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THE COHOMOLOGY ALGEBRA OF A SPACE *)

by N. E. Steenrod

1. Introduction.

The history of the development of the concept of the coho-

mology algebra of a space is marked by quite a few wrong turns,
blind alleys, and fallacious preconceptions. The purpose of this
article is to trace this development with emphasis on the errors
that were made. This may be useful since the story is not yet
complete, and the final form of the concept is still to be
determined.

The key to the existence of the multiplication of cohomology
classes lay in the Alexander duality theorem, especially in the
form it was given by Pontrjagin in 1934: If A is a closed subset
of the 72-sphere SJ\ then, for any coefficient group G, the singular
homology group i7n_g_1(5"—A; G) is isomorphic to char Hq
(A; char G) where char means character group, and Hq is Cech

homology. This latter group coincides with what we now call
the cohomology group, and we denote it by Hq(A; G). Since
Hi(Sn) 0 for 0 < i < n, it follows by exactness that

Hq{A; G) « Hn_q^(Sn-X; G) * Hn_q(S>\ Sn —X; G)

for 0 < q < n— 1, the latter isomorphism being given by the
boundary operator. If G is a ring i?, the relative groups
Hr(Sn, Sn — A; R) admit an intersection theory in the sense of
Lefschetz, because Sn is a manifold. This induces a multiplication

(1.1) Hp(X; R) ® Hq(A; R) -> HP+%X; R)

To obtain a fully satisfactory duality theorem, it was necessary
to show that this multiplication is independent of the imbedding
and of n. During the years 1935 to 1938 this was achieved in
papers by Alexander, Cech, Gordon and Whitney. A direct

i) Talk delivered at the Zurich Colloquium on Differential Geometry and "Topology
June 1960.
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internal description was given of the groups Hq, and of the
multiplication 1.1. Their constructions were triumphs of ingenuity,
and it was puzzling that something so basic should be so difficult.
The difficulty was dissipated by Lefschetz in 1942 when he
showed that the multiplication is the composition of the cross-
product with values in Hp+q(XxX; R) followed by the homo-
morphism induced by the diagonal mapping X -*• X X X.

The upshot was a readily defined product, easily proved to
be associative, to have a unit in dimension 0, and to satisfy the
commutation law

(1.2) xy=(-l)pqxy, xeHp,yeHq.
With this success there was great hope that the multiplication
would lead to deeper insight into the topology of spaces. To
give this hope a precise formulation, one spoke of the cohomology
algebra H*(X; R). It was defined to be the direct sum
Zq~o Hq(X; R) with the multiplication determined by the
multiplications of the component parts. It is clearly an associative
algebra with unit. And now one can ask if the theory of algebras
can be brought to bear on topological problems via H* (A; R).

The above definition of H* constituted a wrong turn into a

blind alley. It is an error which has not yet been fully erased.
The mistake lay in forming the direct sum over the dimensional
index q. No one has yet found a valid geometric reason for
adding cohomology classes of different dimensions. The only
algebraic reason for doing so was to make H* into a familiar
algebraic object. This was a forcing of the mathematics into a

preconceived pattern. There was no gain in doing so. For
example, the interesting part of the algebra is the sum Zq>0 Hq\
but if A is a finite complex, this part lies in the radical of H*.
Unfortunately, algebraic theory has little to say about the
radical. Its major results concern the quotient by the radical.
Even worse, H* is badly non-commutative in spite of the fact
that the rule 1.2 for commuting two elements is just as useful as

the commutative law xy yx.
It has now come to be recognized that the proper algebraic

concept, to which the cohomology of a space conforms, is that
of a graded algebra. A graded algebra A is, first of all, a sequence
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{ Aq}, q 0, 1, 2, of i?-modules. Thus, an element of A is

an element of some Aq, and q is called its degree. Elements may
be added only if they have the same degree. In addition, homo-

morphisms Ap ® Aq -> Ap+q are given for all p, q ^ 0. These

dehne a bilinear product xy for all x7 y g A. The product is

required to be associative.
An ordinary algebra C is converted into a graded algebra A

by setting A0 C and Aq 0 for q > 0. In this way, a graded
algebra is a generalization of the notion of an algebra. Thus

we are free to generalize the properties of algebras to graded
algebras in any convenient manner which conforms in degree 0.

In particular, a graded algebra A is called commutative if
xy (— l)pq yx for all x e Ap and y e Aq. Thus, what was once
called the att£i-commutative law is now called the commutative
law. And the cohomology algebra of a space is an associative,
commutative, graded algebra.

A unit of a graded algebra A is an element 1 e4° such that
ix x — xl for allied. An augmentation s of A is a homo-
morphism s: AR of graded algebras with unit. Thus s (Aq) 0

for q > 0, and s (1) 1. In case s gives an isomorphism in
degree 0, A0 « R, then A is called connected.

If P is a space consisting of a single point, it is clear that
H*(P; R) — R as a graded algebra. For any space A, the
mapping 73: X-> P induces a monomorphism 7]*: R->H*(X; R)
and 7)* (1) is the unique unit of R). Finally, any mapping

P-> X induces an augmentation of R). Clearly X
is arcwise connected if and only if H*(X; R) is connected; and
then the augmentation is unique.

2. Realizing a graded algebra as a cohomology
ALGEBRA.

Let Z denote the ring of integers. It is well known that,
if B is a graded Z-module such that R° Z, R1 is free, and Bn
is finitely generated for each n, then there is a space X which
realizes B in that #*(X; Z) « B. One solves this problem, for
a single dimension n, by a cluster Cn of ^-spheres and (n + 1)-
cells ; and then the general case is solved by a union of the Cn's
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with a common point. If Z is replaced by another of the simpler
ground rings, there are no serious difficulties in solving the
realization problem.

Suppose however that B is a graded, commutative,
associative and connected algebra over R. A realization of B is a

space X such that H*(X;R) & B as graded algebras. The

problem of deciding when a given B is realizable has not been

solved, and is very difficult. To make the problem precise, we
shall use singular cohomology groups, and require A to be a

CIF-complex. A natural attack on the problem is to consider
first the case of certain simple i?'s, and then pass to more
complicated ones.

