover, in forming U(M), we must increase
the ideal N so as to include all elements of the form

(9.3) Z*x —(x®@x ® ... ® x) (p factors) , xe M,, .

This insures that the relation 4.8, namely, #*y = y? is valid
for y e U(M),,. (It is a pleasant exercise in the wuse of the
Adem-Cartan relations to show that N is an < ,-module.) With
these modifications, the resulting U (M) is meaningful for alge-
braic topology.

10. REFORMULATION OF THE PROBLEM.

We are now in a position to formulate a problem similar to
the one posed in section 2, but having a better chance of a posi-
tive solution. Recall that the algebra F(R, ¢)® of section 2 is
small in that it has a single generator but is otherwise as big as
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possible subject to being commutative and associative. We
found that, for many ¢’s, it is not an 7 ,-algebra, and hence
cannot be realized. In analogy, we shall construct U(Z,, q) the
free, commutative, associative o/ ,-algebra on one generator of
dimension g.

In o7 ,, let N(q) be the left ideal spanned by monomials in 8
and the #' each of which has a factored form Q' £° 2*Q where
2k +e>qg+degQ and ¢ =0 or 1. By 4.9, any such a
monomial gives zero when applied to a g-dimensional class. Set
M(q) = «/,/N(q) and define dimension by adding ¢ to the
degree in &/, Then M(g) is an &/ ,-module, the admissibility
condition 4.9 holds, 1t has a single o ,-basis element of dimen-
sion ¢, and 1t is the largest admissible .« -module on one element
of dimension ¢. Finally, set U(Z,, q) = U(M(g)) as defined
in section 9.

If now we ask whether U(Z,, q) is realizable, the answer is
Yes! It has been proved by Cartan [7] that U(Z, ¢q) 1s iso-
morphic as an 7 ,-algebra to the cohomology algebra of the
Eilenberg-MacLane complex K(Z,, q).

Having succeeded in realizing the free 7 ,-algebra on one
generator, it is natural to ask if quotients of this algebra can
be realized. For example, choose a y e U(Z,, q) and let W
be the quotient by the minimal ./, -ideal containing y. As
an approach to this question, let D be the canonical bundle
over K(Z,, gq) with y as its k-invariant. Precisely, the element
yeH"(K(Z,, q), Z,) determines a mapping f: K(Z,,q)— K(Z,, 1)
such that y is the image of the fundamental class of K(Z,, r).
Let E be the acyclic fibre space over K(Z, r) with fibre
K(Z, r—1). Then D is defined to be the fibre space over
K(Z,, q) induced by £ and f.

Unfortunately the complete structure of H*(D; Z,) is not
known. It is obvious that the projection g: X - K(Z,, q)
satisfies g*y = 0. Therefore the kernel of g* contains the
o ,-ideal generated by y. It is a reasonable conjecture that
they coincide, and that the o -algebra W on one generator and
one relation is contained in H*(D; Z,). It is definitely known
that W is not all of H*(D; Z,). To see this, it is only necessary
to recall that the elements of H*(K(Z, g); Z,) can be inter-
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preted as primary cohomology operations, and the elements of
H*(D; Z,) as secondary operations defined on cohomology
classes annihilated by y (see [1]). Numerous non-trivial
secondary operations have been found.

Thus to realize W as the cohomology algebra of a space, we
must modify D so as to eliminate the unwanted elements of
H*(D; Z,). But before trying this, we should reexamine our
objective. It was to construct a space whose cohomology has
a single generator and is maximal subject to a single relation.
In one sense D already satisfies our requirement. If we admit
secondary cohomology operations as well as the primary opera-
tions o7, then the g*-image of the generator of H*(K(Z,, q); Z,)
does in fact generate H*(D; Z,), and the latter is free in the
sense that there are no accidental relations. This is a restate-
ment of the identification of elements of H*(X; Z,) with
secondary operations associated with .

Thus, in attempting to realize W, we have tacitly assumed
that we know what is meant by “ one generator subject to one
relation ”. Our prejudices have again interposed themselves.
The correct procedure is to analyse fully the structure of
H*(D; Z,), and then we may know how to define the concept
of one generator subject to one relation.

Eventually we will want to know how to describe algebraically
the cohomology algebra on % generators subject to r; primary
relations, r, secondary relations, etc. We know already how to
realize this algebra using Eilenberg-MaclLane complexes and the
fibre space constructions of Postnikov [16]. But we are a long
way from being able to describe the algebra in direct algebraic
terms.
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