Let F(R, n)°° denote the graded, free, commutative,
associative, and connected algebra over R on one generator x of
dimension n; and let F(R, n)h be the quotient algebra obtained
by setting xh 0 (h height of x). Thus, if n is even,
F{R1 n)00 is the " polynomial " algebra of x, i.e. the monomials
1 — x°, x1, xk, form a module basis; and it is a free i?-mo-
dule. If n is odd, the commutative law demands that 2x2 0,

so 2xk 0 for all k ^ 2. Thus the kn dimensional part is

isomorphic to R/2R for k ^ 2. Setting xh — 0 replaces all
component groups in dimensions ^ hn by zero.

We will discuss the problem of realizing F(R1 n)h in the
special cases where R is the ring Z of integers, or the field Zp
of integers reduced modulo a prime p. First, we will list three
trivial cases.

The space consisting of a single point realizes F(R, n)1 for
all R and n.

The /z-sphere Sn realizes F(R, n)2 for all R and n.

If n is odd, Sn also realizes F(R, n)h for all 2 ^ h ^ go

providing R/2R — 0, because the relation 2x2 0 must then
imply that x2 0 ; so h is effectively 2. The condition R/2R 0

holds for R Zp, p > 2.

The projective spaces over the real numbers, complex
numbers and quaternions provide realizations of quite a few of
the F's. Consider first the real projective /z-space Pn. Taking
R Z2, Hq(Pn) rü Z2 for 0 ^ q ^ zz, and the non-trivial
element is represented by any subspace Pq c= Pn. Now any Pq
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can be made the intersection of w — q projective (n — l)-sub-

spaces. The duality between intersections of cycles and

products of cocycles shows that H*(Pn;Z2) ~ F(Z2, l)n+1. Let
P00 be the union of a sequence P° cz P1 c c Pn a
Then P00 realizes F(Z2l l)00.

The complex projective /z-space CPn has real dimension 2n.

It has no torsion, its odd dimensional Betti numbers are zero,
and its Betti number is 1 in each even dimension ^ 2n. A

generator of U2q(CPn] R) is provided by any projective subspace
CPq c CPn. Again, the duality between intersections and

products shows that H*(CPn; R) & F(R, 2)n+1 for any R.

Forming CP00, as above, realizes F(R, 2)00.

The quaternionic projective zz-space QPn has real dimension

4zz, no torsion, and non-zero Betti numbers equal to 1 in dimensions

4q ^ 4n. A similar argument shows that QPn realizes

P(P, 4)"+1 for each R and each n ^ go.

The Cayley numbers (on 8 units) is non-associative. As a

result the usual notion of the equivalence of two sets of

homogeneous coordinates fails to be transitive; hence there is no

Cayley projective zz-space. An exception is n 2, because any
two Cayley numbers generate an associative subalgebra. Using
this, Hopf [11] constructed a Cayley projective plane M of real
dimension 16. It has no torsion, and its non-zero Betti numbers
are equal to 1 in dimensions 0, 8 and 16. An appropriate
argument shows that M realizes P(P, 8)3 for any R.

The preceding results are very encouraging, a great many of
the P's are realized by spaces which are not too complicated.
One might be led by these to expect that any F can be realized.
A bit of ingenuity in putting spaces together should do the trick.
Once the case of one generator is thus solved, the special case of

many generators given by a tensor product of P's for various As
and F s, can be solved by cartesian products of the separate
realizations. Thus it begins to appear likely that any graded,
commutative and associative algebra can be realized.

The historical fact is that topologists were lulled to sleep by
the above considerations. Their preconception of the nature of
the cohomology algebra appeared to be justified. However they
were awakened abruptly in 1952 by the result of Adem [2] which
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states: If n is not a power of 2, and 3 ^ h ^ oo, then F(Z2, n)h

cannot be realized.
Subsequent revelations showed that the situation is even

worse: the preceding examples of realizations of i*7's are nearly
all that exist. The method for proving this uses the fact that
the cyclic reduced pth powers, which operate in the algebra
H*(X; Zp), satisfy certain relations. In the next three sections
we will discuss these operations, and their implications for the
realization problem.

3. Construction of the squaring operations.

Before presenting the algebra of the reduced power operations,

it may be worthwhile to give a recently improved form
of the definition of the operations themselves. For simplicity
we restrict ourselves to the case of the prime 2.

Let 7T be a cyclic group of order 2 with generator T {T2 — 1).

Let W be an acyclic complex on which iz acts freely.
Algebraically, IT is a free resolution of Z over iz. Geometrically,
W can be taken to be the union of an infinite sequence of spheres
iS0 c= S1 a cz Sn c where each is the equator of its
successor, and T is the antipodal transformation. Identifying
equivalent points under iz gives the infinite dimensional real

projective space P with W as its 2-fold covering. Recall that
H*(P;Z2) is the polynomial ring F(Z2, l)00 on the one dimensional

generator U.

Let K be any space, form the cartesian product W X K x if,
and let iz act in this space by T{w,x,y) (Tw,y,x). Then
T has no fixed points. Identifying equivalent points gives a

space, denoted by W X n A2, which is covered twice by IT X if2.
Imbed W X K in W X if2 by (w, x) -> (<v, x, x). Then n transforms

W X K into itself with T (w, x) (Tw,x). It follows
that W X K covers a subspace P x K imbedded in W X n K2.

This gives the diagram

(3.1) Px K-^W xnK2^-Wx K2--^ K2

where i is the inclusion, h is the covering, and g is the obvious

projection.
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The squaring operations will be defined by the following
diagram of cohomology with coefficients Z2:

(3.2) H"(K)^H2q(Wx„ H2q(PxK)
2<Z

X H2q~j(P) ® Hj(K)
j o

The function Y is still to be defined. The equality on the

right is the standard decomposition of the Künneth theorem

H*{P x if) H*(P) ®H*(K).
To define Y, recall that h defines an isomorphism

H*(W x nK2) « tf*(Y x X2)

where if* denotes the cohomology of TT X if2 based on cochains
which are invariant under the action of tu. This isomorphism
was studied first by Eilenberg [10] who called it the equwariant
cohomology. To define Y, it suffices therefore to define

Y': Hq(K) -> Hlq(W X if2). For simplicity, assume if is a

cell complex, and that W X if2 has as cells the products of cells
of its factors. Then g in 3.1 is a cellular mapping. Let u± be

a ^-cocycle representing u eHq(K). Then u1 ® u± is an invariant

2g-cocycle of if X if where iz acts by T (x, y) (y, x).
Since g is cellular, it induces a cochain mapping Since

gT Tg, it follows that g# {ux ® u-^) is an invariant cocycle,
and it thereby represents an element Yr u in H2%q(W X if2).
The fact that the 7u-cohomology class of g# (üq ® ux) depends
only on the class of ux can be proved using Lemma 5.2 in [19].
This completes the definition of Y' and hence of Y.

If x e IT (if), by 3.2 the composition Yx decomposes into
a sum. Since H*(P) is the polynomial ring in £/, this sum
has the form Jjj U2q~J ® Vj where VjeHj{K) is a uniquely
defined function of x. It can be shown that, for / < g, each

Vj 0. The remaining Vj are called the reduced squares of x.
Thus

(3.3) i* Wx £ Uq~i ® Sq'x
i 0

The advantage of this definition is that it analyzes the
previous definition in terms of two standard operations (the i*



160 N. E. STEENROD

and the Kiinneth formula) and the single new operation Y.
This simplifies the derivation of the properties of the Sq1, and
illuminates their origin.

Note that the projection W xn K2 -> P is a fibration
with fibre if2. For each x e Hq(K), x ® x is a cohomology class

of the fibre. The element Yx is a canonical extension of x ® x
to a class on the total space.

4. The algebras of reduced power operations.

The definition of the reduced powers, given above for
complexes, extends to the Cech cohomology of general spaces by
taking direct limits of the operations in the nerves of coverings.
The extension to the singular theory, by the method of acyclic
models, has been carried through by Araki [4].

The main property of the squares is that

Sqi:Hq(X;Z2)^Hq+i(X;Z2)

is a homomorphism for each space X and each i A 0, and if / : X-> Y
is a mapping, Sq1 commutes with the induced homomorphism /*
of cohomology. The principal algebraic properties are

(4.1) Sq° identity.

(4.2) Sq1 ~ the Bockstein operator ß of the coefficient

sequence
0 —» Z2 —> Z4 —> Z2 —> 0

(4.3) If dim x n, then Sq" x x2.

(4.4) If dim x n, then Sq1 x 0 for all i > n.

(4.5) The Adem relations [2] : If a < 26, then

Sq'Sq* - yjSq-' + Ty^-^q""-'^
(4.6) The Gartan formula [6]: If x, y e H*(X\ Z2), then

SqV(xy) f (Sq' .vXSq'' Cr) •

j-o



THE COHOMOLOGY ALGEBRA OF A SPACE 161

The generalization of the reduced powers to primes p > 2

takes on a somewhat unexpected form. Many of the terms in
the formula corresponding to 3.3 prove to be zero. The remaining

terms can be expressed using a sequence of homomorphisms

^p: Hq(X;Zp) -> Hq+2i(p~1) (X;Zp) i 0, 1,2,

and the Bockstein operator ß of the coefficient sequence

0 - Zp - Zp2 - Z, 0

(The analogy with p 2 associates with Sa2î.) Their
algebraic properties are

(4.7) — identity.

(4.8) If dim x — 2n, then x xp.

(4.9) If 2i > dim x, then 0>l x — 0.

(4.10) The Adem-Cartan relations [3, 9]: If a < pb, then

0>a 0>b / _ ±y + i f(P ~~ 1) "~Z") ~~ A 0>a + b~i 0>i ^

i=o \ a — ip J

If a < pb + 1, then

o/p] /(„ 1 \(U _ A\
(_ i)«+ i / ^ \ß0>a + b-i0>i

i=o \ a—ip J

+c x'(-ir1+1((p"1)(6",i"1W+b-'^.
i=o \ « - </' -1 '

(4.11) The Cartan formula [18]: If x, y e H*(X; Zp), then

i

(xy) £(0>J x) (SP1-' y) ß (ßx) + -1 )dimx x
j O

The algebra j/2 °f I^e squaring operations is defined to be
the graded associative algebra over Z2 generated by the Sq®

(I 0, 1, 2, subject to the relations 4.1 and 4.5. Similarly,
for p > 2, sép is the graded associative algebra over Zp generated
by ß and the PPl subject to the relations 4.7, 4.10 and ß2 0.

Degrees are defined by deg (Sql) &, deg (ß) 1, deg (^')

L'Enseignement mathém., t. VII, fasc. 1.
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2i(p — 1); and the degree of a monomial in the generators
is the sum of the degrees of the factors. After these definitions,
it follows readily that, for each /?, the cohomology H* (X; Zp)
of a space X is a graded ^-module.

As an abstract algebra, sé
p

has a complicated structure. It
is, of course, non-commutative. The Adem-Cartan relations
give a kind of commutation law. A monomial in the generators

ß£° 0>ri ßEl ^ 0>rkß£k (sj 0 or 1)

is called admissible if r,- ^ prj+1 + zj for / 1, 2, k — 1 and

rk ^ 1. The Adem-Cartan relations are rules for expressing
inadmissible monomials in terms of admissible ones. Cartan
has shown [9] that the admissible monomials form a vector space
basis for sé p. Thus there is a normal form for an element of sép.

Another consequence of the relations is the following result
of Adem [3]:

4.12. The algebra sép is generated by ß and the &pl for
i — 0, 1,2, ; and sé2 is generated by the Sq21 for i 0, 1, 2,

Let us see how this is proved for sé2. Assume, inductively,
that, for / < n, each Sq-7 is in the subalgebra generated by
the Sq2\ If n is not a power of 2, then n a + 2k where
0 < a < 2k. Set b — 2k and apply 4.5. The coefficient in 4.5
of Sqa+b Sqn is congruent to 1 mod 2. It follows that Sqn

is decomposable as a sum of products of Sq-7 witt. / < n. The
mductive hypothesis now implies that Sq" is in the subalgebra
of the Sq25

5. Non-realizability as cohomology algebras.

The preceding results will now be used to show that many
of the graded algebras F(R, n)h on one generator of dimension n
and height h are not realizable. Recall that F(R, n)2 is realized

by the 72-sphere for each n and any ring R. So we shall restrict
attention to the cases 2 < h ^ oo.

First let R Z2, and assume that i7'(Z2, n)h is realized by
a space X. Let x eHn(X] Z2) be the generator of H*(X; Z2).
Since h > 2, x2 is not zero. By 4.3, Sq" x x2 is not zero.
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By 4.12, Sqn is a sum of monomials in the Sq21 (i 0,1, 2,...).
This implies that Sq21 x is not zero for some 21 ^ n. Its dimension

n + 21 is ^ 2n. Since the groups Hq(X; Z2) 0 for
n < q < 2n, it follows that 2* -= n. This proves

5.1., If n is not a power of 2, and 2 < h ^ oo, then F(Z2, n)h

cannot be realized.
Now let p be a prime > 2, and consider F(Zp, 2n)h. Suppose

it is realized by a space X for a certain n and h > p. Then
the generator xeH2n{X',Zp) is such that xp is non-zero in
H2np(X; Zp). By 4.8, EPn x xp is not zero. By 4.12, PPn is

a sum of monomials in the EPpX (i 0, 1, 2, It follows that
some EPpX x ^ 0 where pl ^ n. Therefore the dimension
2n + 2pl (p — 1) of EPpX x must coincide with one of the nonzero

dimensions 2ns of H*(X\ Zp). Then

n(s-l) pi(p- 1)

Since pl ^ n1 and n divides pl (p — 1), it follows that n p1 m
where m divides p — 1. This proves

5.2. If n is not of the form p* m where m divides p — 1, and

p < h ^ oo, then F(Zp, 2n)h cannot be realized.

Passing to integer coefficients, we shall derive the following
complete result:

5.3. If 3 < h ^ oo, then F(Z, 2n)h is realizable if and only
if n 1 or 2.

We have seen in § 2 that F(Z1 2)h (F(Z, 4)Ä) is realized by
the complex (quaternionic) projective (h—l)-space. Conversely,

suppose X realizes F(Z, 2n)\ As H*(X; Z) has no
torsion, the universal coefficient theorem states that

H*(X;Z)®Zp*H*(X;Zp).
Since the reduction mod p: H*(X; Z) -> #*(X; Zp) is a ring
homomorphism, it follows that X realizes F(Zp, 2n)h. Taking
p 2, 5.1 asserts that 2n 2s for some 5. Taking p 3,
5.2 asserts that n 3f or 2.3* for some t. Since both hold, we
have 2s"1 — 3' or 2.35 This implies t 0, and therefore n= 1

or 2.
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If we knew only that x2 #= 0, the above argument with p — 2

shows that n is a power of 2. Therefore

5.4. If n is not a power of 2, then F(Z, 2n)3 is not realizable.

Recall, by § 2, that F(Z, 8)3 and F(Zp, 8)3 are realized by
the Cayley projective plane. However, by 5.3, F{Z, 8)4 is not
realizable. This is in accord with the fact that there is no
projective 3-space over the Cayley numbers (due to non-associativity).

We turn next to the case of odd dimensional generators.
Recall that F(Z, 2n -f- l)h is zero except for a Z in dimensions 0

and 2n + 1, and a Z2 in dimensions (2n + 1) k for 1 < k < h.

5.5. If 2 < h ^ oo, then F(Z, l)h is not realizable.

Assume X realizes F(Z, l)\ Let yj: tf*(A; Z)->tf*(X; Z2)
be reduction mod 2, and let xeH1(X]Z) be the generator.
Then x2 is not zero and 2x2 — 0. It follows that r\x and
ri(x2) — (r\x)2 are not zero. By 4.3 and 4.2,

(rjx)2 Sq1 tjx ßr\x

But ßvj is identically zero by the definition of ß. This contradiction

proves 5.5.

A second proof of 5.5 is based on the Hopf theorem that there
exists a mapping /: X -> S1 (assuming A is a complex) such that
x — f* y where y generates H^S1, Z). Since y2 0, it follows
that x2 ~ 0.

5.6. F(Z, 3)3 is realizable.

To see this, let Y be the suspension of the complex projective
plane CP2. If the latter is represented in the form S2 u e4

(a 2-sphere with a 4-cell attached by the Hopf mapping S3^ S2),

then Y S2 u e5 where e5 is attached by the suspension of the

Hopf mapping. As This has order 2 in the 5-cycle 2e5

is spherical. Hence we may adjoin a 6-cell to Y obtaining a

space X S3 u e5 u eß such that 7>eß 2c5. It is easily checked

that //*(A; Z) has Z in dimensions 0 and 3, Z2 in dimension 6,

and is otherwise 0. We must show that the square of the
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generator x e H3(X;Z)isnon-zero in (X; It is easily-

checked that the diagram

H\X;Z)-V H3(X;Z2)
if Sq3 / \ Sq2 1 Sq2

H6(X; Z) H6(*; Z2) ff5 (X; Z2)

is commutative where / is the squaring operation, rj and v\ are

reduction mod 2, and g, gf are induced by the inclusion Y c= X.
The relation ßSq2 Sq1 Sq2 — Sq3 follows from 4.2, 4.5. All
of the indicated groups except 773(X; Z) are isomorphic to Z2.

It follows that 7] is an epimorphism, and y\ is an isomorphism.
Since Y has the same 5-skeleton as A, g is an isomorphism and

g' is a monomorphism. But both groups being Z2, g' is an
isomorphism. Since de6 2c5, it follows that ß is an isomorphism.
Because Sq2 commutes with suspension and is an isomorphism
in CP2, it gives an isomorphism in Y. Thus all the mappings
of the diagram excepting / and r\ are isomorphisms. Since vj is

an epimorphism, commutativity implies that fx — x2 is not zero.
The preceding results are about as far as one can go using

only the primary cohomology operations. There are secondary
cohomology operations corresponding to the relations among the
primary operations, and they are defined on a cohomology class

on which certain primary operations are zero. The secondary
operations have been exploited by J. F. Adams [1] to show that
there are no mappings S2n~1 -> Sn of Hopf invariant 1 in cases
other than n 1, 2, 4 and 8. He proves this by showing that
Sq21, which is not decomposable in is decomposable in terms
of secondary operations for each i ^ 4. Using an argument
similar to the proof of 5.1, Adams obtains the result

5.7. If i ^ 4 and 2 < h <; oo, then F(Z2, 2£)Ä is not
realizable.

This and preceding results settle all cases for F(Z2, n)h.

It is realizable precisely in the cases n 1,2, and 4 with
3 ^ h oo, and n — 8 with h 3.

The result of Adams has been extended to primes p > 2 by
Liulevicius [13] and Shimada [17]. They have shown that 0>pi
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is decomposable in terms of secondary operations for each i ^ 1.

Using this result, 5.2 can be improved as follows:

5.8. If n is not a divisor of p — 1, and p < h ^ oo, then
F (Zp, 2n)h cannot be realized.

This leaves a good many unsettled cases. For example can
F(Zp, 2 (p — l))3 be realized for some p > 5 Can F(Z5, 8)4
be realized The cohomology of such a space would necessarily
have torsion involving the prime 3. Likewise unsettled are the
cases of F(Z, 2n -f 1)h where n > 1, h > 2 and n 1, h > 3.

In view of the preceding results, it seems unlikely that any of
these can be realized.

For a rough summary, let us exclude the trivial cases h 1,2.
Then the only ri*s for which F(R, n)h is known to be realizable
are included among the integers 1, 2, 4 and 8. If R
or Z3 it is not realizable for any other n. If R Zp, it is not
realizable for h > p and n > 2 (p — 1). In short, F(R, n)h is

not realizable except in rare cases involving small values of n
or h.

These negative conclusions have interesting implications in
algebra. The successful realizations were obtained by using
projective spaces over the real numbers, complex numbers,
quaternions, and Cayley numbers. If there is a real division
algebra on n units, we can use it to realize F(Z2l n)3; hence our
non-existence results imply that n 1, 2, 4 or 8. Again, since

jF(Z3, 8)4 is not realizable, it follows that there is no rea],
associative division algebra on 8 units.

6. Hopf algebras.

Historically, we started with the preconception that the
cohomology of a space is nothing more than a graded algebra,
and we asked if certain simple graded algebras could be realized.
On the whole we found that the answer was negative ; and this
was shown by using the fact that the algebra sip

of reduced

powers operates in H*(X; Zp). Our preconception was
misleading, the cohomology algebra of a space is something more
than a graded algebra. Just how much more is not yet clear.
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However a certain part of this additional structure can be

clarified; and we shall do so in this and subsequent sections.

Let us recall the concept of a Hopf algebra A. In the first

place H is a graded, associative algebra over the ground ring R

with a unit and an augmentation g : R. The unit is regarded

as a homomorphism of algebras rj: defined by rj (1Ä) lA-

Define A® Ato be the graded module whose component of

degree r is given by
r

(A ® A)r Yj Äq ® Ar-q '
q 0

The multiplication mappings Ap®Aq->Ap+q are the

components of a mapping cp: A ®A -*A of graded f?-modules. Define

an algebra structure in A ® A by

(a ® b) (af ® b') - l)qr {aa') ® (&&')

where q deg b, and r deg a'. The final element of structure
is a " diagonal mapping "

W: A -> A ® A

which is required to be a homomorphism of algebras with unit,
and to satisfy the conditions

(s ® 1) Wa 1 ® a (1 ® s) Wa a ® 1

as mappings A R ® A, and A -> A ® R.

Furthermore, T is usually required to be associative, i.e. the

mappings (1 ® Y) Y and (T ® 1) T of A into A ® A ® A
coincide. Sometimes is required to be commutative, i.e.

TY Y where T:A®A-+A®A is defined by T (a ® b)

(— l)pq b ® a where p deg a, q — deg b. In most
applications, cp or T is commutative, but rarely both.

The Hopf algebra structure thereby consists of the mappings

The asymmetry in T, cp and y), s gives rise to a duality. The
graded module A together with a mapping Y : A A ® A is
called a coalgebra and s: A -> R is called a unit for the coalgebra.
The requirement that Y be a homomorphism of algebras is
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equivalent to demanding that 9 be a homomorphism of coalge-
bras. This compatibility of 9, Y is expressed in a neutral
fashion by requiring that the following diagram be commutative :

A® A A

IV ®V
A ® A ® A ® A W\ 1 0 T®1

A ® A ® A ® A —5* A ® A

The concept of Hopf algebra arose first in Hopfs study [12]
of the homology of a group manifold G. The diagonal mapping
and the multiplication mapping

G^+Gx G

induce homomorphisms of homology over a field of coefficients

H*(G)^ H*(G) 0 ff„(G)

and the group homomorphisms 1 -> G -> 1 induce the unit and

augmentation. In this case Y* is commutative. If, instead,
we pass to cohomology, then 9* becomes the diagonal mapping,
and the multiplication Y* is commutative.

Because of this application to Lie groups, Hopf algebras
have been studied extensively. One of the best results, due to
Borel [5], assumes that R is a perfect field of characteristic p
and A has a commutative multiplication A0 & R and Aq is of
finite rank for each q. The conclusion is that, as an algebra,
A is a tensor product of subalgebras Blf B2, each on a single
generator b2l If p>2 and deg bf is odd, Bl is an exterior
algebra (bf 0); and if p 2, or if p >2 and deg bt is even, Bl
is either the polynomial ring on bh or the polynomial ring
truncated by the relation b\ — 0 where h is a power of p.

It was Milnor [14] who observed that the reduced power
algebra sép is a Hopf algebra with the diagonal mapping
defined bv

¥ 0>k Iki=z 0 0* ® Wß=ß®l+l®ß
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That Y is a homomorphism of algebras follows from 4.11. In
this case Y is commutative; so the dual Hopf algebra j/* has

a commutative multiplication. Milnor found an explicit and

simple analysis of the structure of sé* as a tensor product of
an exterior algebra and a polynomial algebra. Using an equally
explicit form for the diagonal of .o/*, he was able to obtain
results on the structure of sép as an algebra. In particular, it
is nilpotent.

It is to be emphasized that Hopf algebras have arisen in
algebraic topology in these two very natural but quite different
ways. This suggests that the concept is even more fundamental
than had been thought. The next sections are devoted to
developing the theme that Hopf algebras are basic because there
are strong, purely algebraic reasons for introducing them.

7. Modules over Hopf algebras.

As a preliminary, let us review certain facts about the
category C(R) of graded modules over the ground ring R. The
two functors A ® Y and Horn (A, T), where ® and Horn are
taken over R, have values in C(R) when A, Y are in C(R).
The gradings of X ® Y and Horn (A, Y) are defined' by

(A ® Y)r I Ap ® Yq
p + q r

Horn (X,Y),J] Hompfp, Yq)
q-p r

The index of the gradings ranges over all integers.
Furthermore, there are natural equivalences

(7.1) R®XxXxX®R,Horn (R,X)xsX

obtained by identifying r®x rxx,and / (1) for
f e Hom(i?, X). The commutative law

(7.2) T:X®YxY®X
is a natural equivalence defined by T(x <g> (— i)pq y ® x
where x e Xp and y e Yq. The associative law



170 N. E. STEENROD

(7.3) (X ® 7) ® Z « X ® (7 ® Z)

is a natural equivalence obtained by identifying (x ® y) ® z

with x ® (y ® jz).

There are three more associative laws involving ® and Horn.
The first is a natural equivalence

(7.4) U: Horn (X ® 7, Z) « Hom(X, Horn (7, Z))

defined by ((£//) x) y f (x ® y). The. second is a natural
transformation

(7.5) V : X ® Horn (7, Z) -> Horn (Horn (X, 7), Z)

defined by V (x ® g)) h (—- l)p(q+r) g (k (x)) where p deg x,
q deg g, r deg h. In case each Xp is free and finitely
generated, then V is an isomorphism. The third is a natural
transformation

(7.6) W: Horn (X, 7) ® Z -> Hom(X, 7® Z)

defined by (W (h ® z)) x — (—- 1)M (hx) ® jz where x e Xp,
z e Zq and AeHom(I, 7). If X or Z is free and finitely
generated in each degree, then W is an isomorphism.

The fact that there are precisely four basic associative laws

involving ® and Horn may seem strange at first sight. But with
a modest change of notation, the strangeness disappears. Write
17 for X ® 7, and X\Y for Hom(X, 7). Thinking of these

operations as multiplication and division, the associative laws take
on familiar forms, e.g. (7.4) becomes (XY)\Z X\(Y\Z).
In case R is a field and everything is finitely generated, we can.

set X"1 Hom(X, Ä), HomfX, 7) X"1 ® 7; and then the
analogy becomes a strict equivalence.

Now let A be a graded associative algebra over R with a

unit, and let C(A) be the category of A-modules and X-ho-
momorphisms. Precisely, an object X of C(A) is a graded
i?-module together with a multiplication A ® X -> X (i.e.

Ap ® Xq-> Xp+q for all p, q) satisfying a1(a2 x) {ax a2) x and
lx — x. An X-homomorphism/: X^ 7 satisfies f(ax) af(x).

If X, 7 eC(A), then X ® 7 is, in a natural way, an
(A ® A)-module (® means ®Ä);
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(7.7) (a ® a') (x ® y) - l)qr (ax) ® (a' y)

a' e Ag xelr.
The problem we shall consider is to give to X ® Y the structure
of an A-module so that the resulting tensor product is a functor
of two variables from C(A) to C(A) such that the isomorphisms
7.1 to 7.3 are also in C(A). Stated briefly, can we convert the
tensor product to an internal operation in C(A) so as to preserve
standard properties

The answer is that each diagonal mapping Y : A -> A ® A
which makes A into a Hopf algebra converts the tensor product
to an internal operation. In general, a homomorphism Y :

A B of algebras with unit defines a functor from C(B) to
C(A) by the rule

A® X —- for each

Thus the condition for a Hopf algebra that Y : A -> A ® A be

a homomorphism of algebras follows naturally from this general
principle.

If the isomorphism R ® X & X of 7.1 is to be meaningful
in C(A), then R as well as X must be an A-module. This means
a mapping A ® R-* R of degree 0. Combining this with the
natural isomorphism A « A ® R yields a homomorphism
e: A -> R of algebras with unit. Thus a realization of R in C(A)
coincides with an augmentation of A. Assume now that
R(g)A&A&A®R are A-mappings. It follows quickly
that s is a left and right unit for the coalgebra defined by Y.
And this implies that R®X&XttX(g)R are A-mappings
for each X e C(A).

Let us assume now that 7.2 is an A-mapping in the special
case X Y A. Since Ya a (1 ® 1), we have

TWa T(a (1 ® 1)) aT( 1 ® 1) a (1 ® 1) Wa

Therefore Y is commutative; and this implies that 7.2 is an
A-mapping for all A, Y e C(A).

Assume next that 7.3 is an A-mapping in the special case
X Y Z A. The statement " Y is a homomorphism of
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algebras " is easily seen to be equivalent to: " XF is an A-mapp-
ing Therefore

(1 ®W)Wa (1 0 V) a (1 0 1) a (1 0 V) (1 0 1)

a (1 0 (1 0 1)) a ((1 0 1) 0 1) (V 0 1) Va

It follows that Y is associative; and this implies that 7.3 is an
A-mapping for all A, f,Ze C(A).

We turn now to the functor Horn. If A, Y e C(A), then
Hom(A, Y) is an {A' 0 A)-module where A' denotes the
opposite algebra of A. The action is given bya'®a)f)x (-1
where q, r, s are the degrees of a', a, /, respectively. Assume
that A is a connected Hopf algebra, i.e. A0 « R. By a theorem
of Milnor and Moore [15], there is a unique isomorphism of

Hopf algebras c: A « A' which satisfies the identity 9 (c 0 1) Y
Yjs. It follows that (c0l)T:i-i'0i is a homomor-

phism of algebras with unit, thereby reducing Horn (A, Y) to
an A-module. With no further assumptions on A, it can be

verified (by tedious calculations) that each of the natural
transformations 7.4, 7.5 and 7.6 are A-mappings for any A, 7, Z
in C(A).

To summarize, a Hopf algebra structure in A is precisely what
is needed to convert 0 and Horn to internal operations in C(A)
with the customary properties.

An important example of a category of modules over a Hopf
algebra is the category of chain complexes and chain mappings.
In this case the algebra A is the exterior algebra on one generator
i) of degree — 1, i.e. A0 i?, A_± « R with a as basis element,
and dd 0. A graded A-module is easily identified with the
concept of chain complex, and A-mappings with chain mappings.
In order that the tensor product of chain complexes shall have
the usual A-structure, we must define Y by Yd d0l + l0d.
But this is the only choice which makes A a Hopf algebra.

In the literature, various combinations of signs have been
used in defining the boundary operator in Horn (A, Y) where

A, Y are chain complexes. The point of view of this section
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leads to the formula

(df)x d (/%)+(- l)r+1f(dx), r deg /
8. Algebras oyer Hopf algebras.

We have seen that a graded algebra is a graded 7?-module

X and an i?-mapping pt : X ® X-+ X. Suppose now that X
is also an A-module where A is a Hopf algebra over R. Then

X ® X is an A-module as defined in section 7. We define X
to be an algebra over the Hopf algebra A (briefly, an A-algebra)
if the multiplication mapping p.: X ® X-+ X is an A-mapping.

In terms of elements a e A and xly x2 e X, the condition for p.

to be an A-mapping takes the form

(8.1) a(x1x2) ^ii(-l)pqi()
where

Wa liü'i® a- p deg qt deg a[

It is to be observed that this concept of an algebra over a

Hopf algebra has arisen in a natural way. The discussion of
section 7 demonstrates its inevitability. This being true there
ought to be numerous examples.

The first, and for us the most important example, is the
cohomology algebra of a space 77*(X; Zp) over the Hopf
algebra sép of reduced power operations. The cup-product
formula

i 0

k

and the diagonal mapping £ 0>l 0 show that
i — O

8.1 is satisfied.
Another example is provided by the differential, graded,

augmented algebras of Cartan [8]. In this case, X is an
augmented chain complex (i.e. a module over E (à, — 1), see § 7),
and a chain mapping p: X ® XX defines an algebra structure
in A.
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A trivial example is provided by any algebra X over R. Note
first that 9 : R ® R -> R defined by 9 (r1 ® r2) rx r2 is an

isomorphism (recall that ® ®^). Set Y =' 9_1: R->R ® i?,
then 9, Y give a natural structure of a Hopf algebra to the ground
ring R. It is easily checked that the natural /^-structure in
X ® X coincides with that defined by Y. Thus any algebra
over the ground ring is an algebra over the ground ring regarded
as a Hopf algebra.

As another example, let X be an algebra over Z?, and let tu

be a group of automorphisms of the algebra X. Let A be the

group ring of 7u over R with the usual multiplication. Define
the diagonal Y : A -> A ® A to be the mapping induced by the
diagonal mapping d: tu-*tu X 7u. Then A becomes a Hopf
algebra. Since any g e tu is an automorphism, g (x1 x2)

— (Sxi) (^2)5 and since dg (g, g), it follows that 8.1 holds.
Thus any algebra is an algebra over the Hopf algebra of its
automorphism group.

9. Universal A-algebras.

The foregoing examples of algebras over Hopf algebras arose

naturally. We now show how to construct them in a wholesale
fashion.

Let A be any Hopf algebra. It is easy to construct many
modules over the algebra A (i.e. take quotients of A by left ideals,
and then take direct sums of these). Let M be any graded
A-module. Let Mn denote the tensor product of n copies of M.
As in section 7, Mn is an A-module. Form the direct sum

00

T(M) - X Mn
n 0

where M° R. Define g: T (M) ® T (M) -> T (M) in terms
of components x e Mr, y e Ms by [i(x0y) x0ye Mr+S

making use of the associative law Mr ® Ms & Mr+S. In this

way T(M) is an associative- algebra. It is called the free
associative algebra generated by M (also, the tensor algebra of M).
Since the associative law Mr ® Ms « Mr+S is an A-mapping,
it follows that T(M) is an algebra over the Hopf algebra A.
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Form now the quotient of T(M) by the ideal N generated

by elements

(9.2) x ® y — — 1 Yq y ® x where x e Mp y e Mq

The quotient, denoted by U(M), is called the free, commutative
and associative algebra generated by M. If we assume that the

diagonal mapping Y of A is commutative, then it is readily
verified that N is an A-submodule of T(M). Hence U(M)
becomes an algebra over the Hopf algebra A.

As is well known, the algebra T(M) is universal in the sense

that any i?-mapping of M into an algebra X extends to a unique
mapping of algebras T(M)-+X. Furthermore, if X is an
algebra over A, and M X is an A-mapping, so also is T(M) -> X.
A similar statement holds for U(M) in case X is commutative.

Additional algebras over A can be constructed by taking a
submodule of T(M) or U(M) forming the A-ideal it generates,
and passing to the quotient algebra. It is easily seen that any
A-algebra can be obtained as such a quotient.

In the special case where A is the algebra s/p of reduced

powers, only certain If s are admissible, namely, those which
satisfy the dimensionality restriction 4.9: PA1 x 0 whenever
2i > dim x. Moreover, in forming U(M), we must increase
the ideal N so as to include all elements of the form

(9.3) 0>kx — (x (x) x ® ® x) (p factors) x e M2k

This insures that the relation 4.8, namely, 0>k y yp is valid
for y e U (M)lk. (It is a pleasant exercise in the use of the
Adem-Cartan relations to show that N is an ^-module.) With
these modifications, the resulting U(M) is meaningful for
algebraic topology.

10. Reformulation of the problem.

We are now in a position to formulate a problem similar to
the one posed in section 2, but having a better chance of a positive

solution. Recall that the algebra F(R, q)<° of section 2 is
small in that it has a single generator but is otherwise as big as
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possible subject to being commutative and associative. We
found that, for many q's, it is not an j/^-algebra, and hence
cannot be realized. In analogy, we shall construct U(Zp, q) the
free, commutative, associative j^-algebra on one generator of
dimension q.

In stfp, let N(q) be the left ideal spanned by monomials in ß

and the 0>l each of which has a factored form Q' ß£ 0^ Q where
2k + s > q + deg Q and e 0 or 1. By 4.9, any such a
monomial gives zero when applied to a ^-dimensional class. Set

M(q) jtfpIN(q) and define dimension by adding q to the
degree in sé p. Then M{q) is an j/^-module, the admissibility
condition 4.9 holds, it has a single j^-basis element of dimension

q, and it is the largest admissible j/^-module on one element
of dimension q. Finally, set U(Zp,q) U(M(q)) as defined
in section 9.

If now we ask whether U(Zp, q) is realizable, the answer is

Yes It has been proved by Cartan [7] that U (Zp, q) is

isomorphic as an j/^-algebra to the cohomology algebra of the
Eilenberg-MacLane complex K(Zp, q).

Having succeeded in realizing the free j/^-algebra on one

generator, it is natural to ask if quotients of this algebra can
be realized. For example, choose a yeU(Zp,q) and let W
be the quotient by the minimal j/p-ideal containing y. As

an approach to this question, let D be the canonical bundle
over K (Zp, q) with y as its A-invariant. Precisely, the element

y eHr(K(Zp, q)1 Zp) determines a mapping /: K(Zpl q)-> K(Zp, r)
such that y is the image of the fundamental class of K(Zp1 r).
Let E be the acyclic fibre space over K(Zprr) with fibre

K(Zp,r — 1). Then D is defined to be the fibre space over
K(Zp, q) induced by E and /.

Unfortunately the complete structure of Zp) is not
known. It is obvious that the projection g: X->K{Zp,q)
satisfies g* y 0. Therefore the kernel of g* contains the

jtfp-ideal generated by y. It is a reasonable conjecture that
they coincide, and that the j/p-algebra W on one generator and

one relation is contained in H*(D\ Zp). It is definitely known
that W is not all of H*(D ; Zp). To see this, it is only necessary
to recall that the elements of H*(K(Zp, q); Zp) can be inter-
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preted as primary cohomology operations, and the elements of

H*(D ; Zp) as secondary operations defined on cohomology
classes annihilated by y (see [1]). Numerous non-trivial
secondary operations have been found.

Thus to realize W as the cohomology algebra of a space, we

must modify D so as to eliminate the unwanted elements of

H*(D\ Zp). But before trying this, we should reexamine our
objective. It was to construct a space whose cohomology has

a single generator and is maximal subject to a single relation.
In one sense D already satisfies our requirement. If we admit
secondary cohomology operations as well as the primary operations

then the g*-image of the generator of H*(K(Zp, q); Zp)
does in fact generate H*{D; Zp)1 and the latter is free in the
sense that there are no accidental relations. This is a restatement

of the identification of elements of H*(X; Zp) with
secondary operations associated with y.

Thus, in attempting to realize W, we have tacitly assumed
that we know what is meant by ** one generator subject to one
relation Our prejudices have again interposed themselves.
The correct procedure is to analyse fully the structure of
H*(D; Zp), and then we may know how to define the concept
of one generator subject to one relation.

Eventually we will want to know how to describe algebraically
the cohomology algebra on k generators subject to r± primary
relations, r2 secondary relations, etc. We know already how to
realize this algebra using Eilenberg-MacLane complexes and the
fibre space constructions of Postnikov [16]. But we are a long
way from being able to describe the algebra in direct algebraic
terms.

BIBLIOGRAPHY

[1] Adams, J. F., On the non-existence of elements of Hopf invariant one.
Annals of Math., 72 (1960), 20-104.

[2] Ad em, J., The iteration of Steenrod squares in algebraic topology.
Proc. Nat. Acad. Sei. U.S.A., 38 (1952), 720-726.

[3] The relations on Steenrod powers of cohomology classes, Alge-
braicGeometry and Topology (A symposium inhonor of S. Lefschetz)
Princeton Univ. Press, 1956.

[4] Araki, S., On Steenrod's reduced powers in singular homology theo¬
ries. Memoirs Faculty Sc. Kyusyu Univ., Ser. A, IX (1956), 159-173.

L'Enseignement mathém., t. VII, fase. 1. 12



178 N. E. STEENROD

[5] Borel, A., Sur ]a cohomologie des espaces fibres principaux et des
espaces homogènes de groupes de Lie compact. Annals of Math.,
57 (1953), 115-207.

[6] Cartan, H., Une théorie axiomatique des carrés de Steenrod. C. R.
Acad. Sei. (Paris), 230 (1960), 425-429.

[7] Sur les groupes d'Eilenberg-MacLane H (7c, n). Proc. Nat. Acad.
Sei. U.S.A., 40 (1954), 467-471 and 704-707.

[8] Séminaire H. Cartan, 1954-1955, Paris.
[9] Sur l'itération des opérations de Steenrod. Comment.Math.Helo.,

29 (1955), 40-58.
[10] Eilenberg, S., Homology of spaces with operators. Trans. Amer.

Math. Soc., 61 (1947), 378-417.
[11] Hopf, H., Ueber die Abbildungen von Sphären auf Sphären niedrigerer

Dimension. Fund. Math., 25 (1935), 427-440.
[12 ] Ueber die Topologie der Gruppen-Mannigfaltigkeiten. Annals of

Math., 42 (1941), 22-52.
[13] Liulevicius, A., The factorization of cyclic reduced powers by

secondary cohomology operations. Proc. Nat. Acad. Sei. U.S.A.,
46 (1960), 978-981.

[14] Milnor, J., The Steenrod algebra and its dual. Annals of Math., 67

(1958), 150-171.
[15] and J. G. Moore, On the structure of Hopf algebras, to appear.
[16] Postnikoy, M. M., On the homotopy theory of continuous mappings.

Trudy Math. Inst. Steklov No. 46, Izdat. Akad. Nauk S.S.S.R.,
Moscow, 1955.

[17] Shim ad a, N., Triviality of the mod p Hopf invariants. Proc. Japan
Acad., 36 (1960), 68-69.

[18] Steenrod, N. E., Homology groups of symmetric groups and reduced
power operations. Proc. Nat. Acad. Sei. U.S.A., 39 (1953), 213-223.

[19] Cohomology operations derived from the symmetric group.
Comment. Math. Helv., 31 (1957), 195-218.

Department of Mathematics
Princeton University

Princeton, New Jersey.


	THE COHOMOLOGY ALGEBRA OF A SPACE
	1. Introduction.
	2. Realizing a graded algebra as a cohomology ALGEBRA.
	3. Construction of the squaring operations.
	4. The algebras of reduced power operations.
	5. NON-REALIZABILITY AS COHOMOLOGY ALGEBRAS
	6. HOPF ALGEBRAS.
	7. Modules over Hopf algebras.
	8. Algebras over Hopf algebras.
	9. Universal A-algebras
	10. Reformulation of the problem.
	...


